Научные революции

Эволюционные и революционные периоды развития естествознания. Наука - специфическая деятельность людей, главной целью которой является получение знаний о реальности. Новые теоретические концепции познания. Рассмотрение типов научной рациональности.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 15.12.2014
Размер файла 102,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Наука -- это многогранное и вместе с тем целостное образование, отдельные компоненты которого, в том числе естественные и гуманитарные науки, в своих глубинных мировоззренческих и методологических основаниях теснейшим образом связаны между собой.

Вся история познания свидетельствует о наличии мощных токов знаний, идей, образов, представлений от естественных наук к гуманитарным и от гуманитарных к естественным, о взаимодействии между науками о природе и науками об обществе и человеке.

История каждой отдельной науки (физики, астрономии, биологии и т.п.) может быть представлена как история формирования, эволюционного развития и революционной смены ее конкретно-исторических способов познания.

Революции в науке связаны с изменениями способов познания. В ходе научной революции происходит выделение качественно нового типа объектов, резко изменяется система методологических установок познания, идеалов познания, критериев оценки результатов познания, критикуются старые и утверждаются новые ценности познания.

Жизнь в науке - это постоянная борьба различных мнений, направлений, борьба за признание идей.

1. Понятие научной революции. Этапы научных революций

Представление о научных революциях, являющееся базовым для ряда концепций развития науки, стало неотъемлемой частью общего понимания науки.

Научная революция - это форма разрешения многогранного противоречия между старым и новым знанием в науке, кардинальные изменения в содержании научных знаний на определенном этапе их развития. В ходе научных революций происходит качественное преобразование фундаментальных оснований науки, смена новыми теориями старых, существенное углубление научного понимания окружающего мира в виде становления новой научной картины мира.

В ходе научной революции происходит выделение качественно нового типа объектов, резко изменяется система методологических установок познания, идеалов познания, критериев оценки результатов познания, критикуются старые и утверждаются новые ценности познания.

Научная революция имеет свою структуру, основные этапы развития.

Первый этап научной революции -- формирование непосредственных предпосылок (эмпирических, теоретических, ценностных) нового способа познания в недрах старого. Оно осуществляется в русле образования и попыток разрешения некоторой проблемной ситуации в науке. Такая проблемная ситуация развивается от осознания потребности в новом способе познания до формирования идеи о содержании его основания.

Второй этап нацелен на непосредственное развитие оснований нового способа познания. Он начинается с выдвижения идеи (т.е. с того, чем заканчивается первый этап), продолжается ее развитием вплоть до формулирования принципов фундаментальной теории и завершается выработкой методологических установок познания.

Третий этап научной революции -- утверждение качественно нового способа познания. При этом старый, исходный способ познания превращается в подчиненный момент нового способа познания. В реальной практике научного познания на данном этапе осуществляются проверка, применение, подтверждение новой фундаментальной теории, уточнение ее соответствия предшествующему теоретическому знанию и данным нового эмпирического базиса, а также новым методологическим установкам познания.

Этапом утверждения оснований нового способа познания, превращения его в устойчивую стабильную целостность завершается период научной революции и начинается период эволюционного развития науки.

В эволюционный период развития наука опирается на сложившийся в ходе научной революции новый способ познания (парадигму, фундаментальную теорию), основания которого принимаются учеными без существенной критики как новый и действенный инструмент познания

2. Научные революции

2.1 Типы научных революций

В динамике научного знания особую роль играют этапы развития, связанные с перестройкой исследовательских стратегий, задаваемых основаниями науки. Эти этапы получили название научных революций.

Основания науки обеспечивают рост знания до тех пор, пока общие черты системной организации изучаемых объектов учтены в картине мира, а методы освоения этих объектов соответствуют сложившимся идеалам и нормам исследования. Но по мере развития науки она может столкнуться с принципиально новыми типами объектов, требующими иного видения реальности по сравнению с тем, которое предполагает сложившаяся картина мира. Новые объекты могут потребовать и изменения схемы метода познавательной деятельности, представленной системой идеалов и норм исследования. В этой ситуации рост научного знания предполагает перестройку оснований науки. Последняя может осуществляться в двух разновидностях:

а) как революция, связанная с трансформацией специальной картины мира без существенных изменений идеалов и норм исследования;

б) как революция, в период которой вместе с картиной мира радикально меняются идеалы и нормы науки.

Наиболее общие типы научных революций в истории науки:

1) Внутридисциплинарные научные революции - происходящие в рамках отдельных научных дисциплин. Причинами подобных революций чаще всего служат переходы к изучению новых объектов и применение новых методов исследования.

2) Междисциплинарные научные революции - происходящие в результате взаимодействия и обмена научными идеями между различными научными дисциплинами. На ранних этапах истории науки такое взаимодействие осуществлялось путем переноса научной картины мира наиболее развитой научной дисциплины на новые, еще складывающиеся дисциплины. В современной науке междисциплинарное взаимодействие осуществляется иначе. Теперь каждая наука обладает самостоятельной картиной мира, поэтому междисциплинарное взаимодействие происходит при анализе общих черт и признаков прежних теорий и концепций.

3) Глобальные научные революции - наиболее известными из которых являются революции в естествознании, приводящие к смене научной рациональности.

2.2 Виды научных революций

Мы выделим и рассмотрим три вида научных революций, которые нередко тесно друг с другом связаны: построение новых фундаментальных теорий, внедрение новых методов исследования, открытие новых «миров»

1.Новые теоретические концепции

Построение новых фундаментальных теорий -- это наиболее известный тип научных революций.

Давно принято говорить о революции, совершенной Н.Коперником, или о ньютонианской революции. Именно со сменой фундаментальных теоретических концепций связывает свое представление о революциях Т.Кун. И с этим нельзя не согласиться, ибо и теория относительности Эйнштейна, и квантовая механика знаменуют собой кардинальные сдвиги в нашем познании мира. При анализе перечисленных выше теоретических революций бросаются в глаза две основных особенности, которые мы уже отмечали для революций вообще.

-- Речь идет о центральных для той или иной области теоретических концепциях, определяющих в данный период лицо науки.

-- Революция касается не только специально-научных представлений, но затрагивает мировоззренческие и методологические проблемы.

Возникновение квантовой механики -- это яркий пример общенаучной революции, ибо ее значение выходит далеко за пределы физики. Возьмем, к примеру, гуманитарные науки. Казалось бы, какая здесь может быть связь с миром элементарных частиц, где царят квантово-механические законы?

Но вот небольшой отрывок из записей одного из крупнейших наших отечественных гуманитариев М.М.Бахтина: «Экспериментатор составляет часть экспериментальной системы (в микрофизике). Можно сказать, что и понимающий составляет часть понимаемого высказывания, текста (точнее, высказываний, их диалога, входит в него как новый участник)».

Что это как не отзвук квантово-механических представлений?

На уровне аналогий или метафор они проникли и в гуманитарное мышление. естествознание революционный научная рациональность

Глубину воздействия квантовой механики на наше мировосприятие трудно переоценить. В порядке иллюстрации обратим внимание на один из аспектов этого воздействия. Можно с уверенностью сказать, что человечество уже много тысячелетий практически или теоретически придерживается принципов элементаризма. Мы интуитивно уверены, что мир состоит из частей, что каждую вещь можно разложить на элементы, а затем из этих элементов собрать. Конечно, опыт биологии этому противоречит, но жизнь воспринимается как очень специфическое явление, особенности которого никто не собирается обобщать.

Но вот мы открываем современный курс квантовой механики, написанный А. Садбери, и читаем:

«Квантовая механика в принципе отрицает возможность описания мира путем деления его на части с полным описанием каждой отдельной части -- именно эту процедуру часто считают неотъемлемой характеристикой научного прогресса».

Не значит ли это, что квантовая механика посягает на нашу тысячелетнюю интуицию, на наш здравый смысл?

Обеим выделенным выше характеристикам целиком отвечает дарвиновская революция.

-- Во-первых, очевидно, что эволюционная концепция занимает центральное место в биологии.

Вот высказывание по этому поводу авторитетных современных биологов Н. В. Тимофеева-Ресовского, Н. Н. Воронцова и А. В. Яблокова: «Любое биологическое исследование оказывается оправданным лишь в том случае, если оно имеет более близкий или более далекий, но обязательно эволюционный «выход»».

-- Во-вторых, вряд ли следует доказывать огромное мировоззренческое воздействие концепции Дарвина, которая, помимо всего прочего, коренным образом изменила наши представления о месте человека в Природе.

Нельзя не остановиться на методологическом воздействии теории Дарвина, которая не только решительным образом повернула мышление большинства ученых в сторону эволюционизма, но и породила немало своих «близнецов» в других областях знания.

Примером может служить лингвистика.

«Законы, установленные Дарвином для видов животных и растений, -- писал в 1869 г. выдающийся лингвист А.Шлейхер, -- применимы, по крайней мере в главных чертах своих, и к организации языков».

Дальнейшие рассуждения А.Шлейхера показывают, что теория Дарвина выступает у него как метафорическая программа. Вспомним нашего канцелярского чиновника, попавшего в библиотеку.

«Виды одного рода, -- пишет А.Шлейхер, -- у нас называются языками какого-либо племени; подвиды -- у нас диалекты или наречия известного языка; разновидностям соответствуют местные говоры или второстепенные наречия; наконец, отдельным особям -- образ выражения отдельных людей, говорящих на известных языках».

Примером частнонаучной революции может служить революция, совершенная В.Дэвисом в геоморфологии, которая не получила общекультурного резонанса, что отнюдь не уменьшает ее значение для физической географии.

В рамках своей области теория Дэвиса имела далеко не только специальное, но и большое методологическое значение, ибо воспринималась как выступление против эмпиризма тогдашней географии.

«Ничто не кажется мне более очевидным, -- писал В.Дэвис, -- чем то, что география слишком долго страдала от неиспользования таких способов мышления, как воображение, изобретение, дедукция и другие аналогичные методы, которые помогают найти поддающиеся проверке объяснения географическим явлениям».

Как мы уже сказали, построение новых теорий -- это наиболее известный тип революции. Но существуют и другие принципиальные сдвиги в науке, не менее значимые и по своим специальнонаучным, и по своим мировоззренческим последствиям.

2.Новые методы исследования

Новые методы, как отмечают сами ученые, часто приводят к далеко идущим последствиям и к смене проблем, и к смене стандартов научной работы, и к появлению новых областей знания.

Укажем хотя бы очевидные примеры: появление микроскопа в биологии, оптического телескопа и радиотелескопа в астрономии методов «воздушной археологии»...

Изобретение микроскопа и распространение его в XVII в. с самого начала будоражило воображение современников. Хотя приборы были очень несовершенны, это было окно для наблюдения живой природы, которое позволило первым великим микро-скопистам -- Р.Гуку, Н.Грю, А. ван Левенгуку, М.Мальпиги -- сделать их бессмертные открытия. Оглядываясь на XVII в., известный историк биологии В.В.Лункевич назвал его эпохой «завоеваний микроскопа».

Он дает выразительный портрет психологического состояния Роберта Гука, охваченного ажиотажем новых исследований: «Нужно только представить себе человека умного, образованного, любознательного и темпераментного во всеоружии первого микроскопа, т.е. инструмента, которым почти никто до него не пользовался и который дает возможность открыть совершенно новый, никем до того не виданный и никому не ведомый мир; нужно только перевоплотиться в такого человека, чтобы не только представить себе ясно, но и почувствовать и настроение Гука, и торопливую пестроту его наблюдений. Он бросался на все, что можно поместить на столик, под объектив микроскопа; пусть это будет кончик тоненькой иглы или острие бритвы, шерстяная, льняная или шелковая нить, крошечные стеклянные шарики, радугой играющие под линзой микроскопа, частички тонкого песка, осадок в моче, зола растений или кристаллики различных минералов -- не важно: все это ново, интересно, полно неожиданностей, чревато возможностью засыпать мир тысячью маленьких открытий...»

На все это можно посмотреть и в более широком, принципиальном плане: разве нельзя всю историю биологии разбить на два этапа, разделенные появлением и внедрением микроскопа. Без микроскопа не было бы целых больших и фундаментальных разделов биологии (микробиологии, цитологии, гистологии...), во всяком случае в том виде, как они сейчас существуют.

Нечто аналогичное происходило и в геологии. Во второй половине XIX столетия применение микроскопа для исследования горных пород приводит к революционным изменениям в петрографии. Вот как этот решительный сдвиг описывает выдающийся русский петрограф Ф.Ю.Левинсон-Лессинг в 1916 г.:

В зависимости от введения новых методов исследования или усовершенствования прежних и от успехов сопредельных областей знания, все отрасли естествознания XIX столетия эволюционировали и продолжают эволюционировать. Вместе с приемами исследования расширяются и те проблемы, которые ставит себе данная наука, или появляются новые перспективы, возникают новые задачи, -- и физиономия науки постепенно видоизменяется: то, что недавно еще было новым, оказывается уже устаревшим и заменяется новыми воззрениями, которых ожидает та же судьба. Этот процесс развития совершается в общем постепенно, но бывают моменты быстрого движения вперед, как бы скачки, аналогично явлению сальтации в общем процессе медленной эволюции органического мира. Таким значительным скачком в петрографии явилось введение микроскопического метода исследования. Быть может, нет другой науки, в которой можно было бы указать такой резкий перелом, как тот, который совершился в начале шестидесятых годов прошлого столетия в петрографии».

Нетрудно видеть, что речь идет не только о революции в петрографии, которую Ф. Ю. Левинсон-Лессинг оценивает как столь резкий перелом, что ему нет равных в других науках, -- вопрос ставится шире: всю эволюцию естествознания XIX столетия автор ставит в зависимость от развития и усовершенствования методов исследования.

Во второй половине XX столетия начинается бурный подъем астрономии, связанный с появлением радиотелескопа. Для астрофизиков ситуация обновления очевидна.

«Революция в астрономии началась примерно в 1950 г., и с тех пор ее триумфальное шествие не прекращается», -- считает американский астрофизик П.Ходж. Аналогичная оценка -- у академика В. Л. Гинзбурга:

«Астрономия после второй мировой войны вступила в период особенно блистательного развития, в период «второй астрономической революции» (первая такая революция связывается с именем Галилея, начавшего использовать телескопы)... Содержание второй астрономической революции можно видеть в процессе превращения астрономии из оптической во всеволновую».

И здесь, как видите, периодизация связана с методами эмпирического исследования: первая революция -- оптический телескоп, вторая -- радиотелескоп.

Перейдем к археологии. Один из самых смелых шагов был сделан ею во время первой мировой войны: шаг, который позволил археологу, как говорится, стать птицей -- благодаря аэроплану и аэрофотосъемке, что привело к целому ряду необычных открытий и важных обобщений. С высоты открылись такие следы прошлого, наблюдать которые не могли и мечтать самые прозорливые наземные исследователи.

Известный английский археолог и востоковед Лео Дойель пишет:

«Воздушная археология революционизировала науку изучения древностей, может быть, даже в большей степени, чем открытие радиоуглеродного метода датировки. По словам одного из ее основателей, вклад, внесенный воздушной разведкой в археологические изыскания, можно сравнить с изобретением телескопа в астрономии».

Здесь опять подчеркивается революционизирущая роль новых методов: радиоуглеродный метод датировки, методы аэрофотосъемки. У нас нет возможности увеличивать количество примеров, но очевидно, что речь должна идти не только о методах наблюдения или эксперимента, но обо всем арсенале методических средств вообще.

-- Не меньшее значение, например, могут иметь методы обработки и систематизации эмпирических данных -- вспомним хотя бы роль картографии для наук о Земле или роль статистических методов в социальных исследованиях...

-- Огромное революционизирующее значение имеет и развитие чисто теоретических методов -- например, перевод естествознания на язык математического анализа.

Здесь надо вспомнить не только труды И.Ньютона, но и кропотливую работу Л.Эйлера, Ж.Лагранжа, У.Гамильтона и др. Без этой двухвековой подготовки невозможна была бы и эйнштейновская научная революция.

Вообще проникновение математических методов в новые области науки всегда приводит к их революционной перестройке, к изменению стандартов работы, характера проблем и самого стиля мышления.

Но главное, что бросается в глаза и что хотелось бы подчеркнуть, -- если в нарисованной Т.Куном глобальной картине узловыми точками являются новые теоретические концепции, то в такой же степени можно организовать весь материал истории науки, включая и естествознание, и науки об обществе, вокруг принципиальных скачков в развитии методов. Качественная перестройка методического арсенала -- это своеобразная координатная сетка, не менее удобная, чем перечень куновских парадигм.

3.Открытие «Новых миров»

Перейдем теперь к фактам другого типа. Обычно, характеризуя ту или иную науку, мы прежде всего интересуемся тем, что именно она изучает.

Это не случайно. Выделение границ изучаемой области или, иными словами, задание объекта исследования -- это достаточно существенный наукообразующий параметр. Не удивительно, что возникновение новых дисциплин очень часто связано как раз с обнаружением каких-то ранее неизвестных сфер или аспектов действительности.

Не вызывает сомнений, что это тоже своеобразные научные революции, которые мы будем называть открытием новых миров. Перед исследователем в силу тех или иных обстоятельств открывается новая область непознанного, мир новых объектов и явлений, у которых нет еще даже имени. Далее в ход идет весь арсенал уже имеющихся средств, методов, теоретических представлений, исследовательских программ... Новой является сама область познания.

Простейший пример -- великие географические открытия, когда перед изумленными путешественниками представали новые земли, акватории, ландшафты, неведомые культуры...

Нельзя недооценивать роль этих открытий в истории европейской науки. Но не менее, а, может быть, и более значимо появление в сфере научного изучения таких объектов, как

· мир микроорганизмов и вирусов,

· мир атомов и молекул,

· мир электромагнитных явлений,

· мир элементарных частиц...

· Список такого рода можно расширить и сделать более детальным.

· Открытие явления гравитации,

· открытие других галактик,

· открытие мира кристаллов,

· открытие радиоактивности...

Все это принципиальные шаги в расширении наших представлений о мире, которые сопровождались и соответствующими изменениями в дисциплинарной организации науки. И в такой же степени, как новые методы, новые миры тоже образуют своеобразную координатную сетку, позволяющую упорядочить и организовать огромный материал истории науки.

Следует подчеркнуть, что открытие нового мира и определение его границ -- это не одноактное событие.

Понимание того, что в поле зрения не отдельные интересные явления, а именно новый мир, занимает иногда целые годы. Но еще Т.Кун отмечал, что научные революции растянуты во времени.

Характерный пример -- появление в науке такого нового мира, как вирусы.

В 1892 г. Д. И. Ивановский обнаруживает удивительное явление: способность возбудителя мозаичной болезни табака проходить сквозь фарфоровый фильтр, задерживающий бактерии. Метод фильтрования совершенно традиционен; исследователя отличает только исключительная тщательность в работе. Позднее, в 1899 г., результаты Д.И.Ивановского подтверждает М.Бейеринк, который и предложил для обозначения фильтрующегося инфекционного начала термин «вирус» (лат. virus -- яд). Осознание того, что вирусы -- это новый мир, дающий основание для выделения особого свода знаний -- вирусологии, пришло позднее в связи с трудами Ф.Туорта (1915 г.) и Ф. д'Эрелля (1917 г.). Иными словами, лишь через несколько десятилетий научного труда выяснилось, что перед нами целое семейство неклеточных форм жизни, насчитывающее сегодня в общей сложности около 800 видов.

Открытие новых миров -- это вовсе не прерогатива естественных наук, аналогичный вклад сюда вносят и науки об обществе.

На это, к сожалению, обращают обычно гораздо меньшее внимание, хотя революционизирующее общекультурное значение таких открытий не вызывает сомнений.

Думается, например, что уже появление «эйдосов» Платона -- это открытие нового мира, новой реальности, способ бытия которой вызывает обсуждения до сих пор.

Был обнаружен, в частности, фундаментальный факт: наряду с реальными геометрическими фигурами, которые могут быть нарисованы на песке, существуют еще какие-то другие, применительно к которым мы и формулируем свои теоремы.

Нужна, вероятно, целая книга, чтобы проследить увлекательные перипетии дальнейшего развития этой мысли.

Но главное в развитии наук об обществе -- это открытие «прошлого» человечества, открытие «прошлого» как особого мира и объекта познания.

Огромное общекультурное значение имела расшифровка Ж. Ф. Шампольоном египетской письменности. «Исследования Шампольона, -- подчеркивает известный историк И.Г.Лившиц, комментируя труд последнего «О египетских иероглифах», -- заложили основу новой науки, расширившей нашу историческую перспективу на целые тысячелетия и раскрывшей перед нами новый, почти совершенно неизвестный дотоле мир».

Нельзя не вспомнить в связи с этим слова А.С.Пушкина о Н.М.Карамзине, имея в виду создание «Историю государства Российского»: «Древняя Россия, казалось, найдена Карамзиным, как Америка -- Колумбом». Сравнение удачно схватывает изоморфизм познавательных ситуаций: открытие прошлого вполне сопоставимо с открытием новых земель, культур и народов.

Революционным шагом вперед было и открытие Льюисом Морганом доисторического прошлого человечества. Сам Л. Морган в предисловии к своему труду «Древнее общество» (1877 г.) писал: «Глубокая древность существования человечества на земле окончательно установлена. Кажется странным, что доказательства этого были найдены только в последние тридцать лет и что современное поколение -- первое, которое признало столь важный факт».

Современному человеку уже трудно оценить степень революционности этих открытий, трудно понять их кардинальное воздействие на все мировосприятие ученых прошлого века. Не случайно некоторые события из истории палеоантропологии сейчас воспринимаются как курьезные.

Вот один из таких курьезов, связанный с находкой черепа «неандертальского человека». Случай этот как весьма поучительный приводит в своей книге известный американский палеоантрополог Д.Джохансон. Найденный в 1856 г. в долине Неандера череп был гораздо толще, длиннее и уже, чем у современного человека, с массивными надбровными дугами. Находку начали энергично изучать немецкие анатомы.

-- «Этот череп принадлежал пожилому голландцу», -- сказал д-р Вагнер из Геттингена.

-- «Нет, -- заявил д-р Майер из Бонна, -- это череп русского казака, который в погоне за отступающей армией Наполеона отбился от своих, забрел в пещеру и умер там».

-- Французский ученый Прюнер-Бей придерживался иного мнения: «Череп принадлежал кельту, несколько напоминающего современного голландца, с мощной физической, но низкой умственной организацией».

-- Окончательный приговор произнес знаменитый Рудольф Вирхов. Он заявил, что все странные особенности неандертальца связаны не с его примитивностью, а с патологическими деформациями скелета, возникшими в результате перенесенного в детстве рахита, старческого артрита и нескольких хороших ударов по голове.

Оставался еще вопрос о древности находки. Ученые пришли к единодушному мнению, что неандерталец, возможно, ходил по земле во времена Наполеона...

В основе данного курьеза лежало, конечно, отсутствие надежного метода датировки ископаемых остатков. Но поучительно и то, с каким трудом человеческое сознание осваивает и само представление о глубине прошлого, в которое ему предстоит проникнуть.

2.3 Научные революции

Первая революция

XVII -- первая половина XVIII века -- становление классического естествознания. Основные характеристики: механистическая картина мира как общенаучная картина реальности; объект -- малая система как механическое устройство с жестко детерминированными связями, свойство целого полностью определяется свойствами частей; субъект и процедуры его познавательной деятельности полностью исключаются из знания для достижения его объективности; объяснение как поиск механических причин и сущностей, сведение знаний о природе к принципам и представлениям механики.

Основным достижением физических исследований XVII в., подводящим итог развитию опытного естествознания и окончательно сокрушившим аристотелевскую физическую парадигму, явилось завершение создания общей системы механики, которая была в состоянии дать объяснение движению небесных светил на основе явлений, наблюдаемых на Земле.

И в эпоху античности, и в XVII веке признавалась важность изучения движения небесных светил. Но если для древних греков данная проблема имела больше философское значение, то для XVII века, преобладающим был аспект практический. Развитие мореплавания обусловливало необходимость выработки более точных астрономических таблиц для целей навигации по сравнению с теми, которые требовались для астрологических целей. Основной задачей было определение долготы, столь нужной астрономам и мореплавателям. Для решения этой важной практической проблемы и создавались первые государственные обсерватории (в 1672 г. Парижская, в 1675 г. Гринвичская).

По сути своей это была задача определения абсолютного времени, дававшего при сравнении с местным временем интервал, который и можно было перевести в долготу. Определить это время можно было с помощью наблюдения движений Луны среди звезд, то есть часов, «закрепленных на небе», а также с помощью точных часов, поставленных по абсолютному времени и находящихся у наблюдателя. Для первого случая были необходимы очень точные таблицы для предсказания положения небесных светил, а для второго - абсолютно точные и надежные часовые механизмы

На рубеже XVII в. и в его первой половине развертывается деятельность Г. Галилея - одного из основателей современного естествознания Ему принадлежат доказательство вращения Земли, открытие принципа относительности движения и закона инерции, законов падения тел и их движения по наклонной плоскости, законов сложения движений и поведения математического маятника. Он же изобрел телескоп и с его помощью исследовал ландшафт Луны, обнаружил спутники Юпитера, пятна на Солнце и фазы Венеры.

В процессе развития галилейской механики Ньютон вводит понятие «состояние системы». Первоначально оно было использовано для простейших механических систем. (В дальнейшем понятие состояния обнаружило свою фундаментальную роль и стало применяться в других физических концепциях в качестве одного из основных.) Состояние механической системы в классической механике полностью определяется импульсами и координатами всех тел, образующих данную систему. Если известны координаты и импульсы в данный момент времени, то можно однозначно установить значения координат и импульсов в любой последующий момент времени, а также вычислить значения других механических величин - энергии, момента количества движения и т. д.

Для утверждения своей концепции Ньютону было необходимо разрушить старую, аристотелевскую картину мира. Вместо сфер, которые управлялись перводвигателем, он ввел механизм, действующий на основе естественного закона, не требовавшего постоянного использования силы и допускавшего божественное вмешательство лишь для своего создания и приведения в движение. Это был компромисс науки и религии. С представлением, в соответствии с которым для поддержания движения нужна сила, было покончено. Место статистического представления мира заняло динамическое его представление. Уступки религии в вопросе о первотолчке были, однако, связаны не только с социальными причинами, обусловливающими компромисс науки и религии, но и с характером его понимания природы, которую он считал не эволюционирующей, инертной, косной субстанцией.

Поскольку вечные законы природы дают возможность объяснять только повторяемость неизменных, не эволюционирующих тел, то первый толчок был в такой картине мира просто необходим. Ньютон, как и Аристотель, понимали физику как общую теорию природы. Но если Ньютон теорию природы строил на математических и экспериментальных началах, то Аристотель исключал их из сферы познания. Экспериментально-математический метод познания открыл перед физикой и вообще перед естествознанием колоссальные перспективы. Ньютон, заложив основы теоретического фундамента классической физики, открыл путь к ее дальнейшему развитию.

Научная революция XVII века привела к становлению классического естествознания, основные методологические установки которого были выражены следующим образом:

Объективность и предметность научного знания объявлялась возможной только при исключении из описания и объяснения всего, что относилось к субъекту и процедурам познания. Это означало возможность проведения как абсолютно «чистого» эксперимента, так и получения абсолютного знания.

Как следствие предполагалось возможным определить вытекающие из опыта онтологические принципы и построение истинной картины природы.Процедура объяснения сводилась к поиску механистических причин и субстанций - носителей сил.

Механистическая картина природы рассматривалась как тождественная физической картине реальности, которая, в свою очередь, рассматривалась как общенаучная картина мира.

Объекты рассматривались как простые механические системы, действующие в соответствии с детерминистическими принципами. Такой подход к изучаемому способствовал возникновению таких категорий как «вещь», «процесс», «часть», «целое», «причинность», «пространство», «время».

Вторая революция

Конец XVIII -- первая половина XIX века, переход естествознания в дисциплинарно организованную науку. Основные характеристики: механическая картина мира перестает быть общенаучной, формируются биологические, химические и другие картины реальности, не сводимые к механической картине мира; объект понимается в соответствии с научной дисциплиной не только в понятиях механики, но и таких, как «вещь», «состояние», «процесс», предполагающих развитие и изменение объекта; субъект должен быть элиминирован из результатов познания; возникает проблема разнообразия методов, единства и синтеза знаний, классификации наук; сохраняются общие познавательные установки классической науки, ее стиля мышления.

Итогом этой революции становится дисциплинарная организация классической науки. Этот процесс сопровождается следующими фактами:

Статичность объяснительных схем классического естествознания разрушается, благодаря эволюционным идеям, пришедшим из области биологии, геологии, палеонтологии.

Механистическая картина природы перестаёт приравниваться к общенаучной картине мира.

На основе соотношения разных методов, синтеза знаний, дальнейшей дифференциации научного знания формируются и развиваются разные направления классического естествознания и их стиль мышления.

Результатом развития классической механики явилось создание единой механистической картины мира. В её рамках все качественное многообразие мира объяснялось различиями в движении тел, подчиняющимся законам ньютоновской механики. Согласно механистической картине мира, если физическое явление мира можно было объяснить на основе законов механики, то такое объяснение признавалось научным. Механика Ньютона, таким образом, стала основой механистической картины мира, господствовавшей вплоть до научной революции на рубеже XIX и XX столетий.

Механика Ньютона, в отличие от прежних механических концепций, решала любую задачу, связанную с движением в любой точке пространства при известных фактах, обусловливающих это движение, а также обратную задачу определения величины и направления действия этих факторов в любой точке при известных элементах движения. Благодаря этому механика Ньютона могла использоваться в качестве метода количественного анализа механического движения. Любые физические явления могли изучаться как движение в чисто феноменологическом плане, независимо от вызывающих их факторов. Законы ньютоновской механики связывали силу не с движением, а с изменением движения. Это позволило отказаться от традиционных представлений о том, что для поддержания движения нужна сила, и отвести трению, которое делало силу необходимой в действующих механизмах для поддержания движения, второстепенную роль.

Установив динамический взгляд на мир вместо традиционного статического взгляда, Ньютон свою динамику сделал основой теоретической физики. Хотя Ньютон проявлял осторожность в механических истолкованиях природных явлений, тем не менее, он считал желательным выведение из начал механики остальных явлений природы. Дальнейшее развитие физики стало осуществляться в направлении дальнейшей разработки аппарата механики применительно к решению конкретных задач, по мере решения которых механистическая картина мира укреплялась.

Третья революция

Конец XIX -- середина XX века, преобразование параметров классической науки, становление неклассического естествознания. Существенные революционизирующие события: становление релятивистской и квантовой теорий в физике, становление генетики, квантовой химии, концепции нестационарной Вселенной, возникают кибернетика и теория систем. Основные характеристики: развивающееся, относительно истинное знание; интеграция частнонаучных картин реальности на основе понимания природы как сложной динамической системы; объект -- не столько «себетождественная вещь», сколько процесс с устойчивыми состояниями; соотнесенность объекта со средствами и операциями деятельности; сложная, развивающаяся динамическая система, состояние целого не сводимо к сумме состояний его частей; вероятностная причинность вместо жесткой, однозначной связи; новое понимание субъекта как находящегося внутри, а не вне наблюдаемого мира -- необходимость фиксации условий и средств наблюдения, учет способа постановки вопросов и методов познания, зависимость от этого понимания истины, объективности, факта, объяснения; вместо единственно истинной теории допускается несколько содержащих элементы объективности теоретических описаний одного и того же эмпирического базиса.

В эту эпоху происходит своеобразная цепная реакция революционных перемен в различных областях знания:

- в физике это выразилось в открытии делимости атома, становлении релятивистской и квантовой теорий;

- в космологии были сформированы модели нестационарной эволюционирующей Вселенной;

- в химии возникла квантовая химия, фактически стёршая грань между физикой и химией;

- одним из главных событий в биологии стало становление генетики;

- возникли новые научные направления, например, такие как кибернетика и теория систем.

В процессе всех этих революционных преобразований формировались идеалы и нормы новой, неклассической науки. Они характеризовались пониманием относительной истинности теорий и картины природы, выработанной на том или ином этапе развития естествознания. В противовес идеалу единственно истинной теории, «фотографирующей» исследуемые объекты, допускается истинность нескольких отличающихся друг от друга конкретных теоретических описаний одной и той же реальности, поскольку в каждом из них может содержаться момент объективно-истинного знания.

В связи с этим принимаются такие типы объяснения и описания, которые в явном виде содержат ссылки на средства и операции познавательной деятельности. Наиболее ярким образцом такого подхода были идеалы и нормы объяснения, описания и доказательности знаний, утвердившиеся в квантово-релятивистской физике. В классической физике идеал объяснения и описания предполагал характеристику объекта «самого по себе», без указания на средства его исследования. В квантово-релятивистской физике в качестве необходимого условия объективности объяснения и описания выдвигается требование четкой фиксации особенностей средств наблюдения, которые взаимодействуют с объектом.

Новая система познавательных идеалов и норм обеспечивала значительное расширение поля исследуемых объектов, открывая пути к освоению сложных саморегулирующихся систем. В отличие от механических систем такие объекты характеризуются уровневой организацией, наличием относительно автономных и вариабельных подсистем, массовым стохастическим взаимодействием их элементов, существованием управляющего уровня и обратных связей, обеспечивающих целостность системы.

Именно включение таких объектов в процесс научного исследования вызвало резкие перестройки в картинах реальности ведущих областей естествознания. Процессы интеграции этих картин и развитие общенаучной картины мира стали осуществляться на базе представлений о природе как сложной динамической системе. Этому способствовало открытие специфики законов микро-, макро- и мега-мира в физике и космологии, интенсивное исследование механизмов наследственности в тесной связи с изучением надорганизменных уровней организации жизни, обнаружение кибернетикой общих законов управления и обратной связи. Тем самым создавались предпосылки для построения целостной картины природы, в которой прослеживалась иерархическая организованность Вселенной как сложного динамического единства. Картины реальности, вырабатываемые в отдельных науках, на этом этапе еще сохраняли свою самостоятельность, но каждая из них участвовала в формировании представлений, которые затем включались в общенаучную картину мира. Последняя, в свою очередь, рассматривалась не как точный и окончательный портрет природы, а как постоянно уточняемая и развивающаяся система относительно истинного знания о мире.

Все эти радикальные сдвиги в представлениях о мире и процедурах его исследования сопровождались формированием новых философских оснований науки. Идея исторической изменчивости научного знания, относительной истинности вырабатываемых в науке онтологических принципов соединялась с новыми представлениями об активности субъекта познания. Он рассматривался уже не как дистанцированный от изучаемого мира, а как находящийся внутри него, детерминированный им. Возникает понимание того обстоятельства, что ответы природы на наши вопросы определяются не только устройством самой природы, но и способом нашей постановки вопросов, способом, который зависит от исторического развития средств и методов познавательной деятельности. На этой основе вырастало новое понимание категорий истины, объективности, факта, теории, объяснения.

Радикально изменялись и философские основания науки. Развитие квантово-релятивистской физики, биологии и кибернетики было связано с включением новых смыслов в категории части и целого, причинности, случайности и необходимости, вещи, процесса, состояния и т. д. В принципе можно сказать, что эта «категориальная сетка» вводила новый образ объекта, который представал как сложная система. Представления о соотношении части и целого применительно к таким системам включают идеи несводимости состояний целого к сумме состояний его частей. Важную роль при описании динамики системы начинают играть категории случайности, потенциально возможного и действительного.

Причинность не может быть сведена только к ее лапласовской формулировке - возникает понятие «вероятностной причинности», которое расширяет смысл традиционного понимания данной категории. Новым содержанием наполняется категория объекта: он рассматривается уже не как себетождественная вещь (тело), а как процесс, воспроизводящий некоторые устойчивые состояния и изменчивый в ряде других характеристик.

Четвертая революция

Конец XX -- начало XXI века, радикальные изменение в основаниях научного знания и деятельности -- рождение новой постнеклассической науки. События -- компьютеризация науки, усложнение приборных комплексов, возрастание междисциплинарных исследований, комплексных программ, сращивание эмпирических и теоретических, прикладных и фундаментальных исследований, разработка идей синергетики. Основные характеристики: взаимодействие различных картин реальности; превращение их во фрагменты общей картины мира, взаимодействие путем «парадигмальных прививок» идей из других наук, стирание жестких разграничительных линий; на передний план выходят уникальные системы -- объекты, характеризующиеся открытостью и саморазвитием, исторически развивающиеся и эволюционно преобразующиеся объекты, «человекоразмерные» комплексы; знания об объекте соотносятся не только со средствами, но и с ценностно-целевыми структурами деятельности; осознается необходимость присутствия субъекта, это выражается, прежде всего, в том, что включаются аксиологические факторы в объяснения, а научное знание с необходимостью рассматривается в контексте социального бытия, культуры, истории как нераздельное с ценностями и мировоззренческими установками, что в целом сближает науки о природе и науки о культуре.

Для этого этапа развития естествознания характерно интенсивное применение научных знаний во всех сферах социальной жизни. Изменяется характер научной деятельности. Он определяется революцией в средствах хранения и получения знаний (компьютеризация науки, появление сложных и дорогостоящих приборных комплексов, которые обслуживают исследовательские коллективы и функционируют аналогично средствам промышленного производства). Наряду с дисциплинарными исследованиями на передний план все более выдвигаются междисциплинарные и проблемно-ориентированные формы исследовательской деятельности.

В междисциплинарных исследованиях наука, как правило, сталкивается с такими сложными системными объектами, которые в отдельных дисциплинах зачастую изучаются лишь фрагментарно, поэтому эффекты их системности могут быть вообще не обнаружены при узко дисциплинарном подходе, а выявляются только при синтезе фундаментальных и прикладных задач в проблемно-ориентированном поиске.

Объектами современных междисциплинарных исследований все чаще становятся уникальные системы, характеризующиеся открытостью и саморазвитием. Такого типа объекты постепенно начинают определять и характер предметных областей фундаментальных наук, детерминируя облик современной, пост неклассической науки.

Исторически развивающиеся системы представляют собой более сложный тип объекта даже по сравнению с саморегулирующимися системами. Последние выступают особым состоянием динамики исторического объекта, своеобразным срезом, устойчивой стадией его эволюции. Сама же историческая эволюция характеризуется переходом от одной относительно устойчивой системы к другой системе с новой уровневой организацией элементов и самоорганизацией. Исторически развивающаяся система формирует с течением времени все новые уровни своей организации, причем возникновение каждого нового уровня оказывает воздействие на ранее сформировавшиеся, меняя связи и композицию их элементов.

Формирование каждого такого уровня сопровождается прохождением системы через состояния неустойчивости (точки бифуркации), и в эти моменты небольшие случайные воздействия могут привести к появлению новых структур. Деятельность с такими системами требует принципиально новых стратегий. Их преобразование уже не может осуществляться только за счет увеличения энергетического и силового воздействия на систему. Простое силовое давление часто приводит к тому, что система просто-напросто «сбивается» к прежним структурам, потенциально заложенным в определенных уровнях ее организации, но при этом может не возникнуть принципиально новых структур.

В естествознании первыми фундаментальными науками, столкнувшимися с необходимостью учитывать особенности исторически развивающихся систем, были биология, астрономия и науки о Земле. В них сформировались картины реальности, включающие идею историзма и представления об уникальных развивающихся объектах (биосфера, Метагалактика, Земля как система взаимодействия геологических, биологических и техногенных процессов). В последние десятилетия на этот путь вступила физика. Представление об исторической эволюции физических объектов постепенно входит в картину физической реальности, с одной стороны, через развитие современной космологии (идея «Большого взрыва» и становления различных видов физических объектов в процессе исторического развития Метагалактики), а с другой - благодаря разработке идей термодинамики неравновесных процессов и синергетики.

Именно идеи эволюции и историзма становятся основой того синтеза картин реальности, вырабатываемых в фундаментальных науках, которые сплавляют их в целостную картину исторического развития природы и человека и делают лишь относительно самостоятельными фрагментами общенаучной картины мира, пронизанной идеями глобального эволюционизма.

Ориентация современной науки на исследование сложных исторически развивающихся систем существенно перестраивает идеалы и нормы исследовательской деятельности. Историчность системного комплексного объекта и вариабельность его поведения предполагают широкое применение особых способов описания и предсказания его состояний. С идеалом строения теории как аксиоматически-дедуктивной системы все больше конкурируют теоретические описания, основанные на применении метода аппроксимации, теоретические схемы, использующие компьютерные программы и т. д.

В естествознание начинает шире внедряться идеал исторической реконструкции, которая выступает особым типом теоретического знания, ранее применявшимся преимущественно в гуманитарных науках (истории, археологии, историческом языкознании). Образцы такого подхода можно обнаружить не только в дисциплинах, традиционно изучающих эволюционные объекты (биология, геология), но и в современной космологии и астрофизике: современные модели, описывающие развитие Метагалактики, могут быть расценены как исторические реконструкции, посредством которых воспроизводятся основные этапы эволюции этого уникального исторически развивающегося объекта.

Изменяются представления и о стратегиях эмпирического исследования. Идеал воспроизводимости эксперимента применительно к развивающимся системам должен пониматься в особом смысле. Если эти системы типологизируются, то есть если можно поэкспериментировать над многими образцами, каждый из которых может быть выделен в качестве одного и того же начального состояния, то эксперимент даст один и тот же результат с учетом вероятностных линий эволюции системы.

Но кроме развивающихся систем, которые образуют определенные классы объектов, существуют еще и уникальные исторически развивающиеся системы. Эксперимент, основанный на энергетическом и силовом взаимодействии с такой системой, в принципе не позволит воспроизводить ее в одном и том же начальном состоянии. Сам акт первичного «приготовления» этого состояния меняет систему, направляя ее в новое русло развития, а необратимость процессов развития не позволяет вновь воссоздать начальное состояние. Поэтому для уникальных развивающихся систем требуется особая стратегия экспериментального исследования. Их эмпирический анализ осуществляется чаще всего методом вычислительного эксперимента на ЭВМ, что позволяет выявить разнообразие возможных структур, которые способна породить система.

Среди исторически развивающихся систем современной науки особое место занимают природные комплексы, в которые включен в качестве компонента сам человек. Примерами таких «человекоразмерных» комплексов могут служить медико-биологические объекты, объекты экологии, включая биосферу в целом (глобальная экология), объекты биотехнологии (в первую очередь генетической инженерии), системы «человек - машина» (включая сложные информационные комплексы и системы искусственного интеллекта). При изучении «человекоразмерных» объектов поиск истины оказывается связанным с определением стратегии и возможных направлений преобразования такого объекта, что непосредственно затрагивает гуманистические ценности. С системами такого типа нельзя свободно экспериментировать. В процессе их исследования и практического освоения особую роль начинает играть знание запретов на некоторые стратегии, потенциально содержащие в себе катастрофические последствия.

В этой связи трансформируется идеал ценностно-нейтрального исследования. Объективно истинное объяснение и описание применительно к «человекоразмерным» объектам не только допускает, но и предполагает включение аксиологических факторов в состав объясняющих положений. Возникает необходимость экспликации (выявления) связей фундаментальных внутринаучных ценностей (поиск истины, рост знаний) с вненаучными ценностями общесоциального характера. В современных программно-ориентированных исследованиях эта экспликация осуществляется при социальной экспертизе программ. Вместе с тем в ходе самой исследовательской деятельности с человекоразмерными объектами исследователю приходится решать ряд проблем этического характера, определяя границы возможного вмешательства в объект. Внутренняя этика науки, стимулирующая поиск истины и ориентацию на приращение нового знания, постоянно соотносится в этих условиях с общегуманистическими принципами и ценностями. Развитие всех этих новых методологических установок и представлений об исследуемых объектах приводит к существенной модернизации философских оснований науки.

Научное познание начинает рассматриваться в контексте социальных условий его бытия и его социальных последствий, как особая часть жизни общества, детерминируемая на каждом этапе своего развития общим состоянием культуры данной исторической эпохи, ее ценностными ориентациями и мировоззренческими установками. Осмысливается историческая изменчивость не только онтологических постулатов, но и самих идеалов и норм познания. Соответственно развивается и обогащается содержание категорий «теория», «метод», «факт», «обоснование», «объяснение».

...

Подобные документы

  • Естествознание как отрасль науки. Структура, эмпирический и теоретический уровни и цель естественнонаучного познания. Философия науки и динамика научного познания в концепциях К. Поппера, Т. Куна и И. Лакатоса. Этапы развития научной рациональности.

    реферат [32,7 K], добавлен 07.01.2010

  • Стадии исторического развития науки. Классический этап научной рациональности и принцип лапласовского детерминизма. Неклассический период и сущность субстанциального подхода. Роль постнеклассического этапа научной рациональности в развитии общества.

    контрольная работа [26,7 K], добавлен 03.03.2009

  • Соотношение понятий "знание" и "научное знание". Совершенствование учения: революционные, эволюционные и инволюционные стадии, их соотношение и смена в динамике естествознания. Положительные стороны развития науки. Идея выявления кварков как научный миф.

    контрольная работа [20,7 K], добавлен 27.12.2010

  • История естествознания: древнегреческий период. Черты научного знания на эллинистическом этапе. Древнеримский период античной натурфилософии. Вклад арабского мира в ее формирование. Развитие знаний в средневековой Европе. Сущность научной революции.

    презентация [1,4 M], добавлен 10.11.2014

  • Сущность принципа системности в естествознании. Описание экосистемы пресного водоема, лиственного леса и его млекопитающих, тундры, океана, пустыни, степи, овражистых земель. Научные революции в естествознании. Всеобщие методы научного познания.

    контрольная работа [21,8 K], добавлен 20.10.2009

  • Исторические этапы познания природы, логика и закономерности развития науки. Понятие научной картины мира и теория относительности. Антропный принцип космологии и Учение Вернадского о ноосфере. Современные концепции экологии, задачи и принципы биоэтики.

    шпаргалка [64,8 K], добавлен 29.01.2010

  • Рассмотрение стадий исторического развития естествознания. Отказ от созерцательности и наивной реалистичности установок классического естествознания. Усиление математизации современного естествознания, сращивание фундаментальных и прикладных исследований.

    реферат [30,2 K], добавлен 11.02.2011

  • Предмет и структура естествознания. Понятие естествознания как совокупности наук о природе. История естествознания и интеграция наук от времен древнегреческой натурфилософии, в средневековой культуре, новое время, эпоху глобальной научной революции.

    реферат [54,1 K], добавлен 29.12.2009

  • Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.

    шпаргалка [136,9 K], добавлен 12.02.2011

  • Определение естествознания как отрасли научного познания, его отличие от других наук, разделы естествознания. Наука как одна из форм общественного сознания. Описание и объяснение различных процессов и явлений действительности как основные цели науки.

    реферат [19,6 K], добавлен 16.04.2011

  • Экстенсивные и революционные периоды (научные революции) в развитии науки. Понятие единства науки, отсутствие грани между естественными, техническими, социальными и гуманитарными науками. Современные модели развития науки. Отрасли ненаучного знания.

    реферат [36,3 K], добавлен 15.01.2011

  • Изучение понятия научной революции, глобального изменения процесса и содержания системы научного познания. Геоцентрическая система мира Аристотеля. Исследования Николая Коперника. Законы движения планет Иоганна Кеплера. Основные достижения И. Ньютона.

    презентация [440,1 K], добавлен 26.03.2015

  • Сравнение, анализ и синтез. Основные достижения НТР. Концепция ноосферы Вернадского. Происхождение жизни на земле, основные положения. Экологические проблемы Курганской области. Значение естествознания для социально–экономического развития общества.

    контрольная работа [31,5 K], добавлен 26.11.2009

  • Наука как часть культуры, ее критерии и структура. Методы и подходы научного познания. Сущность современных концепций физики, химии и космологии. Земля как предмет естествознания. Теории происхождения жизни, эволюции органического мира. Феномен человека.

    учебное пособие [3,2 M], добавлен 21.09.2010

  • Предмет изучения и задачи естествознания. Иерархическая последовательность наук по степени возрастания их сложности (лестница Кекуле). Методы естественнонаучного познания. Мифы, религии и искусство как формы отражения окружающей действительности.

    презентация [268,4 K], добавлен 20.06.2013

  • Значение естествознания в формировании профессиональных знаний. Фундаментальные и прикладные проблемы естествознания. Развитие естествознания и антинаучные тенденции. Рациональная и реальная картина мира. Естественно-научные и религиозные знания.

    реферат [68,7 K], добавлен 13.12.2009

  • Цели и задачи курса "Концепции современного естествознания", место данной дисциплины в системе других наук. Классификация наук, предложенная Ф. Энгельсом. Взаимосвязь физических, химических и биологических знаний. Виды атмосферных процессов в природе.

    контрольная работа [28,8 K], добавлен 13.06.2013

  • Изучение понятия, целей, функций и классификаций науки; определение ее роли в обществе. Сущность и отличительные признаки аналитических, синтетических и неожиданных открытий. Рассмотрение истории становления естествознания как научной дисциплины.

    реферат [51,5 K], добавлен 23.10.2011

  • Общий ход развития науки естествознания. Анализ природы, расчленение ее на части, выделение и изучение отдельных вещей и явлений. Воссоздание целостной картины на основе уже познанных частностей. Развитие идеи эволюционного развития явлений природы.

    реферат [26,2 K], добавлен 21.07.2011

  • Закономерный характер систематического развития естествознания. Естественнонаучные революции и их закономерный характер. Периодичность в развитии естествознания: корреляция всплесков творческой и солнечной активности. Естественнонаучная картина мира.

    контрольная работа [78,1 K], добавлен 10.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.