Ферментативный катализ в биологических системах

Понятие ферментативного катализа. Группы катализаторов ферментов, специфическое связывание субстрата в активном центре. Уровни строения белков, их первичная, вторничная и третичная структура. Образование глобулы благодаря воздействию между доменами.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 17.02.2015
Размер файла 17,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Карагандинский Государственный Медицинский Университет

Кафедра Фармацевтических дисциплин с курсом химии

РЕФЕРАТ

На тему: «Ферментативный катализ в биологических системах»

Выполнила: Нугуманова А.

Группа 1- 070 ОМ

Проверила: Сотченко Р.К.

Караганда 2014

Ферментативный катализ используется людьми тысячи лет, задолго до появления самого понятия «катализ». Получение молочнокислых продуктов, сыра, приготовление теста, вина, красителей и др. продуктов включало применение ферментативных процессов. Технология этих процессов передавалась из поколения в поколение и была эмпирически отработана до совершенства. Считают, что в эволюции жизни и появлении сложных биологических систем (включая человека) важную роль сыграл ферментативный катализ.

ФЕРМЕНТАТИВНЫЙ КАТАЛИЗ (биокатализ), ускорение биохимических реакций при участии белковых макромолекул, называемых ферментами (энзимами). Ферментативный катализ- разновидность катализа, хотя термин "ферментация" (брожение)известен с давних времен, когда еще не было понятия хим. катализа. Получение молочно-кислых продуктов, сыра, приготовление теста, вина, красителей и др. продуктов включало применение ферментативных процессов. Технология этих процессов ?ередавалась из поколения в поколение и была эмпирически отработана до совершенства. Считают, что в эволюции жизни и появлении сложных биологических систем (включая человека) важную роль сыграл ферментативный катализ.

Ферменты - биологические катализаторы обладают уникальными свойствами: высокой производительностью в расчете на один реакционный центр и селективностью, связанной со с?ецифичностью действия. Работают ферменты в очень мягких условиях, при атмосферном давлении и тем?ературе до 40о. В биологических системах отсутствуют неводные растворители и сильные кислоты и основания . Например фермент уреаза гидролизует только молекулы мочевины, не обращая внимания на другие амиды, и делает это гораздо эффективнее обычных кислотных катализаторов

Таблица

Реакция и субстрат

Катализатор

Константа скорости второго порядка, моль-1*с-1

Тем??ратура, оС

Гидролиз сложных эфиров

Этилбензоат

Этиловый эфир N-бензоил-L-тирозина

Н3О+Химотрипсин

9,0*10-5

1,9*104

54

25

Гидролиз аденозин-трифосфата (АТФ )

Н3О+

Миозин

4,7*10-6

8,2*106

40

25

Гидролиз амидов

Бензамид

Амид N-бензоил-

L-тирозина

Мочевина

Н3О+

Химотрипсин

Н3О+

Уреаза

2,4*10-6

14,9

7,4*10-6

5,0*106

52

25

62

21

Международные правила номенклатуры ферментов в зависимости от выполняемых ими функций выделяют шесть основных классов с соответствующими подклассами внутри каждого класса :

Таблица

Класс. Функция

Подклассы

Класс, функция

Подклассы

1. Оксидоредукта-зы

Катализируют окислительно-восстанови-тельные превращения функциональных групп

СН-ОН

С=О

СН-СН

СН-NH2

CH-NH

НАД(Ф)Н

2. Транс-феразы

Переносят следующие группы

одноуглеродные остатки

остатки альдегидов и кетонов

ацильные остатки

гликозильные остатки

алкильные (кроме СН3) и арильные группы

азотистые группы

фосфорсодержащие группы

3. Гидролазы

Гидролизуют соедине-ния следующих класс-сов

сложные эфиры

гликозидные соединения

простые эфиры и тиоэфиры

??птидные связи

связи C-N, кроме ??п-тидной

4. Лиазы

Отщепляют группы с обра-зованием двой-ной связи и присоединяют группы к двой-ным связям

С - С

С - О

С - N

C - S

C - Hal

5. Изомеразы

Проводят реакции изо-меризации различного типа

рацемазы и эпимеразы

цис-трансизомеразы

внутримолекулярные оксидоредуктазы

внутримолекулярные трансферазы

внутримолекулярные лиазы

6. Лигазы (синтетазы)

Одновременно с расщеплени-ем АТФ обра-зуют связи

С - О

С - S

C - N

C - C

Ферментом может быть глобулярный белок, в активном центре которого собраны функциональные группы, входящие в состав аминокислотных остатков этого белка. В других случаях в состав активного центра входит прочно связанная с белковой цепью простетическая группа (например, липоевая кислота) или слабо связанный кофермент (например, АТФ). Фермент в целом называют холоферментом, а то, что остается после удаления кофермента, апоферментом.

В соответствии с требованиями, предъявляемыми при подборе катализаторов ферментов, их подразделяют на следующие группы:

1. Ферменты без коферментов - простые гидролазы, лиазы и изомеразы. ферментативный катализ строение белок

2.Ферменты, которые не требуют наличия кофермента (содержат прочно связанную простетическую группу, например, флавиновую или пиридоксальную) - трансаминазы, пероксидазы и т. п.

3.Ферменты, которые требуют регенерации кофермента, обычно АТФ или НАД(Ф)Н например, киназы, большинство оксидоредуктаз.

4. Ферменты, которые встречаются в многоферментных системах.

Ферменты первой группы используются пока шире, часто и в промышленном масштабе (синтез L -аминокислот, 6-аминопеницилиновой кислоты, изомеризация глюкозы во фруктозу и т. д.). Остальные группы ферментов требуют создания особых условий и до сих пор находят применение только в лабораторных синтезах.

Что такое ферменты и за счет каких факторов они работают так эффективно? Объяснение состоит в том, что фермент обладает способностью формировать так называемый активный центр и создавать в нем специфическое окружение, в котором протекание катализируемой реакции происходит несоизмеримо быстрее, чем в растворе.

В активном центре происходит специфическое связывание субстрата.

Например, сбраживание глюкозы в спирт дрожжами требует участия более 12 ферментов, каждый из которых выполняет свою функцию. Это возможно только благо даря высокой специфичности. Различают:

абсолютную специфичность - специфичность по отношению к одному конкретному субстрату (уреаза - мочевина; галактокиназа переносит фосфат от АТФ только на Дгалактозу, но не на ее стерео изомеры Дглюкозу и Дманнозу );

абсолютную групповую специфичность - специфичность к определенному классу субстратов (спирты, альдегиды, простые или сложные эфиры). Так, протеолитический фермент пепсин специфичен в отношении гидролиза пептидной связи. Алкогольдегидраза окисляет только спирты, а лактикодегидраза - только б -оксикислоты;

относительная групповая специфичность - фермент действует предпочтительно на один класс соединений, но может в некоторой степени действовать и на представителей других классов, превращая их с меньшими скоростями, чем представителей основного класса. Трипсин способен расщеплять как пептидные, так и сложноэфирные связи.

Оптическая специфичность - общее свойство большей части ферментов взаимодействовать с веществами, имеющими определенную оптическую активность.

Основу ферментов составляют белки, поэтому можно сказать, что ферменты - это белки, способные катализировать химические реакции. Открыты ферменты были в 30-е годы 19-го века, и примерно сто лет ушло на то, чтобы прийти к приведенному определению. Не всякий белок может быть ферментом. По внешней форме белки бывают линейные (фибриллярные) и глобулярные.

Только глобулярные белки могут быть ферментами. Белки - это полипептиды, т.е. полимеры, состоящие из аминокислотных остатков, соединенных пептидной связью. Ниже показана реакция образования дипептида. Все природные белки построены из примерно 20 различных аминокислотных NH 2 CH COOH + H 2 N CH COOH >'3e NH 2 CH CO HN CH COOH + H 2O R 1 R 2 R 1 R 2 остатков, отличающихся строением группы R . Каталитические свойства могут проявлять полипептиды (белки), имеющие молярную массу не менее 5000.

Строение белков имеет три разных уровня.

Первичная структура определяется последовательностью аминокислотных остатков, образующих полипептидную цепь.

Вторичную структуру белка определяют дополнительные связи, возникающие между группами, принадлежащими различным аминокислотным остаткам, находящимся в разных частях полипептидной цепи. К числу таких связей относятся водородные, электростатические, координационные, гидрофобногидрофобные и ВандерВаальсовы взаимодействия. В результате образования дополнительных связей отдельные участки полипептидной цепи образуют б -спирали, петли и в -тяжи.

Третичная структура белка формируется в результате сворачивания отдельных участков полипептидной цепи в относительно автономные глобулярные образования, называемые доменами. Окончательное формирование третичной структуры происходит благодаря специфическим взаимодействиям, возникающим между отдельными доменами, каждый из которых сворачивается самостоятельно. Длинные полипептидные цепи обычно формируют несколько доменов, величина которых значительно варьирует, составляя в среднем 150 аминокислотных остатков. Взаимодействия между доменами приводят к образованию глобулы. Домены характеризуются тем, что число взаимодействий между аминокислотными остатками в составе домена значительно превышает таковое между соседними доменами. Благодаря этому междоменные области оказываются сравнительно легко доступными для растворителя и содержат полости объемом 20-30 кубических ангстрем, включающие несколько молекул воды. «Архитектурные принципы» построения отдельных доменов различны, что можетбыть связано с выполнением ими разных функций.

Активные центры мультидоменных (в большинстве случаев - двухдоменных) ферментов, как правило, располагаются в междоменной области. Таким образом, каждый из доменов вносит свой вклад в связывание участников реакции.

Важным следствием расположения активного центра на границе между доменами является обеспечение гибкости, подвижности данной области молекулы благодаря тому, что в ходе конформационных изменений, вызываемых связыванием субстратов, домены претерпевают взаимное перемещение.

Между размером молекулы биологического катализатора (т. е. длиной его полипептидной цепи) и сложностью выполняемой им функции существует прямая зависимость. Усложнение функциональных свойств достигается как за счет формирования активного центра на границе раздела между двумя каталитическими доменами, так и за счет появления дополнительных доменов, ответственных за регуляцию активности. Такие ферменты, как лизоцим и гликогенфосфорилаза, резко различаются по размерам, хотя оба катализируют реакции расщепления гликозидной связи. Функциональный смысл «утяжеления» молекулы гликогенфосфорилазы состоит в придании ей дополнительной способности координировать работу активного центра в соответствии с сигналами, поступающими из внешней среды (изменение концентраций метаболитов, нервные и гормональные сигналы).

Размещено на Allbest.ru

...

Подобные документы

  • Ускорение химических реакций с помощью катализаторов. Особенности ферментов (энзимов) как высокоспецифичных белков, выполняющих функции биологических катализаторов. Строение ферментов, их специфичность и классификация. Этапы ферментативного катализа.

    презентация [3,4 M], добавлен 20.11.2014

  • Размножение РНК-содержащего фага в бактериальной клетке как простой гиперциклический процесс. Общий механизм ферментативного катализа по Михаэлису—Меитен. Однонаправленность циклического воспроизведения интермедиатов. Реалистическая модель гиперцикла.

    реферат [678,3 K], добавлен 30.08.2009

  • Изучение ферментов, их свойств и механизма биологического действия. Проведение исследования современных представлений о механизме ферментативного трансаминирования. Разработка общей теории пиридоксалевого катализа. Строение фермент-субстратного комплекса.

    реферат [189,0 K], добавлен 14.03.2015

  • Определение ферментов как специфических белков, присутствующих во всех живых клетках биологических катализаторов. Пространственность структурной молекулы ферментов, процесс биосинтеза оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы.

    контрольная работа [13,5 K], добавлен 27.01.2011

  • Понятие белков как высокомолекулярных природных соединений (биополимеров), состоящих из остатков аминокислот, которые соединены пептидной связью. Функции и значение белков в организме человека, их превращение и структура: первичная, вторичная, третичная.

    презентация [564,0 K], добавлен 07.04.2014

  • Характеристика целлюлозы и ее производных. Ферментативный гидролиз лигноцеллюлозных материалов в ацетатном буфере и в водной среде. Зависимость эффективности ферментативного гидролиза от условий перемешивания, от концентрации субстрата, от сырья.

    дипломная работа [993,2 K], добавлен 19.01.2016

  • Процессы превращения веществ и энергии внутри растительного организма как основные физиологические функции растения. Химический состав клетки. Строение, классификация и функции углеводов, липидов и аминокислот. Кинетика ферментативного катализа.

    курс лекций [188,8 K], добавлен 15.06.2010

  • Особенности атомов четырех элементов таблицы Менделеева, составляющих основу всех биологических молекул: водорода, углерода, азота и кислорода. Белковая глобула и аминокислоты. Образование белковой глобулы и образование гидрофобного ядра глобулы.

    реферат [236,3 K], добавлен 11.12.2009

  • Химический состав, природа и структура белков. Механизм действия ферментов, виды их активирования и ингибирования. Современная классификация и номенклатура ферментов и витаминов. Механизм биологического окисления, главная цепь дыхательных ферментов.

    шпаргалка [893,3 K], добавлен 20.06.2013

  • Понятие ферментов как глобулярных белков, которые состоят из одной или нескольких полипептидных цепей. Особенности строения простых и сложных ферментов. Субстратный, аллостерический и каталитический центры в строении простых и сложных ферментов.

    презентация [76,4 K], добавлен 07.02.2017

  • Роль белков в сигнальных системах клеток, при иммунном ответе и в клеточном цикле. Виды белков в живых клетках: ферменты, транспортные, пищевые, запасные, сократительные, двигательные, структурные, защитные и регуляторные. Доменная структура белков.

    презентация [578,7 K], добавлен 18.10.2014

  • Структура биологических мембран и строение их основы - билипидного слоя. Молекулярная масса мембранных белков, их различие по прочности связывания с мембраной. Динамические свойства биологических мембран и значение организации для биологических систем.

    реферат [19,1 K], добавлен 20.12.2009

  • Катализ и энергия активации. Кофакторы ферментов и неорганические ионы, их разновидности и свойства. Скорость ферментных реакций и основные факторы, влияющие на нее. Ингибирование ферментов, его этапы и закономерности, биологическое обоснование.

    реферат [602,0 K], добавлен 27.02.2017

  • Технология ферментных препаратов. Производство ферментов при поверхностном культивировании продуцентов. Характеристика ферментных препаратов. Перспективы совершенствования приемов ферментативного катализа в виноделии. Биологическая очистка сточных вод.

    контрольная работа [76,6 K], добавлен 15.12.2009

  • Кинетические исследования ферментативных реакций для определения ферментов и сравнения их скоростей. Образование из фермента и субстрата фермент-субстратного комплекса за счет сил физической природы. Факультативные организмы, автотрофы и гетеротрофы.

    контрольная работа [858,4 K], добавлен 26.07.2009

  • Первичная, вторичная и третичная структуры ДНК. Свойства генетического кода. История открытия нуклеиновых кислот, их биохимические и физико-химические свойства. Матричная, рибосомальная, транспортная РНК. Процесс репликации, транскрипции и трансляции.

    реферат [4,1 M], добавлен 19.05.2015

  • Понятие и структура белков, аминокислоты как их мономеры. Классификация и разновидности аминокислот, характер пептидной связи. Уровни организации белковой молекулы. Химические и физические свойства белков, методы их анализа и выполняемые функции.

    презентация [5,0 M], добавлен 14.04.2014

  • Структура мембранных белков. Очистка интегральных мембранных белков и получение их в биохимически активной форме. Необходимость поддержания концентрации детергента. Электрофорез в полиакриламидном геле. Связывание детергентов с мембранными белками.

    реферат [635,6 K], добавлен 03.08.2009

  • Капли микроэмульсии как микрореакторы для химических реакций, растворители для органического синтеза, среды для ферментативных реакций; их применение для получения наноразмерных латексов. Поверхностно-активные вещества в реакциях мицеллярного катализа.

    реферат [783,6 K], добавлен 17.09.2009

  • Характеристика ферментов, органических катализаторов белковой природы, которые ускоряют реакции, необходимые для функционирования живых организмов. Условия действия, получение и применение ферментов. Болезни, связанные с нарушением выработки ферментов.

    презентация [2,6 M], добавлен 19.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.