Анатомия человека

Корковое вещество надпочечников. Слизистая оболочка ротовой полости. Брюшной отдел пищевода. Тонкая и толстая кишка. Поджелудочная железа, печень, дыхательная система. Эндокринная система почек. Строение семявыносящего протока. Функции маточных труб.

Рубрика Биология и естествознание
Вид шпаргалка
Язык русский
Дата добавления 22.01.2015
Размер файла 151,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В гранулах А-клеток обнаружен гормон глюкагон. По своему действию он является антагонистом инсулина.

Число D-клеток в островках невелико - 5 - 10%.

D-клетки секретируют гормон соматостатин. Этот гормон задерживает выделение инсулина и глюкагона А- и В-клетками, а также подавляет синтез ферментов ацинозными клеткам поджелудочной железы.

РР-клетки (2 - 5%) вырабатывают панкреатический полипептид, стимулирующий выделение желудочного и панкреатического сока.

Это полигональные клетки с очень мелкими зернами в цитоплазме (размер гранул не более 140 нм). РР-клетки обычно локализуются по периферии островков в области головки железы, а также встречаются вне островков среди экзокринных отделов и протоков.

Кровоснабжение поджелудочной железы происходит из ветвей чревного ствола. Венозная кровь оттекает от поджелудочной железы в воротную вену.

Иннервация. Эфферентная иннервация поджелудочной железы осуществляется блуждающим и симпатическим нервами.

БИЛЕТ 13,14

Печень - одна из крупных желез пищеварительного тракта, выполяющая многочисленные функции.

В ней происходят следующие процессы:

1) обезвреживание различных продуктов обмена веществ;

2) разрушение различных биологически активных веществ;

3) разрушение половых гормонов;

4) различные защитные реакции организма;

5) она принимает участие в образовании гликогена (основного источника глюкозы);

6) образование различных белков;

7) кроветворение;

8) в ней накапливаются витамины;

9) образование желчи.

Строение. Печень - это непарный орган, находящийся в брюшной полости, покрытый брюшиной со всех сторон. В ней выделяют несколько долей, 8 сегментов.

Основной структурно-функциональной единицей печени является печеночная долька. Она представляет собой шестигранную призму из печеночных клеток (гепатоцитов, собранных в виде балок). Каждая долька покрыта соединительно-тканной оболочкой, в которой проходят желчные протоки и кровеносные сосуды. От периферии дольки (по системе капилляров портальной вены и печеночной артерии) к ее центру кровь по кровеносным сосудам проходит, очищаясь, и по центральной вене печеночной дольки попадает в собирательные вены, далее в печеночные вены и в нижнюю полую вену.

Между рядами гепатоцитов, образующих балку печеночной дольки, проходят желчные капилляры. Эти капилляры не имеют собственной стенки. Их стенка образована соприкасающимися поверхностями гепатоцитов, на которых имеются небольшие углубления, совпадающие друг с другом и вместе образующие просвет желчного капилляра.

Суммируя выше сказанное, можно сделать заключение о том, что у гепатоцита имеется две поверхности: одна - капиллярная (обращенная к кровеносному сосуду), другая - билиарная (обращенная к просвету желчного капилляра).

При этом надо знать, что просвет желчного капилляра не сообщается с межклеточной щелью благодаря тому, что мембраны соседних гепатоцитов в этом месте плотно прилегают друг к другу, образуя замыкательные пластинки, что, в свою очередь, предотвращает проникновение желчи в кровеносные сосуды. В этих случаях желчь разносится по всему организму и окрашивает его ткани в желтый цвет.

Основные клеточные типы

Гепатоциты образуют печеночные пластинки (тяжи), содержат в изобилии практически все органеллы. Ядро имеет 1 - 2 ядрышка и чаще всего расположено в центре клетки. 25% гепатоцитов имеют два ядра. Для клеток характерна полиплоидия: 55 - 80% гепатоцитов - тетраплоидны, 5 - 6% - октаплоидны и только 10% - диплоидны. Хорошо развита гранулярная и гладкая эндоплазматическая сеть. Элементы комплекса Гольджи присутствуют в различных отделах клетки. Количество митохондрий в клетке может достигать 2000. Клетки содержат лизосомы и пероксисомы. Последние имеют вид окруженного мембраной пузырька диаметром до 0,5 мкм. Пероксисомы содержат окислительные ферменты - аминооксидазу, уратоксидазу, каталазу. Как и в митохондриях, в пероксисомах происходит утилизация кислорода. Прямое отношению к образованию этих органелл имеет гладкая эндоплазматическая сеть. В цитоплазме присутствуют многочисленные включения, преимущественно гликогена. Каждый гепатоцит имеет два полюса - синусоидный и желчный (или билиарный).

Синусоидный полюс обращен к пространству Диссе. Он покрыт микроворсинками, которые участвуют в транспорте веществ из крови в гепатоциты и обратно. Микроворсинки гепатоцитов соприкасаются с поверхностью эндотелиальных клеток. Билиарный полюс также имеет микроворсинки, что облегчает экскрецию компонентов желчи. В месте контакта билиарных полюсов двух гепатоцитов образуются желчные капилляры.

Холангиоциты (или эпителиальные клетки внутрипеченочных желчных протоков) составляют 2 - 3% общей популяции клеток печени. Общая протяженность внутрипеченочных желчных протоков составляет приблизительно 2,2 км, что играет важную роль в формировании желчи. Холангиоциты участвуют в транспорте белков и активно секретируют воду и электролиты.

Стволовые клетки. Гепатоциты и холангиоциты относятся к растущим клеточным популяциям энтодермального эпителия. Стволовыми клетками для тех и других являются овальные клетки, расположенные в желчных протоках.

Синусоидные клетки печени. Известны и интенсивно изучаются четыре клеточных типа, постоянно присутствующих в синусоидах печени: эндотелиальные клетки, звездчатые клетки Купфера, клетки Ито и ямочные клетки. Согласно данным морфометрического анализа синусоидные клетки занимают около 7% объема печени.

Эндотелиальные клетки контактируют при помощи многочисленных отростков, отделяя просвет синусоида от пространства Диссе. Ядро расположено вдоль клеточной мембраны со стороны пространства Диссе. В клетках содержатся элементы гранулярной и гладкой эндоплазматической сети. Комплекс Гольджи расположен между ядром и просветом синусоида. В цитоплазме эндотелиальных клеток содержатся многочисленные пиноцитозные пузырьки и лизосомы. Фенестры, не затянутые диафрагмами, занимают до 10% эндотелия и регулируют поступление в пространство Диссе частиц более 0,2 в диаметре, например хиломикронов. Для эндотелиальных клеток синусоидов характерен эндоцитоз всех типов молекул и частиц с диаметром не более 0,1 мкм. Отсутствие типичной базальной мембраны, способность к эндоцитозу и наличие фенестр отличают эндотелий синусоидов от эндотелия других сосуд.

Клетки Купфера относятся к системе мононуклеарных фагоцитов и располагаются между эндотелиальными клетками в составе стенки синусоида. Основным местом локализации купферовских клеток являются перипортальные области печени. В их цитоплазме присутствуют лизосомы с высокой активностью пероксидазы, фагосомы, включения железа, пигменты. Клетки Купфера удаляют из крови чужеродный материал, фибрин, избыток активированных факторов свертывания крови, участвуют в фагоцитозе стареющих и поврежденных эритроцитов, обмене гемоглобина и железа. Железо из разрушенных эритроцитов или из крови аккумулируется в виде гемосидерина для последующего использования в синтезе НЬ. Метаболиты арахидоновой кислоты, фактор активации тромбоцитов вызывают активацию клеток Купфера. Активированные клетки, в свою очередь, начинают вырабатывать комплекс биологически активных веществ, таких, как радикалы кислорода, активатор плазминогена, фактор некроза опухоли TNF, ИЛ-1, ИЛ-6, трансформирующий фактор роста, которые могут вызвать токсическое повреждение гепатоцитов.

Ямочные клетки (Pit-cells) - лимфоциты, располагающиеся на эндотелиальных клетках или между ними. Предполагают, что ямочные клетки могут быть NK-клетками и действуют против опухолевых и инфицированных вирусами клеток. В отличие от клеток Купфера, которым необходима активация, цитолитическое действие ямочных клеток проявляется спонтанно, без предварительной активации со стороны других клеток или биологически активных веществ.

Жиронакапливающие клетки (липоциты, клетки Ито) имеют отростчатую форму, локализуются в пространстве Диссе или между гепатоцитами. Клетки Ито выполняют важную роль в метаболизме и накоплении ретиноидов. Около 50 - 80% витамина А, находящегося в организме, накапливается в печени, и до 90% всех ретиноидов печени депонировано в жировых каплях клеток Ито. Эфиры ретинола попадают в гепатоциты в составе хиломикронов. В гепатоцитах эфиры ретинола конвертируются в ретинол и образуется комплекс витамина А с ретиносвязывающим белком. Комплекс секретируется в пространство Диссе, откуда депонируется клетками Ито. In vitro для клеток Ито показана способность синтезировать коллаген, в связи с чем предполагают их участие в развитии цирроза и фиброза печени.

Основные функции печени

Секреция желчи. Гепатоциты продуцируют и через билиарный полюс секретируют желчь в желчные капилляры. Желчь - водный раствор электролитов, желчных пигментов, желчных кислот. Желчные пигменты - конечные продукты обмена Нb и других порфиринов. Гепатоциты из крови захватывают свободный билирубин, конъюгируют его с глюкуроновой кислотой и секретируют нетоксичный, связанный билирубин в желчные капилляры. Желчные кислоты - конечный продукт обмена холестерина, необходимы для переваривания и всасывания липидов. С желчью из организма выводятся также физиологически активные вещества, например конъюгированные формы глюкокортикоидов. В составе желчи иммуноглобулины класса А из пространств Диссе поступает в просвет кишки.

Синтез белков. Гепатоциты секретируют в пространство Диссе альбумины, (фибриноген, протромбин, фактор III, ангиотензиноген, соматомедины, тромбопоэтин и др.). Большинство белков плазмы продуцируется гепатоцитами.

Метаболизм углеводов. Избыток глюкозы в крови, возникающий после приема пищи, при помощи инсулина поглощается гепатоцитами и запасается в виде гликогена. При дефиците глюкозы глюкокортикоиды стимулируют в гепатоцитах глюконеоогенез (превращение аминокислот и липидов в глюкозу).

Метаболизм липидов. Хиломикроны из пространств Диссе попадают в гепатоциты, где запасаются в качестве триглицеридов (липогенез) или секретируются в кровь в виде липопротеинов.

Запасание. В гепатоцитах запасаются триглицериды, углеводы, железо, медь. Клетки Ито накапливают липиды и до 90% ретиноидов, депонируемых в печени.

Детоксикация. Инактивация продуктов обмена Нb, белков, ксенобиотиков (например, лекарственных препаратов, наркотиков, индустриальных химикатов, токсических веществ, продуктов метаболизма бактерий в кишечнике) происходит при помощи ферментов в ходе реакций окисления, метилирования и связывания. В гепатоцитах образуется нетоксичная форма билирубина, из аммиака (конечного продукта обмена белков) синтезируется мочевина, подлежащая выведению через почки, подвергаются распаду половые гормоны.

Защита организма. Клетки Купфера удаляют из крови микроорганизмы и продукты их жизнедеятельности. Ямочные клетки активны против опухолевых и инфицированных вирусом клеток. Гепатоциты транспортируют IgA из пространства Диссе в желчь и далее - в просвет кишки.

Кроветворная. Печень участвует в пренатальном гемопоэзе. В постнатальном периоде в гепатоцитах синтезируется тромбопоэтин.

Желчевыводящие пути представляют собой систему желчных сосудов, по которым происходит транспорт желчи из печени в просвет двенадцатиперстной кишки. Выделяют внутрипеченочные и внепеченочные желчные протоки. К внутрипеченочным принадлежат междольковые желчные протоки, а к внепеченочным - правый и левый печеночные протоки, общий печеночный, пузырный и общий желчный протоки (холедох).

Желчный пузырь - это полый орган с тонкой стенкой (около 1,5 - 2 мм). Он вмещает 40 - 60 мл желчи. Стенка желчного пузыря состоит из трех оболочек: слизистой, мышечной и адвентициальной. Последняя со стороны брюшной полости покрыта серозной оболочкой.

Слизистая оболочка желчного пузыря образует складки, анастомозирующие друг с другом, а также крипты или синусы в виде карманов.

В области шейки пузыря в ней находятся альвеолярно-трубчатые железы, выделяющие слизь. Эпителий слизистой оболочки обладает способностью всасывать воду и некоторые другие вещества из желчи, заполняющей полость пузыря. В связи с этим пузырная желчь всегда более густой консистенции и более темного цвета, чем желчь, выходящая непосредственно из печени.

Мышечная оболочка желчного пузыря состоит из гладких мышечных клеток (расположенных в виде сети, в которой преобладает их циркулярное направление), которые особенно хорошо развиты в области шейки пузыря. Здесь находятся сфинктеры желчного пузыря, способствующие удерживанию желчи в просвете пузыря.

Адвентициальная оболочка желчного пузыря состоит из плотной волокнистой соединительной ткани.

Иннервация. В капсуле печени находится вегетативное нервное сплетение, ветви которого, сопровождая кровеносные сосуды, продолжаются в междольковую соединительную ткань.

БИЛЕТ 15

Дыхательная система -- это совокупность органов, обеспечивающих в организме внешнее дыхание, а также ряд важных не дыхательных функций.

(Внутреннее дыхание - это комплекс внутриклеточных окислительно-восстановительных процессов).

В состав дыхательной системы входят различные органы, выполняющие воздухопроводящую и дыхательную (т.е. газообменную) функции: полость носа, носоглотка, гортань, трахея, бронхи и легкие. Таким образом, в дыхательной системе можно выделить:

· внелегочные воздухоносные пути;

· и легкие, которые в свою очередь включают:

o -внутрилегочные воздухоносные пути (т.н. бронхиальное дерево);

o -собственно респираторный отдел легких (альвеолы).

Основная функция дыхательной системы - внешнее дыхание, т.е. поглощение из вдыхаемого воздуха кислорода и снабжение им крови, а также удаление из организма углекислого газа. Этот газообмен осуществляется легкими.

Среди не дыхательных функций дыхательной системы очень важными являются:

· терморегуляция,

· депонирование крови в обильно развитой сосудистой системе легких,

· участие в регуляции свертывания крови благодаря выработке тромбопластина и его антагониста -- гепарина,

· участие в синтезе некоторых гормонов, а также инактивации гормонов;

· участие в водно-солевом и липидном обмене;

· участие в голосообразовании, обонянии и иммунной защите.

Легкие принимают активное участие в метаболизме серотонина, разрушающегося под влиянием моноаминоксидазы (МАО). МАО выявляется в макрофагах, в тучных клетках легких.>

В дыхательной системе происходят инактивация брадикинина, синтез лизоцима, интерферона, пирогена и др. При нарушении обмена веществ и развитии патологических процессов выделяются некоторые летучие вещества (ацетон, аммиак, этанол и др.).

Защитная фильтрующая роль легких состоит не только в задержке пылевых частиц и микроорганизмов в воздухоносных путях, но и в улавливании клеток (опухолевых, мелких тромбов) сосудами легких («ловушки»).

Развитие

Дыхательная система развивается из энтодермы.

Гортань, трахея и легкие развиваются из одного общего зачатка, который появляется на 3--4-й неделе путем выпячивания вентральной стенки передней кишки. Гортань и трахея закладываются на 3-й неделе из верхней части непарного мешковидного выпячивания вентральной стенки передней кишки. В нижней части этот непарный зачаток делится по средней линии на два мешка, дающих зачатки правого и левого легкого. Эти мешки в свою очередь позднее подразделяются на множество связанных между собой более мелких выпячиваний, между которыми врастает мезенхима. На 8-й неделе появляются зачатки бронхов в виде коротких ровных трубочек, а на 10--12-й неделе стенки их становятся складчатыми, выстланными цилиндрическими эпителиоцитами (формируется древовидно разветвленная система бронхов -- бронхиальное дерево). На этой стадии развития легкие напоминают железу (железистая стадия). На 5--6-м месяце эмбриогенеза происходит развитие конечных (терминальных) и респираторных бронхиол, а также альвеолярных ходов, окруженных сетью кровеносных капилляров и подрастающими нервными волокнами (канальцевая стадия).

Воздухоносные пути

К ним относятся носовая полость, носоглотка, гортань, трахея и бронхи. В воздухоносных путях по мере продвижения воздуха происходят его очищение, увлажнение, согревание, рецепция газовых, температурных и механических раздражителей, а также регуляция объема вдыхаемого воздуха.

Стенка воздухоносных путей (в типичных случаях - в трахее, бронхах) состоит из четырех оболочек:

1. слизистой оболочки;

2. подслизистой основы;

3. фиброзно-хрящевой оболочки;

4. адвентициальной оболочки.

При этом часто подслизистую основу рассматривают как часть слизистой оболочки, и говорят о наличии трех оболочек в составе стенки воздухоносных путей (слизистой, фиброзно-хрящевой и адвентициальной).

Все воздухоносные пути выстланы слизистой оболочкой. Она состоит из трех слоев, или пластинок:

· эпителия;

· собственной пластинки слизистой;

· гладкомышечных элементов (или мышечной пластинки слизистой).

Эпителий воздухоносных путей

Эпителий слизистой оболочки воздухоносных путей имеет различное строение в разных отделах: многослойный ороговевающий, переходящий в неороговевающий эпителий (в преддверии носовой полости), в более дистальных отделах он становится многорядным реснитчатым (на протяжении большей части воздухоносных путей) и, наконец, становится однослойным реснитчатым.

В эпителии воздухоносных путей, кроме реснитчатых клеток, определяющих название всего эпителиального пласта, содержатся бокаловидные железистые клетки, антигенпредставляющие, нейроэндокринные, щеточные (или каемчатые), секреторные клетки Клара и базальные клетки.

1. Реснитчатые (или мерцательные) клетки снабжены ресничками (до 250 на каждой клетке) длиною 3--5 мкм, которые своими движениями, более сильными в сторону носовой полости, способствуют выведению слизи и осевших пылевых частиц. Эти клетки имеют разнообразные рецепторы (адренорецепторы, холинорецепторы, рецепторы глюкокортикоидов, гистамина, аденозина и др.). Эти эпителиальные клетки синтезируют и выделяют бронхо- и вазоконстрикторы (при определенной стимуляции), - активные вещества, регулирующие просвет бронхов и кровеносных сосудов. По мере уменьшения просвета воздухоносных путей высота реснитчатых клеток снижается.

2. Бокаловидные железистые клетки - располагаются между реснитчатыми клетками, выделяют слизистый секрет. Он примешивается к секрету желёз подслизистой основы и увлажняет поверхность эпителиального пласта. Слизь содержит иммуноглобулины, выделяемые плазматическими клетками из подлежащей под эпителием собственной пластинки соединительной ткани.

3. Антигенпредставляющие клетки (или дендритные, или же клетки Лангерганса) чаще встречаются в верхних воздухоносных путях и трахее, где они захватывают антигены, вызывающие аллергические реакции. Эти клетки имеют рецепторы Fc-фрагмента IgG, С3-комплемента. Они вырабатывают цитокины, фактор некроза опухоли, стимулируют Т-лимфоциты и морфологически сходны с клетками Лангерганса эпидермиса кожи: имеют многочисленные отростки, проникающие между другими эпителиальными клетками, содержат пластинчатые гранулы в цитоплазме.

4. Нейроэндокринные клетки, или клетки Кульчицкого (K-клетки), или же апудоциты, относящиеся к диффузной эндокринной APUD-системе; располагаются поодиночке, содержат в цитоплазме мелкие гранулы с плотным центром. Эти немногочисленные клетки (около 0,1%) способны синтезировать кальцитонин, норадреналин, серотонин, бомбезин и другие вещества, принимающие участие в местных регуляторных реакциях.

5. Щеточные (каемчатые) клетки, снабженные на апикальной поверхности микроворсинками, располагаются в дистальном отделе воздухоносных путей. Полагают, что они реагируют на изменения химического состава воздуха, циркулирующего в воздухоносных путях, и являются хеморецепторами.

6. Секреторные клетки (бронхиолярные экзокриноциты), или клетки Клара, встречаются в бронхиолах. Они характеризуются куполообразной верхушкой, окруженной короткими микроворсинками, содержат округлое ядро, хорошо развитую эндоплазматическую сеть агранулярного типа, аппарат Гольджи, немногочисленные электронно-плотные секреторные гранулы. Эти клетки вырабатывают липопротеины и гликопротеины, ферменты, принимающие участие в инактивации токсинов, поступающих с воздухом.

7. Некоторые авторы отмечают, что в бронхиолах встречается еще один тип клеток -- безреснитчатые, в апикальных частях которых содержатся скопления гранул гликогена, митохондрии и секретоподобные гранулы. Функция их неясна.

8. Базальные, или камбиальные, клетки -- это малодифференцированные клетки, сохранившие способность к митотическому делению. Они располагаются в базальном слое эпителиального пласта и являются источником для процессов регенерации - как физиологической, так и репаративной.

Под базальной мембраной эпителия воздухоносных путей лежит собственная пластинка слизистой оболочки (lamina propria), которая содержит многочисленные эластические волокна, ориентированные главным образом продольно, кровеносные и лимфатические сосуды и нервы.

Мышечная пластинка слизистой оболочки хорошо развита в средних и нижних отделах воздухоносных путей.

Подслизистая основа, фиброзно-хрящевая и адвентициальная оболочки воздухоносных путей будут рассматриваться дальше.

Билет 16

Респираторный отдел

Структурно-функциональной единицей респираторного отдела легкого является ацинус (acinus pulmonaris). Он представляет собой систему альвеол, расположенных в стенках респираторных бронхиол, альвеолярных ходов и альвеолярных мешочков, которые осуществляют газообмен между кровью и воздухом альвеол. Общее количество ацинусов в легких человека достигает 150 000. Ацинус начинается респираторной бронхиолой (bronchiolus respiratorius) 1-го порядка, которая дихотомически делится на респираторные бронхиолы 2-го, а затем 3-го порядка. В просвет названных бронхиол открываются альвеолы.

Каждая респираторная бронхиола 3-го порядка в свою очередь подразделяется на альвеолярные ходы (ductuli alveolares), а каждый альвеолярный ход заканчивается несколькими альвеолярными мешочками (sacculi alveolares). В устье альвеол альвеолярных ходов имеются небольшие пучки гладких мышечных клеток, которые на срезах видны как утолщения. Ацинусы отделены друг от друга тонкими соединительнотканными прослойками. 12--18 ацинусов образуют легочную дольку.

Респираторные (или дыхательные) бронхиолы выстланы однослойным кубическим эпителием. Реснитчатые клетки здесь встречаются редко, клетки Клара -- чаще. Мышечная пластинка истончается и распадается на отдельные, циркулярно направленные пучки гладких мышечных клеток. Соединительнотканные волокна наружной адвентициальной оболочки переходят в интерстициальную соединительную ткань.

На стенках альвеолярных ходов и альвеолярных мешочков располагается несколько десятков альвеол. Общее количество их у взрослых людей достигает в среднем 300--400 млн. Поверхность всех альвеол при максимальном вдохе у взрослого человека может достигать 100--140 мІ, а при выдохе она уменьшается в 2--2Ѕ раза.

Альвеолы разделены тонкими соединительнотканными перегородками (2--8 мкм), в которых проходят многочисленные кровеносные капилляры, занимающие около 75 % площади перегородки. Между альвеолами существуют сообщения в виде отверстий диаметром около 10--15 мкм -- альвеолярных пор Кона. Альвеолы имеют вид открытого пузырька диаметром около 120…140 мкм. Внутренняя поверхность их выстлана однослойным эпителием - с двумя основными видами клеток: респираторными альвеолоцитами (клетки 1-го типа) и секреторными альвеолоцитами (клетки 2-го типа). В некоторой литературе вместо термина «альвеолоциты» используется термин «пневмоциты». Кроме того, у животных в альвеолах описаны клетки 3-го типа -- щеточные.

Респираторные альвеолоциты, или альвеолоциты 1-го типа (alveolocyti respiratorii), занимают почти всю (около 95 %) поверхность альвеол. Они имеют неправильную уплощенную вытянутую форму. Толщина клеток в тех местах, где располагаются их ядра, достигает 5--6 мкм, тогда как в остальных участках она колеблется в пределах 0,2 мкм. На свободной поверхности цитоплазмы этих клеток имеются очень короткие цитоплазматические выросты, обращенные в полость альвеол, что увеличивает общую площадь соприкосновения воздуха с поверхностью эпителия. В цитоплазме их обнаруживаются мелкие митохондрии и пиноцитозные пузырьки.

К безъядерным участкам альвеолоцитов 1-го типа прилежат также безъядерные участки эндотелиальных клеток капилляров. В этих участках базальная мембрана эндотелия кровеносного капилляра может вплотную приближаться к базальной мембране эпителия альвеол. Благодаря такому взаимоотношению клеток альвеол и капилляров барьер между кровью и воздухом (аэрогематический барьер) оказывается чрезвычайно тонким -- в среднем 0,5 мкм. Местами толщина его увеличивается за счет тонких прослоек рыхлой волокнистой соединительной ткани.

Альвеолоциты 2-го типа крупнее, чем клетки 1-го типа, имеют кубическую форму. Их называют часто секреторными из-за участия в образовании сурфактантного альвеолярного комплекса (САК), или большими эпителиоцитами (epitheliocyti magni). В цитоплазме этих альвеолоцитов, кроме органелл, характерных для секретирующих клеток (развитая эндоплазматическая сеть, рибосомы, аппарат Гольджи, мультивезикулярные тельца), имеются осмиофильные пластинчатые тельца -- цитофосфолипосомы, которые служат маркерами альвеолоцитов 2-го типа. Свободная поверхность этих клеток имеет микроворсинки.

Альвеолоциты 2-го типа активно синтезируют белки, фосфолипиды, углеводы, образующие поверхностно активные вещества (ПАВ), входящие в состав САК (сурфактанта). Последний включает в себя три компонента: мембранный компонент, гипофазу (жидкий компонент) и резервный сурфактант -- миелиноподобные структуры. В обычных физиологических условиях секреция ПАВ происходит по мерокриновому типу. Сурфактант играет важную роль в предотвращении спадения альвеол при выдохе, а также в предохранении их от проникновения через стенку альвеол микроорганизмов из вдыхаемого воздуха и транссудации жидкости из капилляров межальвеолярных перегородок в альвеолы.

Итого, в состав аэрогематического барьера входят четыре компонента:

1. сурфактантный альвеолярный комплекс;

2. безъядерные участки альвелоцитов I типа;

3. общая базальная мембрана эпителия альвеол и эндотелия капилляров;

4. безъядерные участки эндотелиоцитов капилляров.

Кроме описанных видов клеток, в стенке альвеол и на их поверхности обнаруживаются свободные макрофаги. Они отличаются многочисленными складками цитолеммы, содержащими фагоцитируемые пылевые частицы, фрагменты клеток, микробы, частицы сурфактанта. Их еще называют «пылевыми» клетками.

В цитоплазме макрофагов всегда находится значительное количество липидных капель и лизосом. Макрофаги проникают в просвет альвеолы из межальвеолярных соединительнотканных перегородок.

Альвеолярные макрофаги, как и макрофаги других органов, имеют костномозговое происхождение.

Снаружи к базальной мембране альвеолоцитов прилежат кровеносные капилляры, проходящие по межальвеолярным перегородкам, а также сеть эластических волокон, оплетающих альвеолы. Кроме эластических волокон, вокруг альвеол располагается поддерживающая их сеть тонких коллагеновых волокон, фибробласты, тучные клетки. Альвеолы тесно прилежат друг к другу, а капилляры, оплетающие их, одной своей поверхностью граничат с одной альвеолой, а другой своей поверхностью -- с соседней альвеолой. Это обеспечивает оптимальные условия для газообмена между кровью, протекающей по капиллярам, и воздухом, заполняющим полости альвеол.

БИЛЕТ 19

Нефрон (nephronum) - это структурно-функциональная единица почки. Общая длина его канальцев достигает 5 см, а всех нефронов - около 100 км. Нефрон переходит в собирательную трубочку, которая продолжается в сосочковый канал, открывающийся на вершине пирамиды в полость почечной чашки.

Каждый нефрон включает: двустенную чашеобразную капсулу -- капсулу Шумлянского-Боумена и отходящий от неё длинный эпителиальный каналец (с различными отделами). Концом нефрона считается место его впадения в одну из собирательных почечных трубочек. Капсула Шумлянского-Боумена почти со всех сторон окружает капиллярный клубочек (glomerulus). Соответственно, почечное тельце (тельце Мальпиги) включает капиллярный клубочек и окружающую его капсулу.

От капсулы клубочка отходит проксимальный извитой каналец, делающий несколько петель возле почечного тельца. Проксимальный извитой каналец продолжается в петлю нефрона (петлю Генле). Нисходящая часть петли Генле (тонкий каналец) спускается вниз - по направлению к мозговому веществу (чаще всего, входя в него); восходящая часть (дистальный прямой каналец), более широкая, вновь поднимается по направлению к почечному тельцу нефрона.

В районе почечного тельца петля Генле переходит в дистальный извитой каналец. Дистальный извитой каналец одной своей петлёй обязательно касается почечного тельца -- между 2 сосудами (входящим и выходящим из клубочка на его вершине). Дистальный извитой каналец - последний отдел нефрона. Он впадает в собирательную почечную трубочку. Собирательные трубочки расположены почти перпендикулярно поверхности почки: вначале идут в составе мозговых лучей в корковом веществе, затем входят в мозговое вещество и у вершин пирамид впадают в сосочковые каналы, которые далее открываются в почечные чашки.

Все почечные тельца лежат в корковом веществе. Извитые канальцы (проксимальный и дистальный) тоже находятся в коре, но положение петли Генле нефронов может существенно различаться. В связи с этим нефроны подразделяют на 3 типа:

1. Короткие корковые нефроны. Составляют не более 1% от всех нефронов. Имеют очень короткую петлю, не достигающую мозгового вещества. Поэтому нефрон целиком лежит в коре.

2. Промежуточные корковые нефроны. Преобладают по численности (~ 80% всех нефронов). Часть петли «спускается» в наружную зону мозгового вещества.

3. Длинные (юкстамедуллярные, околомозговые) нефроны. Составляют не более 20% всех нефронов. Почечные тельца их находятся в корковом веществе на границе с мозговым веществом. Петля Генле - очень длинная и почти целиком находится в мозговом веществе.

Таким образом, корковое и мозговое вещества почек образованы различными отделами трех разновидностей нефронов. Их топография в почках имеет определяющее значение для процессов мочеобразования, что в большой степени связано с особенностями кровоснабжения. В связи с наличием указанных типов нефронов в почке различают две системы кровообращения - кортикальную и юкстамедуллярную. Они совпадают в области крупных сосудов, но различаются ходом мелких сосудов.

Петля нефрона

Петля Генле состоит из тонкого канальца и прямого дистального канальца. В коротких и промежуточных нефронах тонкий каналец имеет только нисходящую часть, а в юкстамедуллярных нефронах - также длинную восходящую часть, которая переходит в прямой (толстый) дистальный каналец. Тонкий каналец имеет диаметр около 15 мкм. Стенка его образована плоскими эпителиоцитами. Такая морфология связана с функциональными особенностями данного отдела нефрона - здесь происходит пассивная реабсорбция воды. В нисходящих тонких канальцах цитоплазма эпителиоцитов светлая, бедная органеллами и ферментами. Реабсорбция воды реализуется на основе разности осмотического давления между мочой в канальцах и тканевой жидкостью интерстициальной ткани, в которой проходят сосуды мозгового вещества. Деятельность многочисленных водных каналов (аквапоринов) обеспечивает интенсивную реабсорбцию воды, которая, впрочем, не требует потребления энергии. Поэтому у клеток нет признаков высокой функциональной активности - щеточной каёмки, оксифилии цитоплазмы, высокого содержания митохондрий, складчатости базальной плазмолеммы.

Эндокринная система почек

Данная система участвует в регуляции кровообращения и мочеобразования в почках и оказывает влияние на общую гемодинамику и водно-солевой обмен в организме. Система включает 3 основных компонента: ренин-ангиотензин-альдостероновый, простагландиновый и калликреин-кининовый аппараты.

Ренин-ангиотензиновый аппарат

Он же - юкстагломерулярный аппарат (ЮГА), околоклубочковый. В ЮГА входят 3 компонента: плотное пятно, ЮГ клетки и ЮВ клетки Гурмагтига.

1. Плотное пятно (macula densa) - тот участок стенки дистального извитого канальца, который прилегает к почечному тельцу. Границы между клетками почти не видны, у клеток нет базальной исчерченности, но хорошо различается скопление гиперхромных ядер, расположенных на близком расстоянии (отчего это место и выглядит в виде плотного базофильного пятна). Клетки плотного пятна утрачивают способность к реабсорбции (не имея возможности взаимодействовать с пери¬тубулярными капиллярами), но подобно «натриевому рецептору» улавливают изменения содержания натрия в моче и воздействует на юкстагломерулярные клетки, секретирующие ренин. Таким образом, плотное пятно выполнет функции осморецептора.

2. Юкстагломерулярные клетки - находятся в стенке приносящей и выносящей артериол, образуя второй слой клеток, лежащий под эндотелием. Данные клетки по происхождению и локализации являются гладкими миоцитами, однако утрачивают функцию сокращения, перестраиваясь на секрецию гормона ренина. Являются крупными клетками овальной или полигональной формы, с крупными гранулами, содержащими ренин.

Секреция ренина стимулируется двумя факторами: 1) раздражением осморецептора (клеток плотного пятна) при нарастании концентрации Na+ и 2) раздражением барорецепторов в стенке приносящей и выносящей артериол (при снижении давления крови в их просвете).

3. Юкставаскулярные клетки (клетки Гурмагтига) - это клетки, расположенные в треугольном пространстве между двумя артериолами (приносящей и выносящей) и плотным пятном. Клетки имеют длинные отростки, контактирующие с другими клетками мезангия. По происхождению и локализации клетки Гурмагтига относятся к мезангиальным клеткам, формируя особую популяцию в их составе. В обычных условиях данные клетки вырабатывают фермент ангиотензиназу, который обусловливает инактивацию ангиотензина (см. ниже) и таким образом «противоборствует» деятельности ренин-ангиотензин-альдостеронового аппарата (также см. ниже). При некоторых обстоятельствах (например, при стрессе, повышенной физической нагрузке, а также при истощении длительно функционирующих юкстагломерулярных клеток) клетки Гурмагтига утрачивают свою антагонистичность; боле того, они сами «переключаются» на синтез ренина.

БИЛЕТ 20

Строение семявыносящего протока. Стенка семявыносящего протока достаточно толстая и представлена тремя слоями - слизистой, мышечной и адвентициальной оболочками.

Слизистая оболочка состоит из собственного слоя и многорядного эпителия. В проксимальной части он одинаков по строению с эпителием протока придатка. Мышечная оболочка имеет три слоя - внутренний продольный, средний циркулярный и наружный продольный. На значение мышечной оболочки - выброс спермы во время эякуляции. Снаружи проток покрыт адвентициальной оболочкой, состоящей из волокнистой соединительной ткани с кровеносными сосудами, нервами и группами гладких мышечных клеток.

Строение предстательной железы. Развитие предстательной железы осуществляется под влиянием тестостерона. До периода полового созревания объем железы незначительный. С активацией синтеза в организме мужских половых гормонов начинается ее активная дифференцировка, рост и созревание.

Предстательная железа состоит из 30 - 50 разветвленных трубчато-альвеолярных желез. Она покрыта снаружи соединительнотканной капсулой, содержащей гладких мышечные клетки. От капсулы в глубь железы отходят соединительно-тканные перегородки, которые разделяют железу на дольки. В состав этих перегородок входит кроме соединительной ткани хорошо развитая гладкая мускулатура.

Слизистая оболочка секреторных отделов образована однослойный кубическим или цилиндрическим эпителием, что зависит от фазы секреции.

Выводные протоки железы выстланы многорядным призматическим эпителием, который в дистальных отделах становится переходным. Каждая долька железы имеет собственный выводной проток, который открывается в просвет уретры.

Секреторные клетки предстательной железы образуют жидкость, которая за счет сокращения гладкомышечной мускулатуры выделяется в мочеиспускательный канал. Секрет железы принимает участие в разжижении спермы и способствует ее продвижению по мочеиспускательному каналу во время эякуляции.

В секрете предстательной железы находятся липиды, выполняющие трофическую функцию, ферменты - фибринолизин, препятствующие склеиванию сперматозоидов, а также кислая фосфатаза.

Семенные пузырьки бульбоуретральные железы. Семенные пузырьки - это две симметричные, сильно извитые трубки, имеющие длину до 15 см. Они открываются в семявыбрасывающий проток сразу же после семявыносящего протока.

Стенка семенных пузырьков состоит из трех оболочек - внутренней слизистой, средней мышечной и наружной соединительно-тканной.

Слизистая оболочка образована однослойным многорядным цилиндрическим эпителием, содержащим секреторные и базальные клетки. Она имеет многочисленные складки.

Мышечная оболочка состоит из двух слоев - внутреннего циркулярного и наружного продольного.

Семенные пузырьки секретируют жидкость, имеющую желтоватый цвет. В ее состав входят фруктоза, аскорбиновая и лимонная кислоты, простагландины. Все эти вещества обеспечивают энергетический запас сперматозоидов и повышают их выживаемость в женских половых путях. Секрет семенных пузырьков выбрасывается в семявыбрасывающий проток во время эякуляции.

Бульбоуретральные железы (или железы Купера) имеют трубчато-альвеолярное строение. Слизистая оболочка секреторных клеток желез выстлана кубическим и цилиндрическим эпителием. Значение секрета желез - смазка уретры перед эякуляцией. Секрет выделяется во время полового возбуждения и готовит слизистую оболочку уретры к движению сперматозоидов.

БИЛЕТ 21

Строение яичника

Снаружи яичник покрыт одним слоем кубического эпителия. Под ним располагается толстая соединительно-тканная пластинка (или белочная оболочка) яичника. На поперечном разрезе видно, что яичник состоит из коркового и мозгового вещества.

Мозговое вещество яичника образовано рыхлой соединительной тканью, в нем много эластических волокон, кровеносных сосудов и нервных сплетений.

Корковое вещество яичника содержит примордиальные фолликулы, растущие первичные и вторичные фолликулы, желтое и белое тело, а также атретические фолликулы.

Овариальный цикл. Особенности строения первичного, вторичного и третичного фолликулов

Овариальный цикл состоит из двух половин:

1) фолликулярной фазы. В эту фазу под влиянием фолликулостимулирующего гормона происходит развитие примордиальных фолликулов;

2) лютеиновой фазы. Под влиянием лютеинового гормона из клеток граафова тела формируется желтое тело яичника, вырабатывающее прогестерон.

Между двумя этими фазами цикла происходит овуляция.

Развитие фолликула осуществляется следующим образом:

1) примордиальный фолликул;

2) первичный фолликул;

3) вторичный фолликул;

4) третичный фолликул (или граафов пузырек).

Во время овариального цикла происходят изменения уровня гормонов в крови.

Строение и развитие примордиальных фолликулов. Под белочной оболочкой яичника в виде компактных групп располагаются примордиальные фолликулы. В состав примордиального фолликула входит одни овоцит первого порядка, который покрыт одним слоем плоских фолликулярных клеток (клеток гранулематозной ткани) и окружен базальной мембраной.

После рождения в яичниках девочки содержится около 2 млн примордиальных фолликулов. В течение репродуктивного периода около 98% их погибает, остальные 2% достигают стадии первичного и вторичного фолликулов, однако в граафов пузырек развиваются только не более 400 фолликулов, после чего происходит овуляция. В течение одного овариально-менструального цикла овулирует 1, крайне редко 2 или 3 овоцита первого порядка.

При длительной продолжительности жизни овоцита первого порядка (до 40 - 50 лет в организме матери) значительно увеличивается риск различных генных дефектов, что связано с действием факторов внешней среды на фолликул.

В течение одного овариально-менструального цикла от 3 до 30 примордиальных фолликулов под влияние фолликулостимулирующего гормона переходят в фазу роста, в результате чего образуются первичные фолликулы. Все фолликулы, которые начали свой рост, но не достигли стадии овуляции, подвергаются атрезии.

Атрезированные фолликулы состоят из погибшего овоцита, сморщенной прозрачной оболочки, которая окружена дегенерированными фолликулярными клетками. Между ними расположены волокнистые структуры.

При отсутствии фолликулотропного гормона примордиальные фолликулы развиваются только до стадии первичного фолликула. Это возможно при беременности, до периода полового созревания, а также при применении гормональных контрацептивов. Таким образом цикл будет ановуляторным (без овуляции).

Строение первичных фолликулов. После стадии роста и своего формирования фолликулярная клетка плоской формы превращается в цилиндрическую и начинает активно делиться. При делении образуется несколько слоев фолликулярных клеток, которые окружают овоцит первого порядка. Между овоцитом первого порядка и образовавшимся окружением (фолликулярными клетками) расположена достаточно толстая прозрачная оболочка. Наружная оболочка растущего фолликула формируется из элементов стромы яичника.

В наружной оболочке можно выделить внутренний слой, содержащий интерстициальные клетки, синтезирующие андрогены, богатую капиллярную сеть и наружный слой, который образован соединительной тканью. Внутренний клеточный слой называют тека. Образовавшиеся фолликулярные клетки имеют рецепторы к фолликулостимулирующему гормону, эстрогенам и тестостерону.

Фолликулостимулирующий гормон способствует синтезу ароматазы в клетках гранулозы. Также он стимулирует образование эстрогенов из тестостерона и других стероидов.

Эстрогены стимулируют пролиферацию фолликулярных клеток, при этом количество клеток гранулозы значительно увеличивается, и фолликул увеличивается в размерах, также они стимулируют образование новых рецепторов к фолликулостимулирующему гормону и стероидам. Эстрогены усиливают действие фоллитропина на фолликулярные клетки, предотвращая тем самым атрезию фолликула.

Интерстициальные клетки - это клетки паренхимы яичника, они имеют одинаковое происхождение с клетками теки. Функции интерстициальных клеток - синтез и секреция андрогенов.

Норадреналин действует на клетки гранулозы через б2-адренорецепторы, стимулирует образование в них стероидов, облегчает действие гонадотропных гормонов на продукцию стероидов и тем самым ускоряет развитие фолликула.

Строение вторичного фолликула. При росте первичного фолликула между фолликулярными клетками образуются округлые полости, заполненные жидкостью. Вторичные фолликулы характеризуются дальнейшим ростом, при этом появляется доминантный фолликул, который по своему развитию опережает остальные, в его составе наиболее выражена тека.

Фолликулярные клетки усиливают продукцию эстрогенов. Эстрогены по аутокринному механизму увеличивают плотность рецептов фоллитропина в мембранах фолликулярных клеток.

Фоллитропин стимулирует появление в мембране фолликулярных клеток рецепторов лютропина.

Высокое содержание эстрогенов в крови блокирует синтез фоллитропина, что тормозит развитие других первичных фолликулов и стимулирует секрецию Л Г.

В конце фолликулярной стадии цикла повышается уровень лютропина, образуется лютеинизирующий гормон, который стимулирует образование андрогенов в клетках теки.

Андрогены из теки через базальную мембрану (стекловидную оболочку на более поздних этапах развития фолликула проникают в глубь фолликула, в клетки гранулозы, где при помощи ароматазы превращаются в эстрогены.

Строение третичного фолликула. Третичный фолликул (или граафов пузырек) является зрелым фолликулом. Он достигает 1 - 2,5 см в диаметре прежде всего за счет накопления жидкости в его полости. В полость граафова пузырька вдается холмик из фолликулярных клеток, внутри которого находится яйцеклетка. Яйцеклетка на стадии овоцита первого порядка окружена прозрачной оболочкой, кнаружи от которой располагаются фолликулярные клетки.

Таким образом стенка граафова пузырька состоит из прозрачной и зернистой оболочки, а также теки.

За 24 - 36 ч до овуляции повышающийся уровень эстрогенов в организме достигает максимальных величин.

Содержание ЛГ увеличивается до середины цикла. Через 12 - 14 ч после наступления пика эстрогенов его содержание также значительно повышается.

Лютропин стимулирует лютеинизацию клеток гранулозы и теки (при этом происходит накопление липидов, желтого пигмента) и индуцирует преовуляторный синтез прогестерона. Такое его повышение облегчает обратное положительное действие эстрогенов, а также индуцирует преовуляторный пик фоллитропина за счет усиления гипофизарного ответа на гонадолиберин.

Через 24 - 36 ч после пика эстрогенов или через 10 - 12 ч после пика ЛГ происходит овуляция. Чаще всего на 11 - 13-й день 28-дневного цикла. Однако теоретически овуляция возможна от 8 до 20-го дня.

Под влиянием простагландинов и протеолитического действия ферментов гранулозы происходит истончение и разрыв стенки фолликула.

Овоцит первого порядка проходит первое мейотическое деление, в результате чего образуется овоцит второго порядка и полярное тельце. Первый мейоз завершается уже в зрелом фолликуле перед овуляцией на фоне пика ЛГ.

Второй мейоз завершается только после оплодотворения.

Строение и функции желтого тела. Под влиянием ЛГ в лютеиновую стадию овариально-менструального цикла на месте лопнувшего фолликула образуется менструальное желтое тело. Оно развивается из граафова пузырька и состоит из лютеинезированных фолликулов и клеток теки, между которыми располагаются капилляры синусоидального типа.

В лютеиновую стадию цикла функционирует менструальное желтое тело, которое поддерживает в крови высокий уровень эстрогенов и прогестерона и обеспечивает подготовку эндометрия к имплантации.

В последующем развитие желтого тела стимулируется хорионическим гонадотропином (только при условии оплодотворения). Если оплодотворение не произошло, то желтое тело подвергается инволюции, после чего в крови значительно понижаются уровни прогестерона и эстрогенов.

Менструальное желтое тело функционирует до завершения цикла до имплантации. Максимальный уровень прогестерона наблюдается через 8 - 10 дней после овуляции, что примерно соответствует времени имплантации.

При условии оплодотворения и имплантации дальнейшее развитие желтого тела происходит под стимулирующим действием хорионического гонадотропина, который вырабатывается в трофобласте, в результате чего образуется желтое тело беременности.

Клетками трофобласта при беременности секретируется хорионический гонадотропин, который через рецепторы ЛГ стимулирует рост желтого тела. Оно достигает размеров 5 см и стимулирует синтез эстрогенов.

Высокий уровень прогестерона, образующегося в желтом теле, и эстрогенов позволяет сохранить беременность.

Кроме прогестерона, клетками желтого тела синтезируется релаксин - гормон семейства инсулинов, который снижает тонус миометрия и уменьшает плотность лонного сочленения, что является также очень важными факторами для сохранения беременности.

Наиболее активно желтое тело беременности функционирует в первом и начале второго триместров, затем его функция постепенно угасает, а синтез прогестерона начинает осуществляться сформировавшейся плацентой. После дегенерации желтого тела, на его прежнем месте формируется соединительно-тканный рубец, называемый белым телом.

БИЛЕТ 22

Матка

Стенка матки состоит из трех слоев - слизистого, мышечного и серозного.

Слизистая оболочка матки (эндометрий) образована однослойным цилиндрическим эпителием, который лежит на собственной пластинке слизистой, представленной рыхлой волокнистой неоформленной соединительной тканью. Эпителиальные клетки можно разделить на секреторные и реснитчатые. В собственной пластинке слизистой оболочки имеются маточные железы (крипты) - длинные изогнутые простые трубчатые железы, которые открываются в просвет матки.

Мышечная оболочка (миометрий) состоит из трех слоев гладкомышечной ткани. Наружный слой представлен продольными волокнами, средний - циркулярными, внутренний - также продольными. В среднем слое находится большое количество кровеносных сосудов. При беременности значительно увеличивается толщина мышечной оболочки, а также величина гладкомышечных волокон.

Снаружи матка покрыта серозной оболочкой, представленной соединительной тканью.

Строение шейки матки. Шейка матки - это нижний сегмент органа, частично выступающий во влагалище. Выделяют надвлагалищную и влагалищную части шейки матки. Надвлагалищная часть шейки матки располагается выше места прикрепления стенок влагалища и открывается в просвет матки внутренним маточным зевом. Влагалищная часть шейки матки открывается наружным маточным зевом. Снаружи влагалищная часть шейки матки покрыта многослойным плоским эпителием. Этот эпителий полностью обновляется каждые 4 - 5 дней при помощи десквамации поверхностных и пролиферации базальных клеток.

Шейка матки представляет узкий канал, незначительно расширяющийся в средней части.

Стенка шейки матки состоит из плотной соединительной ткани, среди коллагеновых и эластических волокон которых встречаются отдельные гладкомышечные элементы.

Слизистая оболочка канала шейки матки представлена однослойным цилиндрическим эпителием, который в области наружного зева переходит в многослойный плоский эпителий, и собственным слоем. В эпителии различают железистые клетки, которые продуцируют слизь и клетки, имеющие реснички. В собственной пластинке слизистой оболочки имеются многочисленные разветвленные трубчатые железы, которые открываются в просвет канала шейки матки.

В собственном слое слизистой оболочки шейки матки отсутствую спиральные артерии, поэтому в менструальную стадию цикла слизистая оболочка шейки матки не отторгается подобно эндометрию тела матки.

Влагалище

Это фиброзно-мышечная трубка, состоящая из трех слоев - слизистого, мышечного и адвентициального.

Слизистая оболочка представлена многослойным плоским эпителием и собственной пластинкой слизистой оболочки.

Многослойный плоский эпителий состоит из базальных, промежуточных и поверхностных клеток.

Базальные клетки являются ростковыми. За счет них происходит постоянное обновление эпителия и его регенерация. Эпителий подвергается частичному ороговению - в поверхностных слоях можно обнаружить гранулы кератогиалина. Рост и созревание эпителия находится под гормональным контролем. Во время месячных эпителий истончается, а во время репродуктивного периода - увеличивается за счет деления.

В собственном слое слизистой оболочки имеются лимфоциты, зернистые лейкоциты, иногда можно обнаружить лимфатические фолликулы. Во время менструации лейкоциты могут легко проникать в просвет влагалища.

Мышечная оболочка состоит из двух слоев - внутреннего циркулярного и наружного продольного.

...

Подобные документы

  • Понятие процесса пищеварения и его основные функции. Эмбриогенез органов пищеварительной системы, строение и функциональное значение ее органов: полость рта, глотка, пищевод, желудок, тонкая и толстая кишка, печень, желчный пузырь, поджелудочная железа.

    курсовая работа [1,6 M], добавлен 05.06.2011

  • Изучение строения и функций пищеварительной системы человека. Назначение органов ротовой полости. Строение губы. Язык – производная стенки ротовой полости. Механизм работы слюнных желез. Основные функции глотки, пищевода, желудка, тонкой и толстой кишки.

    реферат [36,4 K], добавлен 05.12.2011

  • Четыре основные системы регуляции метаболизма. Организация нервно-гормональной регуляции. Эндокринная система организма человека. Поджелудочная железа человека, ее анатомия, топография, макроскопическое и микроскопическое строение. Инсулин и глюкагон.

    курсовая работа [1,2 M], добавлен 23.02.2014

  • Органы пищеварительной системы. Питательные вещества. Расположение слюнных желез. Строение желудка. Процесс пищеварения в ротовой полости, тонком и толстом кишечнике. Функции глотки, пищевода, печени и поджелудочной железы. Методы изучения пищеварения.

    презентация [1,0 M], добавлен 18.11.2015

  • Человеческий организм как очень сложная живая биологическая система. Строение и функции паренхиматозных органов человека. Анатомия и функции печени, поджелудочной железы, легких и почек. Взаимодействие специфически функционирующих структур (органов).

    контрольная работа [52,6 K], добавлен 16.03.2015

  • Анатомия и морфология почек человека. Физиология и функции. Почки как своеобразная железа внутренней секреции. Удаление из организма конечных продуктов обмена веществ. Регуляция водного баланса, кислотно-основного состояния, уровня артериального давления.

    курсовая работа [44,5 K], добавлен 08.08.2009

  • Топография двенадцатиперстной кишки - начального отдела тонкой кишки, следующего сразу после привратника желудка. Строение стенки двенадцатиперстной кишки, ее слизистая оболочка, кровоснабжение и сфинктеры, секреторная, моторная и эвакуаторная функции.

    презентация [287,7 K], добавлен 19.01.2017

  • Эндокринная система - железы внутренней секреции, выделяющие в организм физиологически активные вещества и не имеющие выводных протоков. Функции гормонов в организме человека. Строение гипоталамуса и гипофиза. Несахарный диабет. Паращитовидная железа.

    презентация [12,3 M], добавлен 07.11.2012

  • Функции и строение надпочечников, распределение коркового и мозгового вещества. Кровоснабжение надпочечников от артерий. Гормоны мозгового вещества, их химическая природа. Синтез и выделение гормонов "острого" стресса - адреналина и норадреналина.

    презентация [904,5 K], добавлен 18.06.2013

  • История развития физиологии пищеварения. Характеристика пищеварения и пищевых веществ. Строение и функция пищеварительного аппарата. Пищеварение в ротовой полости и глотание, в желудке, в тонком кишечнике. Строение печени и желчевыделительного аппарата.

    реферат [2,2 M], добавлен 21.10.2013

  • Функции дыхательной системы, проведение воздуха и газообмен. Воздухоносные пути и защитная, иммунобиологическая, всасывательная, выделительная, секреторная системы. Респираторный отдел и носовая полость, носоглотка, гортань, трахея и бронхи, альвеолы.

    лекция [14,9 K], добавлен 02.12.2011

  • Структурно-функциональные особенности желез внутренней секреции. Нервная и эндокринная системы как единая регулирующая нейроэндокринная система. Гипоталамус, гипофиз, шишковидное тело, щитовидная железа, паращитовидные железы, надпочечник, параганглии.

    реферат [2,3 M], добавлен 01.03.2009

  • Функции ротовой полости, осуществляемые процессы. Жевание - сложный физиологический акт, заключающийся в измельчении пищевых веществ, смачивании их слюной и формировании пищевого комка. Строение зубов, их виды. Состав и функции слюны. Этапы акта глотания.

    презентация [1,0 M], добавлен 14.01.2014

  • Роль лимфатической системы в обмене веществ организма человека. Образования, которые относятся к лимфатической системе. Система грудного протока. Правый лимфатический проток. Строение и функции селезенки. Органы кроветворения и иммунной системы.

    учебное пособие [6,5 M], добавлен 09.01.2012

  • Развитие слюнных желёз и зубов. Моторная функция начального отдела пищеварительного тракта. Строение и стенка пищевода. Строение стенки пищеварительного тракта: слизистая, мышечная оболочки и подслизистый слой. Строение толстого кишечника и его стенка.

    реферат [49,2 K], добавлен 25.03.2009

  • Основные отделы, из которых состоит ротовая полость человека. Иннервация - тройничный и лицевой нерв. Строение зуба в разрезе. Ключевые функции зубов. Язык как целиком мышечный орган. Мышцы, которые обеспечивают движение языка и его отдельных частей.

    презентация [676,3 K], добавлен 23.04.2014

  • Роль эндокринной системы в регуляции основных процессов жизнедеятельности животных и человека. Свойства, классификация, функции, и биологическая роль гормонов эндокринных желез. Анализ проблемы йоддефицитных заболеваний человека и животных в России.

    курсовая работа [39,3 K], добавлен 02.03.2010

  • Основные части скелета животного, позвоночный столб. Строение передних и задних конечностей. Мышечная система собаки, строение и функции кожи. Система кровообращения, основные органы, где происходит очищение крови. Основные правила кормления собаки.

    контрольная работа [33,9 K], добавлен 04.09.2014

  • Исследование возрастных особенностей слабых мест стенок брюшной полости. Анализ условий для возникновения грыж, выхода внутренних органов из брюшной полости вместе с пристеночным листком брюшины. Обзор поясничного треугольника и поясничного пространства.

    лекция [765,1 K], добавлен 15.12.2011

  • Топография области рта: полость, стенки, их расположение. Границы и основные компоненты области рта: альвеолярные отростки челюстей, зубы; строение слизистой оболочки, слюнные железы. Диастаз врожденного порока "волчья пасть". Кровоснабжение полости рта.

    презентация [1,1 M], добавлен 11.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.