Достижения современной молекулярной биологии и генетики

Сущность и предмет исследования молекулярной биологии, основные этапы ее становления и развития, оценка современных достижений. Направления взаимосвязи данной науки с генетикой, биохимией, физиологией элементарных процессов. Выдающиеся ученые, их работа.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 14.01.2015
Размер файла 24,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реферат

Достижения современной молекулярной биологии и генетики

молекулярный генетика биология

Молекулярная биология, наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающемся к молекулярному, а в ряде случаев и достигающем этого предела. Конечной целью при этом является выяснение того, каким образом и в какой мере характерные проявления жизни, такие, как наследственность, воспроизведение себе подобного, биосинтез белков, возбудимость, рост и развитие, хранение и передача информации, превращения энергии, подвижность и т.д., обусловлены структурой, свойствами и взаимодействием молекул биологически важных веществ, в первую очередь двух главных классов высокомолекулярных биополимеров - белков и нуклеиновых кислот. Отличительная черта М. б. - изучение явлений жизни на неживых объектах или таких, которым присущи самые примитивные проявления жизни. Таковыми являются биологические образования от клеточного уровня и ниже: субклеточные органеллы, такие, как изолированные клеточные ядра, митохондрии, рибосомы, хромосомы, клеточные мембраны; далее - системы, стоящие на границе живой и неживой природы, - вирусы, в том числе и бактериофаги, и кончая молекулами важнейших компонентов живой материи - нуклеиновых кислот и белков.

М. б. - новая область естествознания, тесно связанная с давно сложившимися направлениями исследований, которые охватываются биохимией, биофизикой и биоорганической химией. Разграничение здесь возможно лишь на основе учёта применяемых методов и по принципиальному характеру используемых подходов.

Фундамент, на котором развивалась М. б., закладывался такими науками, как генетика, биохимия, физиология элементарных процессов и т.д. По истокам своего развития М. б. неразрывно связана смолекулярной генетикой, которая продолжает составлять важную часть М. б., хотя и сформировалась уже в значительной мере в самостоятельную дисциплину. Вычленение М. б. из биохимии продиктовано следующими соображениями. Задачи биохимии в основном ограничиваются констатацией участия тех или иных химических веществ при определённых биологических функциях и процессах и выяснением характера их превращений; ведущее значение принадлежит сведениям о реакционной способности и об основных чертах химического строения, выражаемого обычной химической формулой. Т. о., по существу, внимание сосредоточено на превращениях, затрагивающих главновалентные химические связи. Между тем, как было подчёркнуто Л. Полингом, в биологических системах и проявлениях жизнедеятельности основное значение должно быть отведено не главновалентным связям, действующим в пределах одной молекулы, а разнообразным типам связей, обусловливающих межмолекулярные взаимодействия (электростатическим, ван-дер-ваальсовым, водородным связям и др.).

Конечный результат биохимического исследования может быть представлен в виде той или иной системы химических уравнений, обычно полностью исчерпываемой их изображением на плоскости, т.е. в двух измерениях. Отличительной чертой М. б. является её трехмерность. Сущность М. б. усматривается М. Перуцем в том, чтобы истолковать биологические функции в понятиях молекулярной структуры. Можно сказать, что если прежде при изучении биологических объектов необходимо было ответить на вопрос «что», т.е. какие вещества присутствуют, и на вопрос «где» - в каких тканях и органах, то М. б. ставит своей задачей получить ответы на вопрос «как», познав сущность роли и участия всей структуры молекулы, и на вопросы «почему» и «зачем», выяснив, с одной стороны, связи между свойствами молекулы (опять-таки в первую очередь белков и нуклеиновых кислот) и осуществляемыми ею функциями и, с другой стороны, роль таких отдельных функций в общем комплексе проявлений жизнедеятельности.

Решающую роль приобретают взаимное расположение атомов и их группировок в общей структуре макромолекулы, их пространственные взаимоотношения. Это касается как отдельных, индивидуальных, компонентов, так и общей конфигурации молекулы в целом. Именно в результате возникновения строго детерминированной объёмной структуры молекулы биополимеров приобретают те свойства, в силу которых они оказываются способными служить материальной основой биологических функций. Такой принцип подхода к изучению живого составляет наиболее характерную, типическую черту М. б.

Огромное значение исследований биологических проблем на молекулярном уровне предвидел И.П. Павлов, говоривший о последней ступени в науке о жизни - физиологии живой молекулы. Самый термин «М. б.» был впервые употреблен англ. учёным У. Астбери в приложении к исследованиям, касавшимся выяснения зависимостей между молекулярной структурой и физическими и биологическими свойствами фибриллярных (волокнистых) белков, таких, как коллаген, фибрин крови или сократительные белки мышц. Широко применять термин «М. б.» стали с начала 50-х гг. 20 в.

Возникновение М. б. как сформировавшейся науки принято относить к 1953, когда Дж. Уотсоном и Ф. Криком в Кембридже (Великобритания) была раскрыта трёхмерная структурадезоксирибонуклеиновой кислоты(ДНК). Это позволило говорить о том, каким образом детали данной структуры определяют биологические функции ДНК в качестве материального носителя наследственной информации. В принципе, об этой роли ДНК стало известно несколько раньше (1944) в результате работ американского генетика О.Т. Эйвери с сотрудниками, но не было известно, в какой мере данная функция зависит от молекулярного строения ДНК. Это стало возможным лишь после того, как в лабораториях У.Л. Брэгга, Дж. Бернала и др. были разработаны новые принципы рентгеноструктурного анализа, обеспечившие применение этого метода для детального познания пространственного строения макромолекул белков и нуклеиновых кислот.

Уровни молекулярной организации. В 1957 Дж. Кендрю установил трёхмерную структурумиоглобина, а в последующие годы это было сделано М. Перуцем в отношении гемоглобина. Были сформулированы представления о различных уровнях пространственной организации макромолекул. Первичная структура - это последовательность отдельных звеньев (мономеров) в цепи образующейся молекулы полимера. Для белков мономерами являются аминокислоты, для нуклеиновых кислот - нуклеотиды. Линейная, нитевидная молекула биополимера в результате возникновения водородных связей обладает способностью определённым образом укладываться в пространстве, например в случае белков, как показал Л. Полинг, приобретать форму спирали. Это обозначается как вторичная структура. О третичной структуре говорят, когда молекула, обладающая вторичной структурой, складывается далее тем или иным образом, заполняя трёхмерное пространство. Наконец, молекулы, обладающие трёхмерной структурой, могут вступать во взаимодействие, закономерно располагаясь в пространстве относительно друг друга и образуя то, что обозначается как четвертичная структура; её отдельные компоненты обычно называемые субъединицами.

Наиболее наглядным примером того, как молекулярная трёхмерная структура определяет биологические функции молекулы, служит ДНК. Она обладает строением двойной спирали: две нити, идущие во взаимно противоположном направлении (антипараллельно), закручены одна вокруг другой, образуя двойную спираль со взаимно комплементарным расположением оснований, т.е. так, что против определённого основания одной цепи всегда в другой цепи стоит такое основание, которое наилучшим образом обеспечивает образование водородных связей: адепин (А) образует пару с тимином (Т), гуанин (Г) - с цитозином (Ц). Такая структура создаёт оптимальные условия для важнейших биологических функций ДНК: количественного умножения наследственной информации в процессе клеточного деления при сохранении качественной неизменности этого потока генетической информации. При делении клетки нити двойной спирали ДНК, служащей в качестве матрицы, или шаблона, расплетаются и на каждой из них под действием ферментов синтезируется комплементарная новая нить. В результате этого из одной материнской молекулы ДНК получаются две совершенно тождественные ей дочерние молекулы.

Так же и в случае гемоглобина оказалось, что его биологическая функция - способность обратимо присоединять кислород в лёгких и затем отдавать его тканям - теснейшим образом связана с особенностями трёхмерной структуры гемоглобина и её изменениями в процессе осуществления свойственной ему физиологической роли. При связывании и диссоциации O2 происходят пространственные изменения конформации молекулы гемоглобина, ведущие к изменению сродства содержащихся в нём атомов железа к кислороду. Изменения размеров молекулы гемоглобина, напоминающие изменения объёма грудной клетки при дыхании, позволили назвать гемоглобин «молекулярными лёгкими».

Одна из важнейших черт живых объектов - их способность тонко регулировать все проявления жизнедеятельности. Крупным вкладом М. б. в научные открытия следует считать раскрытие нового, ранее неизвестного регуляторного механизма, обозначаемого как аллостерический эффект. Он заключается в способности веществ низкой молекулярной массы - т. н. лигандов - видоизменять специфические биологические функции макромолекул, в первую очередь каталитически действующих белков - ферментов, гемоглобина, рецепторных белков, участвующих в построениибиологических мембран, в синаптической передаче.

Три биотических потока. В свете представлений М. б. совокупность явлений жизни можно рассматривать как результат сочетания трёх потоков: потока материи, находящего своё выражение в явлениях обмена веществ, т.е. ассимиляции и диссимиляции; потока энергии, являющейся движущей силой для всех проявлений жизнедеятельности; и потока информации, пронизывающего собой не только всё многообразие процессов развития и существования каждого организма, но и непрерывную череду сменяющих друг друга поколений. Именно представление о потоке информации, внесённое в учение о живом мире развитием М. б., накладывает на неё свой специфический, уникальный отпечаток.

Важнейшие достижения молекулярной биологии. Стремительность, размах и глубину влияния М. б. на успехи в познании коренных проблем изучения живой природы справедливо сравнивают, например, с влиянием квантовой теории на развитие атомной физики. Два внутренне связанных условия определили это революционизирующее воздействие. С одной стороны, решающую роль сыграло обнаружение возможности изучения важнейших проявлений жизнедеятельности в простейших условиях, приближающихся к типу химических и физических экспериментов. С другой стороны, как следствие указанного обстоятельства, имело место быстрое включение значительного числа представителей точных наук - физиков, химиков, кристаллографов, а затем и математиков - в разработку биологических проблем. В своей совокупности эти обстоятельства и обусловили необычайно быстрый темп развития М. б., число и значимость её успехов, достигнутых всего за два десятилетия. Вот далеко не полный перечень этих достижений: раскрытие структуры и механизма биологической функции ДНК, всех типов РНК и рибосом, раскрытие генетического кода; открытие обратной транскрипции, т.е. синтеза ДНК на матрице РНК; изучение механизмов функционирования дыхательных пигментов; открытие трёхмерной структуры и её функциональной роли в действии ферментов, принципа матричного синтеза и механизмов биосинтеза белков; раскрытие структуры вирусов и механизмов их репликации, первичной и, частично, пространственной структуры антител; изолирование индивидуальных генов, химический, а затем биологический (ферментативный) синтез гена, в том числе человеческого, вне клетки (in vitro); перенос генов из одного организма в другой, в том числе в клетки человека; стремительно идущая расшифровка химической структуры возрастающего числа индивидуальных белков, главным образом ферментов, а также нуклеиновых кислот; обнаружение явлений «самосборки» некоторых биологических объектов всё возрастающей сложности, начиная от молекул нуклеиновых кислот и переходя к многокомпонентным ферментам, вирусам, рибосомам и т.д.; выяснение аллостерических и других основных принципов регулирования биологических функций и процессов.

Редукционизм и интеграция. М. б. является завершающим этапом того направления в изучении живых объектов, которое обозначается как «редукционизм», т.е. стремление свести сложные жизненные функции к явлениям, протекающим на уровне молекул и потому доступным изучению методами физики и химии. Достигнутые М. б. успехи свидетельствуют об эффективности такого подхода. Вместе с тем необходимо учитывать, что в естественных условиях в клетке, ткани, органе и целом организме мы имеем дело с системами возрастающей степени усложнённости. Такие системы образуются из компонентов более низкого уровня путём их закономерной интеграции в целостности, приобретающие структурную и функциональную организацию и обладающие новыми свойствами. Поэтому по мере детализации познаний о закономерностях, доступных раскрытию на молекулярном и примыкающих уровнях, перед М. б. встают задачи познания механизмов интеграции как линии дальнейшего развития в изучении явлений жизни. Отправной точкой здесь служит исследование сил межмолекулярных взаимодействий - водородных связей, ван-дер-ваальсовых, электростатических сил и т.д. Своей совокупностью и пространственным расположением они образуют то, что может быть обозначено как «интегративная информация». Её следует рассматривать как одну из главных частей уже упоминавшегося потока информации. В области М. б. примерами интеграции могут служить явления самосборки сложных образований из смеси их составных частей. Сюда относятся, например, образование многокомпонентных белков из их субъединиц, образование вирусов из их составных частей - белков и нуклеиновой кислоты, восстановление исходной структуры рибосом после разделения их белковых и нуклеиновых компонентов и т.д. Изучение этих явлений непосредственно связано с познанием основных феноменов «узнавания» молекул биополимеров. Речь идёт о том, чтобы выяснить, какие сочетания аминокислот - в молекулах белков или нуклеотидов - в нуклеиновых кислотах взаимодействуют между собой при процессах ассоциации индивидуальных молекул с образованием комплексов строго специфичного, наперёд заданного состава и строения. Сюда относятся процессы образования сложных белков из их субъединиц; далее, избирательное взаимовоздействие между молекулами нуклеиновых кислот, например транспортными и матричными (в этом случае существенно расширило наши сведения раскрытие генетического кода); наконец, это образование многих типов структур (например, рибосом, вирусов, хромосом), в которых участвуют и белки, и нуклеиновые кислоты. Раскрытие соответствующих закономерностей, познание «языка», лежащего в основе указанных взаимодействий, составляет одну из важнейших областей М. б., ещё ожидающую своей разработки. Эту область рассматривают как принадлежащую к числу фундаментальных проблем для всей биосферы.

Задачи молекулярной биологии. Наряду с указанными важными задачами М. б. (познанием закономерностей «узнавания», самосборки и интеграции) актуальным направлением научного поиска ближайшего будущего является разработка методов, позволяющих расшифровывать структуру, а затем и трёхмерную, пространственную организацию высокомолекулярных нуклеиновых кислот. В данное время это достигнуто в отношении общего плана трёхмерной структуры ДНК (двойной спирали), но без точного знания её первичной структуры. Быстрые успехи в разработке аналитических методов позволяют с уверенностью ждать достижения указанных целей на протяжении ближайших лет. Здесь, разумеется, главные вклады идут от представителей смежных наук, в первую очередь физики и химии. Все важнейшие методы, использование которых обеспечило возникновение и успехи М. б., были предложены и разработаны физиками (ультрацентрифугирование, рентгеноструктурный анализ, электронная микроскопия, ядерный магнитный резонанс и др.). Почти все новые физические экспериментальные подходы (например, использование ЭВМ, синхротронного, или тормозного, излучения, лазерной техники и др.) открывают новые возможности для углублённого изучения проблем М. б. В числе важнейших задач практического характера, ответ на которые ожидается от М. б., на первом месте стоит проблема молекулярных основ злокачественного роста, далее - пути предупреждения, а быть может, и преодоления наследственных заболеваний - «молекулярных болезней». Большое значение будет иметь выяснение молекулярных основ биологического катализа, т.е. действия ферментов. К числу важнейших современных направлений М. б. следует отнести стремление расшифровать молекулярные механизмы действия гормонов, токсических и лекарственных веществ, а также выяснить детали молекулярного строения и функционирования таких клеточных структур, как биологические мембраны, участвующие в регуляции процессов проникновения и транспорта веществ. Более отдалённые цели М. б. - познание природы нервных процессов, механизмовпамяти и т.д. Один из важных формирующихся разделов М. б. - т. н. генная инженерия, ставящая своей задачей целенаправленное оперирование генетическим аппаратом (геномом) живых организмов, начиная с микробов и низших (одноклеточных) и кончая человеком (в последнем случае прежде всего в целях радикального лечения наследственных заболеваний и исправления генетических дефектов). О более обширных вмешательствах в генетическую основу человека речь может идти лишь в более или менее отдалённом будущем, т.к. при этом возникают серьёзные препятствия как технического, так и принципиального характера. В отношении микробов, растений, а возможно, и с.-х. животных такие перспективы весьма обнадёживающи (например, получение сортов культурных растений, обладающих аппаратом фиксации азота из воздуха и не нуждающихся в удобрениях). Они основаны на уже достигнутых успехах: изолирование и синтез генов, перенос генов из одного организма в другой, применение массовых культур клеток в качестве продуцентов хозяйственных или медицинских важных веществ.

Организация исследований по молекулярной биологии. Быстрое развитие М. б. повлекло за собой возникновение большого числа специализированных научно-исследовательских центров. Количество их быстро возрастает. Наиболее крупные: в Великобритании - Лаборатория молекулярной биологии в Кембридже, Королевский институт в Лондоне; во Франции - институты молекулярной биологии в Париже, Марселе, Страсбуре, Пастеровский институт; в США - отделы М. б. в университетах и институтах в Бостоне (Гарвардский университет, Массачусетсский технологический институт), Сан-Франциско (Беркли), Лос-Анджелесе (Калифорнийский технологический институт), Нью-Йорке (Рокфеллеровский университет), институты здравоохранения в Бетесде и др.; в ФРГ - институты Макса Планка, университеты в Гёттингене и Мюнхене; в Швеции - Каролинский институт в Стокгольме; в ГДР - Центральный институт молекулярной биологии в Берлине, институты в Йене и Галле; в Венгрии - Биологический центр в Сегеде. В СССР первый специализированный институт М. б. был создан в Москве в 1957 в системе АН СССР (см. Молекулярной биологии институт); затем были образованы: институт биоорганической химии АН СССР в Москве, институт белка в Пущине, Биологический отдел в институте атомной энергии (Москва), отделы М. б. в институтах Сибирского отделения АН в Новосибирске, Межфакультетская лаборатория биоорганической химии МГУ, сектор (затем институт) молекулярной биологии и генетики АН УССР в Киеве; значительная работа по М. б. ведётся в институте высокомолекулярных соединений в Ленинграде, в ряде отделов и лабораторий АН СССР и других ведомств.

Наряду с отдельными научно-исследовательскими центрами возникли организации более широкого масштаба. В Западной Европе возникла Европейская организация по М. б. (ЕМБО), в которой участвует свыше 10 стран. В СССР при институте молекулярной биологии в 1966 создан научный совет по М. б., являющийся координирующим и организующим центром в этой области знаний. Им выпущена обширная серия монографий по важнейшим разделам М. б., регулярно организуются «зимние школы» по М. б., проводятся конференции и симпозиумы по актуальным проблемам М. б. В дальнейшем научные советы по М. б. были созданы при АМН СССР и многих республиканских Академиях наук. С 1966 выходит журнал «Молекулярная биология» (6 выпусков в год).

За сравнительно короткий срок в СССР вырос значительный отряд исследователей в области М. б.; это учёные старшего поколения, частично переключившие свои интересы из др. областей; в главной же своей массе это многочисленные молодые исследователи. Из числа ведущих учёных, принявших деятельное участие в становлении и развитии М. б. в СССР, можно назвать таких, как А.А. Баев, А.Н. Белозерский, А.Е. Браунштейн, Ю.А. Овчинников, А.С. Спирин, М.М. Шемякин, В.А. Энгельгардт. Новым достижениям М. б. и молекулярной генетики будет способствовать постановление ЦК КПСС и Совета Министров СССР (май 1974) «О мерах по ускорению развития молекулярной биологии и молекулярной генетики и использованию их достижений в народном хозяйстве».

Ген - структурная и функциональная единица наследственности живых организмов. Ген представляет собой участок ДНК, задающий последовательность определённого полипептида либо функциональной РНК. Генотимп - совокупность генов данного организма, которая, в отличие от понятия генофонд, характеризует особь, а не вид. Сходное понятие геном обозначает совокупность генов, содержащихся в гаплоидном наборе хромосом данного организма.

Фенотимп - совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешнесредовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены

Зигомта - диплоидная клетка, образующаяся в результате оплодотворения. Зигота является тотипотентной клеткой.

Аллемли - различные формы одного и того же гена, расположенные в одинаковых участках гомологичных хромосом и определяющие альтернативные варианты развития одного и того же признака.

Гомозигомта - диплоидный организм или клетка, несущий идентичные аллели гена в гомологичных хромосомах. Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам.

Гемтерозигомтными называют диплоидные или полиплоидные ядра, клетки или многоклеточные организмы, копии генов которых в гомологичных хромосомах представлены разными аллеями.

Хромосоммы - нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи

Мутамция - стойкое преобразование генотипа, происходящее под влиянием внешней или внутренней среды. Термин предложен Хуго де Фризом. Процесс возникновения мутаций получил название мутагенеза.

Размещено на Allbest.ru

...

Подобные документы

  • Общая характеристика науки биологии. Этапы развития биологии. Открытие фундаментальных законов наследственности. Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии. Вопрос о функциях живого вещества.

    контрольная работа [28,1 K], добавлен 25.02.2012

  • Предмет изучения молекулярной биологии. Требования к решению задач на установление последовательности нуклеотидов в ДНК, иРНК, антикодонов тРНК, специфика вычисления количества водородных связей, длины ДНК и РНК. Биосинтез белка. Энергетический обмен.

    презентация [111,0 K], добавлен 05.05.2014

  • Разработка комплексного подхода к процессам эволюции на базе современных достижений генетики популяций, молекулярной биологии, эволюции биосферы. Естественный отбор. Борьба видов за существование. Сохранение и накопление случайных мелких мутаций.

    презентация [1,0 M], добавлен 11.03.2017

  • Раскрытие содержания генетической инженерии как системы использования методов молекулярной генетики и молекулярной биологии для конструирования наследственных свойств организмов. Синтез ДНК и полимеразная цепная реакция. Ферменты генетической инженерии.

    презентация [2,6 M], добавлен 05.02.2014

  • Продолжительность жизни как количественный признак. Выявление генетических механизмов формирования - фундаментальная проблема биологии развития, эволюционной генетики и молекулярной геронтологии. Теломерная теория старения. Гены долголетия человека.

    реферат [44,3 K], добавлен 13.11.2014

  • Биология как наука, предмет и методы ее изучения, история и этапы становления и развития. Основные направления изучения живой природы в XVIII в., яркие представители биологической науки и вклад в ее развитие, достижения в области физиологии растений.

    контрольная работа [47,3 K], добавлен 03.12.2009

  • Старение и смерть как биологические свойства всех живых организмов, отражающие их функционирование и эволюцию. Выявление генетических механизмов старения как фундаментальная проблема биологии развития, эволюционной генетики и молекулярной геронтологии.

    презентация [4,2 M], добавлен 25.04.2019

  • Задачи генетики микроорганизмов, которая составляет основу молекулярной биологии. Плазмиды. Мигрирующие генетические элементы. Генетический материал бактерий. Сущность генетики вирусов. Закономерности геномной организации патогенных бактерий и вирусов.

    презентация [285,5 K], добавлен 09.11.2014

  • Теоретические основы, предмет, объект и закономерности биологии. Сущность, анализ и доказательство аксиом теоретической биологии, обобщенных Б.М. Медниковым и характеризующих жизнь и отличающуюся от нее нежизнь. Особенности генетической теории развития.

    реферат [47,8 K], добавлен 28.05.2010

  • Геном человека. Генетические продукты. Определение отцовства методом ДНК-диагностики. Дактилоскопическая идентификация человека. Гистологические и цитологические методы исследования в судебной медицине. Век биологии и генетики.

    реферат [18,9 K], добавлен 18.04.2004

  • Электрофорез как один из наиболее важных методов для разделения и анализа компонентов веществ в химии, биохимии и молекулярной биологии. Электрофорез белков в полиакриламидном и агарозном геле. Оборудование для проведения капиллярного электрофореза.

    реферат [25,5 K], добавлен 31.08.2014

  • Эволюция ботаники ХІХ века: развитие морфологии, физиологии, эмбриологии, систематики растений. Теории распространения растений по земному шару. Становление таких наук как - геоботаника, фитоценология, палеоботаника. Перспективы развития биологии в ХХІ в.

    контрольная работа [21,0 K], добавлен 10.01.2011

  • Понятие и принципы биологии как научного направления, история ее развития и значение. Значение в организме ДНК и РНК, описание их свойств и структуры. Исследование свойств генов и развитие генетики, сферы практического применения современных достижений.

    контрольная работа [26,7 K], добавлен 16.06.2014

  • Классические законы Менделя. Первый, второй, третий закон. Условия существования законов. Признание законов. Значение работы Менделя для развития генетики. Опыты Менделя послужили основой для развития современной генетики – науки.

    реферат [21,3 K], добавлен 17.12.2004

  • Зарождение биологии как науки. Идеи, принципы и понятия биологии XVIII в. Утверждение теории эволюции Ч. Дарвина и становление учения о наследственности. Эволюционные воззрения Ламарка, Дарвина, Менделя. Эволюция полигенных систем и генетический дрейф.

    курсовая работа [65,3 K], добавлен 07.01.2011

  • Предмет, задачи и методы биологии, история зарождения и современные достижения в данной области знания. Человек как объект биологии, характеристика и обоснование его биосоциальной природы. Теории происхождения жизни, иерархические уровни ее организации.

    презентация [3,7 M], добавлен 25.12.2014

  • Методология современной биологии. Философско-методологические проблемы биологии. Этапы трансформации представлений о месте и роли биологии в системе научного познания. Понятие биологической реальности. Роль философской рефлексии в развитии наук о жизни.

    реферат [22,0 K], добавлен 30.01.2010

  • Развитие современной молекулярной биологии. Атомистическое истолкование основных явлений жизни. Электричество в клетке. Разность потенциалов между внутренней и наружной поверхностями мембраны. Возникновения деполяризации и последующего возбуждения.

    реферат [269,2 K], добавлен 11.03.2013

  • Ученые, которым была присуждена Нобелевская премия за выдающиеся достижения в сфере генетики. Открытие Морганом функций хромосом как носителей наследственности. Расшифровка генетического кода Жакобом. Исследование механизма онкогенных вирусов Дульбекко.

    реферат [41,6 K], добавлен 29.09.2012

  • Обзор социально-культурного контекста истории развития биологии с древнейших времен до наших дней. Основные пути ее становления и развития как целостной системы знаний, формирование фундаментальных идей, концепций, теорий, методов исследований и приборов.

    методичка [15,4 M], добавлен 27.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.