Уровни организации живой материи

Формирование представления о структурных уровнях организации живых систем под влияние открытия клеточной теории строения тел. Изучение доклеточных форм организации живой материи. Исследование клетки как морфофункциональной единицы живой материи.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 25.12.2014
Размер файла 218,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1. Введение

2. Доклеточные формы организации живой материи

3. Клетка как морфофункциональная единица живой материи

4. Организм как основа целостности живой системы

5. Заключение

6. Список литературы

1. Введение

Современная биологическая картина мира основывается на том, что мир живого - это колоссальная система высокоорганизованных систем. В современной биологии классическими уровнями данной системы, которая определяется как живая материя, являются следующие:

1. Молекулярно-генетический уровень является тем уровнем организации живой материи, на котором совершался переход от атомно-молекулярного уровня неживой материи к макромолекулам живой. Это уровень функционирования биополимеров, таких как белки, нуклеиновые кислоты, полисахариды. На этом уровне элементарными структурными единицами являются гены. Вся наследственная информация у живых организмов заложена в молекулах ДНК. Реализация этой информации связана с участием молекул РНК.

2. Клеточный и субклеточный уровни отражают процессы специализации клеток, а также различные внутриклеточные включения.

3. Организменный и органно-тканевой уровни отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.

4. Популяционно-видовой уровень образуется свободно скрещивающимися между собой особями одного и того же вида. Его изучение важно для выявления факторов, влияющих на численность популяций. Этот уровень важен также с точки зрения исследования путей исторического развития живого, его эволюции.

5. Уровень биогеоценозов выражает следующую ступень структуры живого. Под биогеоценозами понимаются участки Земли с определенным составом тесно взаимосвязанных живых и неживых компонентов, представляющих единый природный комплекс, экосистему. Рациональное использование природы невозможно без знания структуры и функционирования биогеоценозов, или экосистем.

6. Биосферный уровень включает всю совокупность живых организмов Земли, существующих в тесной взаимосвязи с окружающей природной средой. На этом уровне биологической наукой решается такая актуальная ныне проблема, как регулирование процесса концентрации углекислого газа в атмосфере. Исследуя биосферный уровень организации живого, ученые выяснили, что в последнее время в результате значительного усиления хозяйственной активности и слабой природоохранной деятельности концентрация двуокиси углерода в атмосфере планеты стала возрастать. В результате возникла опасность глобального повышения температуры, возникновения так называемого «парникового эффекта», увеличения в ряде районов количества осадков до масштабов Всемирного потопа.

Представление о структурных уровнях организации живых систем сформировалось под влиянием открытия клеточной теории строения тел. В середине 19 века клетка рассматривалась как последняя единица живой материи, наподобие атома неорганических тел (М.Шлейден и Э.Геккель). Но оставался вопрос, на который не могла ответить клеточная теория: от каких именно структур зависят свойства живых организмов. Поэтому ученые-экспериментаторы продолжали свои работы в области исследования клеточных структур. В ходе этих работ был получен следующий результат: белки построены из 20 аминокислот, которые соединены длинными полипептидными связями. 9 из этих аминокислот являются незаменимыми, остальные синтезируются самим организмом. Характерная особенность аминокислот состоит в том, что все они являются левовращающими плоскость поляризации изомерами, хотя существуют аминокислоты и правого вращения. Обе формы таких изомеров почти одинаковы между собой и различаются только пространственной конфигурацией, и поэтому каждая из молекул аминокислот является зеркальным отображением другой. Впервые это явление открыл Л.Пастер. Он обнаружил, что вещества биологического происхождения способны отклонять поляризованный луч. Эти вещества впоследствии были названы оптическими изомерами. В отличие от этого у молекул неорганических веществ эта способность отсутствует и построены они симметрично. На основе своих опытов Л.Пастер высказал мысль о том, что важнейшим свойством всей живой материи является их молекулярная асимметричность, подобная асимметричности левой и правой рук. Это свойство было названо молекулярной хиральностью. Долгое время в связи с изучением структуры белка, появились мнения о том, что белки составляют фундаментальную основу жизни (Ф.Энгельс). Наряду с изучением структуры белка интенсивно изучались механизмы наследственности и воспроизводства живых систем. Наиболее важным открытием на этом пути было выделение из состава ядра клетки богатого фосфором вещества, которое впоследствии назвали нуклеиновой кислотой. Существует два типа нуклеиновых кислот: дезоксирибонуклеиновые и рибонуклеиновые кислоты. В 1944 году Д.Уотсон и Ф.Крик предложили и экспериментально подтвердили гипотезу о строении молекулы ДНК как материального носителя информации. Согласно теории Уотсона и Крика наследственную информацию в молекуле ДНК несет последовательность четырех оснований: два пуриновых и два пиримидиновых (1953 год). Гипотетическое объяснение механизма перевода четырехбуквенной записи структуры ДНК в 20-буквенную дал Г.Гамов, предположив, что для кодирования одной аминокислоты требуется сочетание из трех нуклеотидов ДНК. Спустя семь лет эта гипотеза была подтверждена экспериментально. В 60-ые годы Ф.Жакоб и Ж.Моно доказали, что по своей функциональной активности все гены разделяются на «регуляторные», кодирующие структуру белка, и «структурные», кодирующие синтез метаболитов. Переход на молекулярный уровень исследования изменил представления о механизме изменчивости. Кроме мутаций были названы механизмы рекомбинации генов.

2. Доклеточные формы организации живой материи

материя клетка морфофункциональный система

Единственными представителями доклеточной организации живой материи являются вирусы.

Вирус - это неклеточный инфекционный агент, который может воспроизводиться только внутри живых клеток.

На сегодняшний день детально описано свыше пяти тысяч видов вирусов. Учеными предполагается существование миллионов видов. Изучением вирусов занимается вирусология. Вирусология является разделом микробиологии.

Вирусы способны поражать все типы организмов: от бактерий и архей до растений и животных. Вирусы, поражающие бактерии называют бактериофагами. Вирусы, которые поражают другие вирусы называются сателлитами.

История изучения вирусов началась со статьи Ивановского Дмитрия Иосифовича, описывающей небактериальный патоген растений табака. А первым открытым и официально описанным вирусом стал вирус табачной мозаики, открытый голландцем Мартином Бейеринком в 1898 году.

Происхождение

Происхождение вирусов неясно, поскольку они не оставляют каких бы то ни было ископаемых останков, однако существует три основных теории их происхождения:

1. Регрессивная гипотеза (гипотеза дегенерации/редукции). Согласно этой гипотезе, вирусы когда-то были клетками, паразитирующими в более крупных клетках. С течением времени эти клетки предположительно утратили гены, не требовавшимися при паразитическом образе жизни. Эта гипотеза основывается на наблюдении, что некоторые бактерии, например, риккетсии и хламидии, представляют собой клеточные организмы, которые подобно вирусам могут размножаться только внутри другой клетки.

2. Гипотеза клеточного происхождения (гипотеза кочевания/побега). Некоторые вирусы могли появиться из фрагментов ДНК или РНК, высвободившихся из генома более крупного организма. Такие фрагменты могут происходить от плазмид - молекул ДНК, способных передаваться от клетки к клетке) или от транспозонов (молекул ДНК, реплицирующихся и перемещающихся с места на место внутри генома.

3. Гипотеза коэволюции. Эта гипотеза предполагает, что вирусы возникли из сложных комплексов белков и нуклеиновых кислот в то же время, что и первые на Земле живые клетки, и зависят от клеточной жизни вот уже миллиарды лет.

Строение вирусов

Вирусные частицы, называемые варионами, состоят из трех компонентов:

1. Генетический материал. ДНК или РНК. Некоторые виды имеют оба типа молекул.

2. Капсид - белковая оболочка. Служит для защиты ДНК/РНК.

3. Дополнительные липидные оболочки.

По первому признаку вирусы делят на ДНК - содержащие и РНК - содержащие. На этом принципе основана классификация вирусов по Балтимору. Классификация ICTV разделяет вирусы на отряды, семейства, подсемейства, роды и виды.

Капсиды вирусов разделяют на четыре класса:

1. Спиральный

2. Икосаэдрический

3. Продолговатый

4. Комплексный

Средний вирус примерно в сто раз меньше средней бактерии. Поэтому большинство из них неразличимы под световым микроскопом.

Вирусы не способны размножаться вне клетки. Вне клетки вирусные частицы не проявляют признаки живого и ведут себя как частицы биополимеров. От живых паразитарных организмов вирусы отличаются полным отсутствием основного и энергетического обмена и отсутствием аппарата трансляции (синтеза белка), степень сложности которого превышает степень сложности самих вирусов.

Жизненный цикл

Обычно выделяют шесть этапов жизненного цикла вируса:

1. Прикрепление - это образование специфичной связи между белками вирусного капсида и рецепторами на поверхности клетки-хозяина. Специфичность связывания определяет круг хозяев вируса.

2. Проникновение в клетку.

3. Лишение оболочек - процесс потери капсида.

4. Репликация вирусов.

5. Сборка вирусных частиц.

6. Выход из клетки.

4. Клетка как морфофункциональная единица живого

Клетка - элементарная единица живого организма.

Все живое состоит из клеток как отдельных единиц и размножается из клеток, поэтому клетка считается мельчайшей единицей всего живого. Клетка обладает всеми признаками живого, ей свойственны раздражимость, обмен веществ, самоорганизация и саморегуляция, передача наследственных признаков. Клетка - это сложное, самоорганизующееся образование органоидов, являющееся микроносителем жизни, так как в каждой клетке заключена генетическая информация, достаточная для воспроизведения всего организма. Все организмы состоят из одной или многих клеток. Размеры клеток варьируются от 0,1 мкм до 155 мм (яйцо страуса в скорлупе).

Жизнь каждой клетки подчинена деятельности всего организма в целом. Клетки многоклеточных организмов неспособны к существованию в открытой среде, за исключением одноклеточных организмов - бактерий, простейших водорослей, грибов. Составляющие клетку части лишены жизненных способностей. Клетки, выделенные из различных тканей живых организмов и помещенные в специальную питательную среду, могут расти и размножаться. Такая способность клеток широко используется в исследовательских и прикладных целях.

Несмотря на большое разнообразие и существенные различия во внешнем виде и функциях, все клетки состоят из трех основных частей - плазматической мембраны, контролирующей переход вещества из окружающей среды в клетку и обратно, цитоплазмы с разнообразной структурой и клеточного ядра, содержащего носитель генетической информации - ДНК. Все животные и некоторые растительные клетки содержат центриоли - цилиндрические структуры диаметром около 0,15 мкм, образующие клеточные центры. Обычно растительные клетки окружены оболочкой - клеточной стенкой. Кроме того, они содержат пластиды - цитоплазматические органоиды (специализированные структуры клеток), нередко содержащие пигменты, обусловливающие их окраску.

Рис. 1 Строение животной (А) и растительной (Б) клеток

Окружающая клетку мембрана состоит из двух слоев молекул жироподобных веществ, между которыми находятся молекулы белков. Главная функция клетки - обеспечить передвижение вполне определенных веществ в прямом и обратном направлениях к ней. В частности, мембрана поддерживает нормальную концентрацию некоторых солей внутри клетки и играет важную роль в ее жизни: при повреждении мембраны клетка сразу гибнет, в то же время без некоторых других структурных компонентов жизнь клетки может продолжаться в течение некоторого времени. Первым признаком умирания клетки являются начинающиеся изменения в проницаемости ее наружной мембраны.

Внутри клеточной плазматической мембраны находится цитоплазма, содержащая водный соляной раствор с растворимыми и взвешенными ферментами, (как в мышечных тканях) и другими веществами. В цитоплазме располагаются разнообразные органеллы - маленькие органы, окруженные своими мембранами. К органеллам, в частности, относятся митохондрии -мешковидные образования с дыхательными ферментами. В них превращается сахар и высвобождается энергия. В цитоплазме есть и небольшие тельца - рибосомы, состоящие из белка и нуклеиновой кислоты (РНК), с помощью которых осуществляется синтез белка. Внутриклеточная среда достаточно вязкая, хотя 65-85% массы клетки составляет вода.

Во всех жизнеспособных клетках, за исключением бактерий, содержится ядро, а в нем - хромосомы - длинные нитевидные тельца, состоящие из дезоксирибонуклеиновой кислоты и присоединенного к ней белка. В многоклеточном организме все сложные проявления жизни возникают в результате согласованной активности составляющих его клеток.

Жизненно важными функциями клетки являются подвижность, раздражимость, метаболизм и размножение. Подвижность клетки выражается во внутриклеточной циркуляции содержимого клетки, перетекании, биении крошечных протоплазматических выростов, сократимости. Раздражимость определяется способностью клетки воспринимать стимул и реагировать на него импульсом или волной возбуждения. Это наиболее свойственно нервным клеткам организмов. Метаболизм включает все превращения вещества и энергии, происходящие в клетках.

Важнейшей функцией клетки является ее размножение путем деления и образования дочерних клеток. По мере роста клетки ухудшается питание её отдельных элементов, способность управления внутренними процессами клетки снижается, клетка приходит в неустойчивое состояние. Далее происходит деление клетки на две дочерние, как выход из неустойчивого состояния, новообразованные клетки обретают устойчивость до момента следующего деления. При делении дочерней клетки передается полный набор хромосом, несущих генетическую информацию. Поэтому перед делением число хромосом в клетке удваивается и при делении каждая дочерняя клетка получает по одному их набору. В любом организме на протяжении всей его жизни идёт процесс замены старых клеток на образующиеся новые. Средний срок жизни клеток человека - один-два дня, а общее количество клеток - примерно 1015. Именно способность воспроизводить самих себя, а не только способность расти и питаться и позволяет считать клетки мельчайшими единицами живого.

Основные структурные различия между животными и растительными клетками немногочисленны. Во-первых, животные клетки, в отличие от растительных (исключая низшие растения), содержат небольшие тельца - центриоли, расположенные в цитоплазме. Во-вторых, как уже говорилось, клетки растений имеют в своей цитоплазме белковые образования - пластиды, которых нет у животных. И в-третьих, клетки растений обладают упомянутой ранее клеточной стенкой, благодаря которой они сохраняют свою форму. Животные клетки располагают лишь тонкой плазматической мембраной и поэтому способны двигаться и менять форму.

В зависимости от типа клеток все организмы делятся на две группы - прокариот и эукариот. К прокариотам относятся бактерии, а к эукариотам - все остальные организмы: простейшие, грибы, растения и животные. Эукариоты могут быть одноклеточными и многоклеточными. Предполагается, что первыми организмами, появившимися около 4-3,5 млрд. лет назад, были прокариоты.

Роль клетки в эволюции живого

Появление первой примитивной клетки стало началом биологической эволюции жизни на планете. Что послужило причиной возникновения именно живой клетки из неживого, до сих пор неизвестно, существует несколько гипотез, однако большинство из них говорит о том, что имел место некий доклеточный предок - протобионт, из которого впоследствии сформировалась древнейшая клетка. Механизм перехода от сложных органических веществ к простым живым организмам наукой пока не установлен. Теория биохимической эволюции, предложенная ученым А.И. Опариным в 20-х гг., предлагает лишь общую схему. В соответствии с ней между первичными сгустками органических веществ (коацерватов) могли выстраиваться молекулы сложных углеводородов, что приводило к образованию примитивной клеточной мембраны, обеспечивающей данным сгусткам стабильность. Именно с появлением мембраны можно говорить о рождении клетки - основной структурной единицы жизни, способной к росту и размножению. Очевидно, археклетка была отграничена от внешней среды двухслойной оболочкой (мембраной), обладала способностью всасывать через нее протоны, ионы и маленькие молекулы, а ее метаболизм основывался на низкомолекулярных углеродных соединениях. Для строения археклетки характерно наличие клеточного скелета, отвечавшего за целостность клетки, а также обеспечивавшего возможность ее деления.

Первыми возникшими на Земле одноклеточными организмами были примитивные бактерии, не обладавшие ядром - прокариоты. Они жили в безкислородной среде и питались готовыми органическими соединениями - веществами, синтезированными в процессе химической эволюции. Однако по мере наполнения атмосферы земли кислородом, многим бактериям пришлось приспособиться к кислородному дыханию - фотосинтезу, что явилось поворотом в эволюции живого. Фотосинтез ускорял биологический круговорот веществ и эволюцию живого в целом. Долго длившийся процесс перехода к фотосинтезу привел примерно 2,6 млрд. лет назад к возникновению первых, имеющих ядро организмов - эукариотов. Это были более совершенные организмы, в ядре которых были сконцентрированы хромосомы с ДНК, сама клетка воспроизводилась уже без серьёзных изменений.

Последующая эволюция эукариотов связана с разделением этих организмов на животные и растительные (примерно 2,6 млрд. - 570 млн. лет назад). Растительные клетки эволюционировали в сторону развития жесткой целлюлозной оболочки клеток и активного использования фотосинтеза, животные же клетки «выбрали» увеличение способности к передвижению, а также усовершенствовали способы поглощать и выделять продукты переработки пищи.

Следующими важными этапами в эволюции живого мира стало половое размножение (около 900 млн. лет назад) и появление многоклеточных организмов с телом, тканями и органами, выполняющими определённые функции (700-800 млн. лет назад). Это были губки, черви, членистоногие и т.п. К тому времени мировой океан уже заселяли водоросли.

Подводя итог, можно сказать, что именно выделение живой самостоятельной клетки из окружающей среды и стало толчком к началу эволюции жизни на земле и роль клетки в развитии всего живого является главенствующей.

3. Организм как основа целостности живой системы

Организм - любое живое существо. Он отличается от неживой природы определенной совокупностью свойств, присущих только живой материи: клеточная организация; обмен веществ при ведущей роли белков и нуклеиновых кислот, обеспечивающий гомеостаз организма - самовозобновление и поддержание постоянства его внутренней среды. Живым организмам присущи движение, раздражимость, рост, развитие и наследственность, а также приспособляемость к условиям существования - адаптация.

Взаимодействуя с абиотической средой, организм выступает как целостная система, включающая в себя все более низкие уровни биологической организации. Все эти части организма (гены, клетки, клеточные ткани, целые органы и их системы) являются компонентами и системами доорганизменного уровня. Изменение одних частей и функций организма неизбежно влечет за собой изменение других. Так, в изменяющихся условиях существования, в результате естественного отбора те или иные органы получают приоритетное развитие. Например, мощная корневая система у растений засушливой зоны (ковыль) или «слепота» в результате редукции глаз у ночных животных, существующих в темноте (крот).

Живые организмы обладают обменом веществ, или метаболизмом, при этом происходит множество химических реакций. Примером таких реакций могут служить дыхание, которое еще Лавуазье и Лаплас считали разновидностью горения, или фотосинтез, посредством которого зелеными растениями связывается солнечная энергия, а результаты дальнейших процессов метаболизма используются всем растением.

Как известно, в процессе фотосинтеза кроме солнечной энергии используются двуокись углерода и вода. Суммарно химическое уравнение фотосинтеза выглядит так:

Солнечная энергия + 6СО2 +12Н2О >С6Н12О6 + 6О2,

где С6Н12О6 - богатая энергией молекула глюкозы.

Практически вся двуокись углерода (СО2) поступает из атмосферы, и днем ее движение направлено вниз к растениям, где осуществляется фотосинтез и выделяется кислород. Дыхание - процесс обратный, и движение СО2 ночью направлено вверх, и идет поглощение кислорода.

Некоторые микроорганизмы, бактерии способны создавать органические соединения и за счет других компонентов, например за счет соединений серы. Такие процессы называются хемосинтезом.

Обмен веществ в организме происходит только при участии особых макромолекулярных белковых веществ - ферментов, выполняющих роль катализаторов. Каждая биохимическая реакция в процессе жизни организма контролируется особым ферментом, который в свою очередь контролируется единичным геном. Изменение гена, называемое мутацией, приводит к изменению биохимической реакции вследствие изменения фермента, а в случае нехватки последнего - к выпадению соответствующей ступени метаболической реакции.

Однако не только ферменты регулируют процессы метаболизма. Им помогают коферменты - это крупные молекулы, частью которых являются витамины - вещества, необходимые для обмена веществ всех организмов - бактерий, зеленых растений, животных и человека. Отсутствие витаминов ведет к болезням - нарушается обмен веществ.

Наконец для ряда метаболических процессов необходимы особые химические вещества, называемые гормонами, которые вырабатываются в различных местах (органах) организма и доставляются в другие места кровью или посредством диффузии. Гормоны осуществляют в любом организме общую химическую координацию метаболизма и помогают, например, нервной системе животных и человека.

На молекулярно-генетическом уровне особенно чувствительно воздействие загрязняющих веществ, ионизирующей и ультрафиолетовой радиации. Оно вызывает нарушение генетических систем, структуры клеток и подавляет действие ферментных систем. Все это приводит к болезням человека, животных и растений, угнетению и даже уничтожению видов, живых организмов.

Метаболические процессы протекают с различной интенсивностью на протяжении всей жизни организма, всего пути его индивидуального развития. Этот его путь от зарождения и до конца жизни называется онтогенезом. Он представляет собой совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом за весь период жизни.

Онтогенез включает рост организма, т.е. увеличение массы и размеров тела, и дифференциацию, т.е. возникновение различий между однородными клетками и тканями, приводящее их к специализации по выполнению различных функций в организме. У организмов с половым размножением онтогенез начинается с оплодотворенной клетки (зиготы), при бесполом размножении - с образования нового организма путем деления материнского тела или специализированной клетки, путем почкования, а также от корневища, клубня, луковицы и т.п.

Каждый организм в онтогенезе проходит ряд стадий развития. Для организмов, размножающихся половым путем, различают зародышевую (эмбриональную), послезародышевую (постэмбриональную) и период развития взрослого организма. Зародышевый период заканчивается выходом зародыша из яйцевых оболочек, а у живородящих - рождением. Важное экологическое значение для животных имеет первоначальный этап послезародышевого развития, протекающий по типу прямого развития или по типу метаморфоза. В первом случае идет постепенное развитие во взрослую форму (цыпленок - курица и т.д.), во втором развитие происходит в виде личинки, которая существует и питается самостоятельно, прежде чем превратиться во взрослую особь (головастик - лягушка). У ряда насекомых личиночная стадия позволяет пережить неблагоприятное время года (низкие температуры, засуху и т.д.).

В онтогенезе растений различают рост, развитие (формируется взрослый организм) и старение (ослабление биосинтеза всех физиологических функций и смерть). Основной особенностью онтогенеза высших растений и большинства водорослей является чередование бесполого (спорафита) и полового (гематофита) поколений. Процессы и явления, проходящие на онтогенетическом уровне, т.е. на уровне индивида (особи), - это необходимое и весьма существенное звено функционирования всего живого. Процессы онтогенеза могут быть нарушены на любой стадии действием химического, светового и теплового загрязнения среды и привести к появлению уродов или даже к гибели индивидов на послеродовой стадии онтогенеза.

Современный онтогенез организмов сложился в течение длительной эволюции, в результате их исторического развития - филогенеза. Не случайно этот термин ввел Э.Геккель в 1866 г., так как для целей экологии необходима реконструкция эволюционных преобразований животных, растений и микроорганизмов. Этим занимается наука - филогенетика, базирующаяся на данных трех наук - морфологии, эмбриологии и палеонтологии.

Взаимосвязь между развитием живого в историко-эволюционном плане и индивидуальным развитием организма сформулирована Э.Геккелем в виде биогенетического закона: онтогенез всякого организма есть краткое и сжатое повторение филогенеза данного вида. Иными словами, в начале в утробе матери (у млекопитающих и др.), а затем, появившись на свет, индивид в своем развитии повторяет в сокращенном виде историческое развитие своего вида.

5. Заключение

В современной науке широко используется метод структурного анализа, при котором учитывается системность исследуемых объектов. Ведь структурность - это внутренняя расчлененность материального бытия, способ существования материи.

Структурные уровни организации материи строятся по принципу пирамиды: высшие уровни состоят из многочисленного числа низших уровней. Низшие уровни являются основой существования материи. Без этих уровней невозможно дальнейшее построение «пирамиды материи». Высшие уровни образуются путём эволюции - постепенно переходя от простого к сложному. Структурные уровни материи образованы из определенного множества объектов какого-либо вида и характеризуются особым способом взаимодействия между составляющими их элементами.

Все объекты живой и неживой природы можно представить в виде определенных систем, обладающих конкретными особенностями и свойствами, характеризующими их уровень организации. С учетом уровня организации можно рассматривать иерархию структур организации материальных объектов живой и неживой природы. Такая иерархия структур начинается с элементарных частиц, представляющих собой первоначальный уровень организации материи, и заканчивается живыми организациями и сообществами -- высшими уровнями организации.

Концепция структурных уровней живой материи включает представления системности и связанной с ней органической целостности живых организмов. Однако история теории систем начиналась с механистического понимания организации живой материи, в соответствии с которым все высшее сводилось к низшему: процессы жизнедеятельности -- к совокупности физико-химических реакций, а организация организма -- к взаимодействию молекул, клеток, тканей, органов и т.п.

Список литературы

1. Биологический энциклопедический словарь. М.: Большая российская энциклопедия, 1989.

2. Данилова В.С. Основные концепции современного естествознания: Учеб. пособие для вузов. М., 2000.

3. Медавар П., Медавар Дж. Наука о живом. Современные концепции в биологии. М.: Мир, 1983.

4. Реймерс Н.Ф. Популярный биологический словарь. М.: Наука, 1994.

5. Рузавин Г.И. Концепции современного естествознания: Учебник для вузов. М., 2003.

6. Слюсарев А.А., Жукова С.В. Биология. Киев: Вища школа, 1987.

Размещено на Allbest.ru

...

Подобные документы

  • Уровни организации живой материи. Клеточная мембрана, поверхностный аппарат клетки, ее части и их назначение. Химический состав клетки (белки, их структура и функции). Обмен веществ в клетке, фотосинтез, хемосинтез. Мейоз и митоз – основные различия.

    контрольная работа [58,3 K], добавлен 19.05.2010

  • Развитие неживой и живой природы. Структура и ее роль в организации живых систем. Современный взгляд на структурную организацию материи. Проблемы самоорганизации, изучаемые в синергетике, законы построения организации и возникновения упорядоченности.

    контрольная работа [38,2 K], добавлен 31.01.2010

  • Уровни организации живой материи. Положения клеточной теории. Органоиды клетки, их строение и функции. Жизненный цикл клетки. Размножение и его формы. Наследственность и изменчивость как фундаментальные свойства живого. Закон моногибридного скрещивания.

    шпаргалка [73,2 K], добавлен 03.07.2012

  • Характеристика основных структурных уровней организации живой материи: молекулярного, клеточного, организменного, популяционно-видового, биогеоценотического, биосферного. Их компоненты, основные процессы. Науки, ведущие исследования на данных уровнях.

    презентация [687,0 K], добавлен 09.11.2012

  • Гравитационное и электромагнитное взаимодействия. Краткая сводка основных формул классической (неквантовой) электродинамики. Уровни организации живой материи и их характеристика. Пример нескольких каталитических реакций. Принцип действия катализатора.

    контрольная работа [34,0 K], добавлен 17.07.2010

  • Электромагнитные взаимодействия как определяющий уровень организации материи. Сущность живого, его основные признаки. Структурные уровни организации живой материи. Предмет биологии, ее структура и этапы развития. Основные гипотезы происхождения жизни.

    лекция [28,4 K], добавлен 18.01.2012

  • Определение понятия клетки как структурной и функциональной единицы живой материи. Выделение прокариотического и эукариотического типов клеточной организации. Догадки писателей-фантастов, древних и средневековых мыслителей о возможности иных форм жизни.

    реферат [22,3 K], добавлен 14.08.2011

  • История изучения клетки. Открытие и основные положения клеточной теории. Основные положения теории Шванна-Шлейдена. Методы изучения клетки. Прокариоты и эукариоты, их сравнительная характеристика. Принцип компартментации и поверхность клетки.

    презентация [10,3 M], добавлен 10.09.2015

  • Главная особенность организации живых материй. Процесс эволюции живых и неживых систем. Законы, лежащие в основе возникновения всех форм жизни по Дарвину. Молекулярно-генетический уровень живых организмов. Прогрессия размножения, естестенный отбор.

    реферат [15,0 K], добавлен 24.04.2015

  • Признаки живой материи, которые отличают ее от неживой. Ферменты, их применение в пищевых технологиях. Отличие ферментов от небиологических катализаторов. Органы и ткани животных. Углеводы, получаемые из растительного сырья. Полисахариды второго порядка.

    контрольная работа [35,1 K], добавлен 26.11.2012

  • Эмпирические методы познания. Идеи античной науки. Законы классической механики. Становление химии, историческая система знания. Масштаб мегамира, измерение и рост между его объектами. Признаки живой системы. Структурные уровни организации живой материи.

    контрольная работа [62,2 K], добавлен 08.06.2013

  • Характеристика и специфика уровней организации живой материи, их закономерности и методы исследования. Биологический потенциал вида. Изменение численности популяции. Опустынивание, эрозия и засоление почв как результат хозяйственной деятельности людей.

    контрольная работа [22,0 K], добавлен 07.01.2011

  • Уровни организации живой материи. Структура и функции цитоплазматической мембраны. Хроматин: структура, функции, уровни укладки. Генный уровень организации наследственного материала. Особенности структурной и функциональной организации генов эукариот.

    курс лекций [3,9 M], добавлен 27.11.2014

  • Специфика живого вещества и проблемы изучения живой природы в естествознании. Концепции происхождения жизни на планете и эволюции живых организмов. Зарождение и развитие Солнечной системы. Теория структурных уровней организации биотической материи.

    контрольная работа [49,2 K], добавлен 06.10.2012

  • История развития науки "цитология". Определение понятия "клетка" и ее положение среди других форм структурной организации живой материи. Сравнительная характеристика прокариотов и эукариотов. Методы исследования клетки, ее морфология, химия и физиология.

    учебное пособие [90,1 K], добавлен 12.03.2013

  • Обмен веществ со средой как специфическое свойство жизни. Общее значение продуцентов, консументов и редуцентов. Полный цикл редукции органического вещества. Уровни организации живой материи. Малый круговорот веществ в биосфере. Круговорот углерода и серы.

    реферат [28,4 K], добавлен 01.01.2010

  • Общая характеристика живой и неживой природы. Неорганические и органические вещества в клетке: макроэлементы, микроэлементы, ультрамикроэлементы, соли, вода, нуклеиновые кислоты, углеводы, белки, липиды. Понятие биогенных элементов. Свойства воды.

    презентация [3,7 M], добавлен 26.04.2012

  • Успехи биохимии в изучении живых объектов на молекулярном уровне. Способы диагностики заболеваний и контроля за их течением посредством химических анализов. Представления о биохимии живой клетки, сложившиеся к началу 50-х годов прошлого столетия.

    реферат [21,6 K], добавлен 11.12.2009

  • Уровни организации живой материи: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический и биосферный. Биология и экология моллюсков и позвоночных животных. Строение, размножение и развитие паука-крестовика.

    контрольная работа [17,0 K], добавлен 12.03.2011

  • Научные идеи русского мыслителя и ученого Ломоносова. Открытие "атома химического элемента" и атомов мыслящей материи - интеллектронов. Утверждение Общей теории интегративно-структурных слоев материи. Введение понятия абсолютного температурного нуля.

    статья [22,2 K], добавлен 10.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.