Механизм электрогенеза в клетках
Возникновение и поддержание потенциала покоя. Механизм избирательного переноса через клеточную мембрану органических и неорганических катионов и анионов. Электродный метод внутриклеточного измерения потенциалов. Прогресс в исследовании биопотенциалов.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 18.03.2015 |
Размер файла | 46,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
АО «Медицинский университет Астана»
Кафедра медицинской биофизики
Контрольная работа
На тему: Механизм электрогенеза в клетках
Подготовила: Ильдебаева Д.
Проверила: Масликова Е.И
Астана 2014
План
1. Мембранный потенциал
2. Микроэлектродный метод внутриклеточного измерения потенциалов
3. Доннановское равновесие и потенциал Доннана
4. Равновесный потенциал
5. Стационарный потенциал Гольдмана - Ходжкина
6. Природа потенциалы покоя
7. Природа потенциалы действия
Заключение
1. Мембранный потенциал покоя
Благодаря механизмам пассивного и активного избирательного переноса через клеточную мембрану органических и неорганических катионов (положительно заряженных ионов) и анионов (отрицательно заряженных ионов) образуется по одну сторону клеточной мембраны избыток катионов, а по другую -- избыток анионов. В результате этого между внешней и внутренней поверхностями мембраны возникает разность потенциалов. Эта разность называется мембранным потенциалом. Существуют три отличающихся друг от друга проявления мембранного потенциала -- потенциал покоя, местный потенциал и потенциал действия.
Потенциал покоя. В 1838 г. Ш. Маттеучи показал, что с наружной стороны мышца заряжена положительно, а внутри--отрицательно. Позже было установлено, что это характерно для большинства клеток животных и растений. Разность потенциалов, существующая в условиях физиологического покоя, получила название мембранного потенциала покоя. Из имеющихся теории, объясняющих природу его возникновения и поддержания, наибольшее признание получила мембранная теория. Сущность ее состоит в следующем. Избирательно проницаемая (полупроницаемая) мембрана разделяет два раствора -- цитоплазму, находящуюся внутри клетки, и межклеточную жидкость. При этом внутренняя поверхность мембраны соприкасается с цитоплазмой, наружная -- с межклеточной жидкостью. Как уже указывалось, содержание положительно заряженных ионов калия (К+) в цитоплазме в несколько раз превосходит содержание их вне клетки, а содержание ионов натрия (Na+), напротив, вне клетки больше, чем в цитоплазме.
Известно, что если в обычном растворе находится какое-то количество катионов, то и анионов в нем должно быть столько же. Баланс ионов, необходимый для электронейтральности, восполняется неорганическими анионами, а также крупными (белки, аминокислоты и др.) органическими анионами (А-), накапливающимися в цитоплазме в процессе внутриклеточного обмена веществ. Электронейтральность по обе стороны клеточной мембраны не сохраняется. Одна из основных причин этого та, что проницаемость клеточной мембраны в условиях покоя для ионов калия достаточно высокая, а для ионов натрия -- низкая. В связи с существующим концентрационным градиентом для калия какое-то количество его ионов выходит из клетки через поры мембраны на ее наружную поверхность, создавая на ней избыток положительно заряженных частиц. Крупные же молекулы органических ионов (А-), находящиеся внутри клетки, не могут пройти через мелкие поры мембраны на ее наружную поверхность. Оставшись без нейтрализующих их положительно заряженных ионов калия, они создают избыток у внутренней поверхности мембраны отрицательно заряженных частиц. В результате возникает разность потенциалов -- потенциал покоя.
Возникновение и поддержание потенциала покоя представляет собою активный саморегулирующийся процесс, для обеспечения которого требуются определенные затраты энергии. При этом чем больше поляризована мембрана, тем выше этот потенциал.
2. Микротоэлектродный метод внутриклеточного измерения потенциалов
покой мембрана внутриклеточный биопотенциал
Прогресс в исследовании биопотенциалов был обусловлен:
1.Разработкой микроэлектродного метода внутриклеточного измерения потенциалов;
2.Созданием специальных усилителей биопотенциалов;
3.Выбором удачных обьектов исследования - гигантских клеток и среди них гигантского аксона кальмара. Диаметр аксона кальмара достигает 0,5 мм, что в 100-1000 раз больше, чем диаметр аксона позвоночных животных, в том числе человека.
Гигантские,в сравнении с позвоночными, размеры аксона- этого проворного и ловкого головоногого моллюска имеют большое физиологическое значение- обеспечивают быструю передачу нервного импульса по нервному волокну.
Для биофизики гигантский аксон кальмара послужил великолепным модельным обьектом для изучения биопотенциалов.
В гигантский аксон кальмара можно ввести микроэлектрод, не нанося аксону значительных повреждений. Стеклянный микроэлектрод представляет собой стеклянную микропипетку с оттянутым очень тонким кончиком. Металлический микроэлектрод пластичен и не может проколоть клеточную мембрану, кроме того он поляризируется. Для исключения поляризации электрода используются неполяризующиеся электроды.
Микроэлектродный метод дал возможность измерить биопотенциалы не только на гиганском аксоне кальмара, но и на клетках нормальных размеров: нервных волокнах других животных, клетках скелетных мышц, клетках миокарда и других.
Микроэлектроды из-за своей крайне малой площади поперечного сечения обладают сопротивлениями порядка 107Ом. Это приводит к необходимости использовать регистрирующие устройства с очень большим входным сопротивлением.
3. Доннановское равновесие и потенциал Доннана
Чаще всего для объяснения свойств ионитов применяют представления о доннановском равновесии. Сущность его состоит в том, что если два раствора разделены мембраной, которая непроницаема по крайней мере для одного вида ионов, находящихся в одном из растворов, то другие ионы, для которых мембрана проницаема, распределяются по обе стороны этой мембраны неравномерно. Рассматривают равновесие, устанавливающееся в системе растворов, разделенных мембраной. Мембрана может быть активной или неактивной. Пример активной мембраны - ионит. Такая мембрана, погруженная в раствор электролита, рассматривается как второй, более концентрированный раствор. Обмен ионов между раствором и зерном ионита-мембраной происходит, пока не установится мембранное равновесие.
Средняя активность электролита средний коэф. активности, коэффициент распределения электролита
Потенциал Доннана и, следовательно, сорбция электролита, обратно пропорциональны степени набухания и прямо пропорциональны плотности поперечных связей. Поскольку равновесие Доннана определяется свойствами электрического поля, которые зависят от полного заряда как фиксированных, так и подвижных групп, то именно эти параметры влияют на величину потенциала Доннана. Падение эффективности уменьшения содержания электролита в мембране с увеличением концентрации раствора обусловлено увеличением способности ионов устранять концентрационные различия за счет диффузии s постоянном электрическом поле. Электрическое поле является постоянным, так как концентрация фиксированных зарядов в мембране постоянна. Равновесие между такими противоположными процессами смещения приводит к уменьшению потенциала Доннана и увеличению содержания электролита в мембране. Противокатионы с высокой плотностью заряда [ маленький размер и ( или) высокая валентность ] и коионы с низкой плотностью заряда уменьшают до минимума изменение содержания электролита. Это влияние обусловлено максимальным притяжением противоионов и минимальным отталкиванием коионов фиксированными ионными группами. Кроме этих эффектов взаимодействия с мембраной и отталкивания от нее, противоионы с высокой и коионы с низкой плотностью заряда подавляют образование пар коионов между подвижными ионами. В результате этого внешние силы, например электрическое поле, наведенное фиксированными зарядами мембран, оказывают более сильное влияние, чем в случае воздействия сильных ассоциатов между составляющими электролита. С другой стороны, когда пары и комплексы ионов образуются про-тивоионами и коионами, соединение может вести себя как агрегат с эффективной плотностью заряда, соответствующей относительным количествам положительных и отрицательных зарядов.
Таким образом, доннановский потенциал (2) состоит из так называемого потенциала распределения и члена, зависящего от концентрации непроникающего иона R; при малом значении cmR он сводится к потенциалу распределения, а при большом - находится из выражения:
При этом концентрация противоионов А- в мембране перестает зависеть от коэффициента распределения и межфазного потенциала и приближается к предельному значению cmA zRcmR, a одноименно заряженные ионы почти полностью вытесняются из мембраны.
Граничный потенциал может возникнуть в результате реакций комплексообразования или электронообменной реакции между окислительно-восстановительными парами, содержащимися в растворе и в мембране. Если межфазная граница вообще не проницаема для заряженных частиц, граничный потенциал имеет электростатическую природу и возникает в результате адсорбции зарядов и диполей, а также вследствие заряжения границы от внеш. источника.
Внутримембранный потенциал имеет кинетическую природу и определяется переносом ионов через толщу мембраны.
Определение мембранного потенциала представляет интерес для ионометрии, для биологии и медицины в связи с распространенностью мембранных процессов в живых организмах и т.д.
4. Равновесный потенциал
В 1902 г. Бернштейн выдвинул гипотезу, согласно которой потенциал покоя обусловлен тем, что цитоплазматическая мембрана проницаема для ионов К+ и на ней создается потенциал, описываемый уравнением Нернста.
Равновесный потенциал для иона -- это такая величина мембранного потенциала, который установился бы по обе стороны клеточной мембраны, если бы она стала избирательно проницаема только для данного иона.
При таких условиях соотношение ионных потоков через мембрану находилось бы в равновесии (равные скорости входа и выхода иона).
Уравнение Нернста -- уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.
-- универсальная газоваяпостоянная, равная 8.31 Дж/(моль·K);
-- абсолютная температура;
-- число Фарадея, равное 96485,35 Кл/моль;
-- число моль электронов, участвующих в процессе;
и -- активности соответственно окисленной и восстановленной форм вещества, участвующего в полуреакции.
Потенциал покоя мембраны в нервных клетках составляет от -80 до -90 мВ и близок к равновесному потенциалу К+. Поскольку мембранный потенциал этих клеток почти равен равновесному потенциалу К+, их плазматическая мембрана должна в покое быть в большей степени проницаема для К+.
Разность концентраций ионов калия вне и внутри клетки и высокая проницаемость клеточной мембраны для ионов калия обеспечивают диффузионный ток этих ионов из клетки наружу и накопление избытка положительных ионов К+ на наружной стороне клеточной мембраны, что противодействует дальнейшему выходу ионов К+ из клетки. Диффузионный ток ионов калия существует до тех пор, пока стремление их двигаться по концентрационному градиенту не уравновесится разностью потенциалов на мембране. Эта разность потенциалов называется калиевым равновесным потенциалом.
Равновесный потенциал (для соответствующего иона, Ек) -- разность потенциалов между внутренней средой клетки и внеклеточной жидкостью, при которой вход и выход иона уравновешен (химическая разность потенциалов равна электрической).
Важно подчеркнуть следующие два момента: 1) состояние равновесия наступает в результате диффузии лишь очень небольшого количества ионов (по сравнению с их общим содержанием); калиевый равновесный потенциал всегда больше (по абсолютному значению) реального потенциала покоя, поскольку мембрана в покое не является идеальным изолятором, в частности имеется небольшая утечка ионов Na+. Сопоставление теоретических расчетов с использованием уравнений постоянного поля Д. Голдмана, формулы Нернста показали хорошее совпадение с экспериментальными данными при изменении вне- и внутриклеточной концентрации К+
5. Стационарный потенциал Гольдмана-Ходжкина
Причина отклонения потенциала на мембране от потенциала Нернста -- проницаемость мембраны не только для К+, но и для других ионов.
Для количественного описания потенциала в условиях проницаемости мембраны для нескольких ионов Ходжкин и Катц использовали представление о том, что потенциал покоя не равновесный, а стационарный по своей природе, т. е. он отражает состояние системы, когда через мембрану непрерывно идут встречные потоки ионов К+, Na+, СГ и других. Суммарный поток положительно заряженных частиц через мембраны равен сумме потоков одновалентных катионов минус сумма потоков одновалентных анионов. Основной вклад в суммарный поток зарядов практически во всех клетках вносят ионы Na+, К+ и СГ. Поэтому будем считать, что величина Ф отрицательна, если поток' направлен из клетки в окружающую среду, и положительна, если поток направлен в клетку.
Возникающий потенциал (поляризация мембраны) тормозит дальнейший перенос ионов, так что в конце концов суммарный ток через мембрану прекратится и система придет в состояние, когда j = 0 и Ф = 0. При этом система не обязательно придет в равновесие, так как нулевое значение суммарного потока заряженных частиц еще не означает отсутствие составляющих его потоков отдельных ионов. И ФKa+, и ФNa+, и Фсl- могут не быть равны нулю по отдельности, а тем не менее:
Найдем ф по определению логарифма, а затем выразим мембранный потенциал не в безразмерных единицах(ф) , а в вольтах (фм) в соответствии с уравнением:
6. Природа потенциала покоя
Потенциал покоя, электрический потенциал между внутренней и наружной средой клетки, возникающий на ее мембране; у нейронов и мышечных клеток достигает величины 0,05-0,09 В; возникает из-за неравномерного распределения и накопления ионов по разные стороны клеточной мембраны.
Потенциал покоя впервые описан и измерен в 1848-51 годах в работах Э. Г. Дюбуа-Реймона в опытах на мышцах лягушки. Наличие постоянного тока определенной направленности между электродами, один из которых приложен к наружной поверхности мышцы, а другой вводится внутрь мышцы, доказало, что наружная поверхность клеток заряжена положительно (+), а внутренняя -- отрицательно (). Природа явления нашла объяснение в «мембранной теории» биопотенциалов Ю. Бернтштейна в 1903-11 годах. По Бернштейну, белки, аминокислоты и другие органические анионы (обозначаемые как А-) представлены в цитоплазме клетки в основном в виде калиевых солей А-К+. Поскольку их концентрация в цитоплазме в 40-100 раз выше, чем во внеклеточной жидкости, диффузионные потоки А- и К+ через мембрану направлены преимущественно из клетки наружу. Однако мембрана клетки проницаема только для ионов К+ и не проницаема для органических анионов А-. Ионы калия, проходя через мембрану наружу по концентрационному градиенту, скапливаются на противоположной стороне мембраны, заряжая ее положительно. Удерживание ионов К+ на наружной поверхности мембраны происходит за счет электростатического притяжения со стороны противоионов А-, которые, не имея возможности пройти через мембрану вслед за калием, скапливаются на внутренней стороне мембраны, заряжая ее отрицательно. Такое разделение зарядов по разные стороны мембраны является разновидностью диффузионного потенциала и описывается уравнением Нернста:
VM=RT/F*lnC1/C2,
где R -- газовая постоянная, T -- абсолютная температура, F -- число Фарадея; С1 и С2-- концентрации калия внутри и снаружи клетки. Зная, что снаружи -- около 100 мМ, Бернштейном были предсказаны величины потенциала покоя клеток порядка 80-100 мВ. По сравнению с измеряемыми в экспериментах теоретически рассчитанные значения оказались завышены на 10-20 мВ. Теория Бернштейна игнорировала обнаруженный впоследствии важный факт, что мембрана любой клетки пропускает не только ионы калия, но и хлора, а также - в меньшей степени - натрия. Так как содержание солей натрия в 40-50 раз выше в наружной среде, чем в клетке, то ионы натрия, постоянно просачиваямь в клетку по концентрационному градиенту, уменьшают абсолютную величину потенциала покоя на 15-25мВ, создаваемого калиевым диффузионным потенциалом. Поэтому, начиная с 1940-50 годов и по настоящее время для расчета потенциала покоя используют теорию постоянного поля Гольдмана-Ходжкина-Катца. Она постулирует, что стационарный потенциал, присутствующий на мембране клетки в состоянии покоя, обусловлен трансмембранным перепадом ионных концентраций и токами ионов в соответствии с относительной проницаемостью мембраны к ионам натрия, калия и хлора. Например, соотношение проницаемостей натрия, калия и хлора в состоянии покоя для мембраны нейрона равно 1: 0,25: 0,5, а для мембраны мышечного волокна- 1:0,20:2.
Несмотря на постоянный выход ионов калия из клетки и вход ионов натрия в клетку, в состоянии покоя не происходит заметных изменений внутриклеточных концентраций этих ионов в клетке. Это происходит благодаря работе на мембране клетки специальных молекул, называемых натрий-калиевым насосом. Молекула насоса снабжена двумя разными активными центрами, один из которых связывает ионы натрия, накапливающиеся внутри клетки, другой -- ионы калия, накапливающиеся снаружи клетки. Вслед за связыванием ионов натрия и калия, молекула натрий-калиевого насоса способна сопряженно (одновременно) переносить их через мембрану против концентрационного градиента, то есть выкачивать ионы натрия наружу, и закачивать ионы калия внутрь клетки. Работа такого мембранного «насоса», обеспечивающего постоянство ионной среды и стабильность потенциала покоя клетки, происходит с затратой энергии АТФ.
7. Природа потенциала действия
Потенциал действия, разновидность биопотенциала, возникающего на мембране электровозбудимых клеток в ответ на раздражение электрическим полем, химическим или другим стимулом. При этом мембрана возбудимой клетки способна увеличивать свою проницаемость к ионам натрия, калия, кальция.
Генерация потенциала действия имеет двухфазную циклическую природу. В первой фазе возбуждения происходит реверсия (изменение знака) электрического заряда на мембране -- потенциал сдвигается от обычно имеющегося в покое уровня порядка -50 -- -90 мВ, до +20 -- +40 мВ. Во второй фазе происходит восстановление исходного состояния мембраны, то есть и заряд, и потенциал на мембране быстро возвращаются к исходным значениям, характерным для состояния покоя клетки.
Для объяснения природы токов, вызывающих быструю электрическую перезарядку мембраны, а затем возврат и заряда, и потенциала на мембране к исходным значениям, в 1949-51 годах английскими физиологами А. Л.Ходжкиным и А. Ф. Хаксли была предложена так называемая «натриевая гипотеза». Используя чрезвычайно удобный для экспериментов гигантский аксон кальмара, ученые показали, что электрический стимул отрицательной полярности, приложенный к мембране аксона, вызывает на ней кратковременное (в течение нескольких миллисекунд) и значительное (в 20-100 раз) повышение проницаемости к ионам натрия (первая фаза потенциала действия). Ионы натрия начинают быстро входить в клетку, так как их содержание в 30-40 раз выше в наружной среде по сравнению с цитоплазмой. Вход Na+ не только нейтрализует отрицательный заряд, имеющийся исходно на внутренней стороне мембраны, до нуля, но и перезаряжает ее до положительных значений порядка +20 -- +40 мВ. Затем Na-проницаемость самопроизвольно снижается до исходных низких значений. Во вторую фазу потенциала действия резко возрастает проницаемость мембраны к ионам калия, концентрация которых в 30-40 раз выше в цитоплазме клетки, чем в наружной среде, и они выходят из клетки по концентрационному градиенту, вынося положительные заряды и способствуя их накоплению на наружной стороне мембраны. Это сопровождается одновременным накоплением анионов на внутренней поверхности мембраны и реполяризацией мембраны вплоть до исходных значений заряда и потенциала (возвращение к состоянию покоя). Ходжкин и Хаксли предположили, что на мембране возбудимых клеток существуют специальные молекулы -- каналы, предназначенные для пропускания ионов натрия и калия через мембрану (см. Ионные каналы). Эти каналы в покое неактивны (закрыты), но активируются на короткое время в ответ на действие раздражителя (электрического стимула). Ученым удалось описать проводимость мембраны к ионам натрия и калия во время генерации потенциала действия как функцию потенциала и времени с помощью серии дифференциальных уравнений и, таким образом, смоделировать натриевые и калиевые токи, текущие через мембрану при генерации потенциала действия. Ими были предсказаны и важнейшие свойства ионных каналов мембраны.
Важнейшими условиями для открывания натриевых каналов и генерации потенциал действия является деполяризация клетки до определенного уровня, называемого критическим, или «пороговым». Только по достижении «пороговой» величины мембранного потенциала (порядка -50 -- -30 мВ) происходит открывание натриевых, а затем и калиевых каналов, и начинается генерация потенциала действия. Другой важнейшей особенностью генерации потенциала действия является существование короткого периода абсолютной и относительной невозбудимости мембраны: в короткий период порядка 1-2 мс после прекращения генерации потенциала действия не удается вызвать новую генерацию потенциала действия. Этот период кратковременной нечувствительности мембраны, называемый рефрактерным периодом, определяется инактивированным состоянием натриевых каналов во вторую, реполяризационную фазу генерации потенциала действия. Ионные каналы вновь приобретают способность открываться в ответ на пороговую деполяризацию лишь после возвращения мембранного потенциала к уровню потенциала покоя.
Способность генерировать потенциал действия свойственна лишь определенным, хотя и функционально различным клеткам организма, которые называют возбудимыми: всем видам нейронов, мышечных клеток и мышечных волокон, рецепторным клеткам органов чувств и железистым клеткам (гипофиза, надпочечников и др).
Генерация потенциала действия является не внешним проявлением, а самой сутью феномена возбуждения клетки. Именно с помощью потенциала действия нейроны получают, перерабатывают и передают биологически важную информацию из внешней среды, а также от одной клетки к другой, а мышечные клетки начинают сокращаться, а значит, обеспечивается двигательная активность органов, стенки которых состоят из возбудимых гладкомышечных клеток: сердца, сосудов, пищеварительного тракта. В железистых клетках потенциал действия запускает процесс секреции.
В отличие от аксонов и скелетных мышечных волокон, у большинства возбудимых клеток (нейронов, клеток сердечной мышцы и др.) в первой и второй фазе генерации потенциала действия существенное значение имеет участие наряду с натриевым и кальциевых входящих токов. Вторая фаза потенциала действия у них, как правило, обусловлена не одним, а целым семейством взаимодействующих калиевых, кальциевых и других токов. Амплитуда потенциала действия у каждой клетки является строго постоянной величиной; у разных типов клеток она колеблется незначительно и составляет по абсолютной величине порядка 90-110 мВ. Значительно более вариабельной является длительность потенциала действия, которая у разных типов возбудимых клеток может различаться на два порядка. Так, самыми кратковременными являются потенциал действия крупных миелинизированных аксонов двигательных нейронов (2-3 мс), а также скелетных мышечных волокон (3-4 мс). У клеток миокарда человека длительность потенциала действия на два порядка больше и составляет 300-400 мс, так как здесь во время генерации второй, длительной фазы потенциала действия в мышечную клетку поступают ионы кальция, необходимые для запуска сокращения: чем больше длительность каждого потенциала действия, тем больше сила сокращения сердца. В гладкомышечных клетках потенциалы действия возникают не всегда, и их длительность, в зависимости от типа клетки может составлять 10-30 мс (в клетках желудочно-кишечного тракта). Здесь сила сокращения мышцы зависит не от длительности потенциала действия, а от частоты генерации серии потенциалов (чем чаще один потенциал действия следует за другим, тем больше кальция поступает в клетки, и тем сильнее сокращение и выше тонус гладкой мышцы).
Уникальным свойством потенциала действия является тот факт, что, возникая в одной точке на мембране возбудимой клетки, он способен без затухания в виде бегущей волны распространяться по всей поверхности клетки, включая ее отростки. Потенциал действия, распространяющийся от тела нервной клетки по ее длинному отростку -- аксону -- носит название нервного импульса.
Потенциал действия и колебания потенциала покоя лежат в основе возбуждения и торможения у животных и человека и раздражимости у растений. Изменения амплитуды и длительности потенциала действия могут носить как функциональный, так и патологический характер. Исследования суммарных потенциалов действия клеток и органов применяют с диагностическими целями (электрокардиография, электроэнцефалография, электромиография).
Заключение
Живые существа жизненно заинтересованы в высокой скорости проведения нервного импульса по нерву, а значит, в высоких величинах л. Повлиять трудно, так как оно зависит от электролитного состава протоплазмы, который примерно одинаков у всех видов животных. Головоногие моллюски пошли по пути увеличения радиуса нервного волокна r, создав гигантские аксоны. Позвоночные «изобрели» миелиновое волокно. Миелин содержит много холестерина и мало белка; его удельное сопротивление выше удельного сопротивления других биологических мембран. Кроме того, толщина миелиновой оболочки l в сотни раз превышает толщину обычной клеточной мембраны. Это обеспечивает высокие значения л в миелиновых нервных волокнах и сольфатарное (скачкообразное) распространение потенциала по ним от одного перехвата Ранвье к другому. Нарушение миелиновых оболочек при «миелиновых болезнях» приводит к нарушениям распространения нервного возбуждения по нервам и тяжелым расстройствам в функционировании нервной системы животных и человека.
Список литературы
1. Антонов, В.Ф. Биофизика: Учебник для студентов высших учебных заведений / В.Ф. Антонов, А.М. Черныш, В.И. Пасечник. - М.: ВЛАДОС, 2006. - 287 c.
2. Плутахин, Г.А. Биофизика: Учебное пособие / Г.А. Плутахин, А.Г. Кощаев. - СПб.: Лань, 2012. - 240 c.
3. Сердюк, И. Методы в молекулярной биофизике: структура, функция, динамика. В 2-х т.Методы в молекулярной биофизике: структура, функция, динамика: Учебное пособие / И. Сердюк. - М.: КДУ, 2010. - 1304 c.
4. Черныш, А.М. Физика и биофизика: Учебник / В.Ф. Антонов, А.М. Черныш, Е.К. Козлова. - М.: ГЭОТАР-Медиа, 2013. - 472 c.
Размещено на Allbest.ru
...Подобные документы
Анализ механизмов прохождения веществ через клеточную мембрану. Основные процессы, с помощью которых вещества проникают через мембрану. Свойства простой и облегченной диффузии. Типы активного транспорта. Ионные каналы, их отличие от поры, градиент.
презентация [282,3 K], добавлен 06.11.2014Ионные токи, протекающие через мембрану клетки. Мембранный потенциал для модели идеальной клетки. Формула потенциала покоя и постоянного поля. Равновесие ионов хлора. Электрическая модель мембраны. Участие ионных каналов в формировании потенциала покоя.
реферат [224,2 K], добавлен 24.10.2009Изучение строения и определение биологических функций клеточных мембран. Разнообразие функций каналов и переносчиков ионов через мембрану. Роль (Na)-насоса в поддержании допустимого осмотического давления в клетке. Электрические характеристики мембран.
презентация [1,5 M], добавлен 05.03.2015Изучение жизнедеятельности клетки. Активные свойства мембраны. Электрическая активность нервной системы. Потенциал покоя и механизм его формирования. Условия возникновения возбуждения и параметры возбудимости ткани. Стабилизаторы и местные анестетики.
курсовая работа [78,5 K], добавлен 07.02.2015Понятие равновесного мембранного потенциала. Механизмы прохождения ионов через поверхностную мембрану клетки. Принцип работы натрий-калиевого насоса. Характерные черты потенциалзависимых и рецепторуправляемых ионных каналов. Способы их активации.
реферат [413,1 K], добавлен 19.08.2015Виды возбудимых тканей и свойственные им формы возбуждения. Механизм поддержания электролитного гомеостаза клеткой. Строение и функции клеточной мембраны. Формирование потенциалов покоя и действия. Роль возбуждения в процессах дыхания и пищеварения.
реферат [1,2 M], добавлен 08.12.2013Гипотезы о возникновении электричества в живых тканях. Теория Дюбуа-Реймона, теоретическое объяснение потенциала повреждения. Исследование осмоса, проявление "жизненной силы" растений. Мембранная теория биопотенциалов Ю. Бернштейна и ее доказательства.
реферат [712,7 K], добавлен 08.08.2009Протекание биохимических процессов, их причинно-следственный механизм. Натриево-калиевый насос, энергия гидролиза АТФ, кальциевые насосы, натрий-кальциевый обменник. Функции мембраны, электрический потенциал клетки и молекул, их роль в обменных процессах.
реферат [31,2 K], добавлен 24.10.2009Характеристика излучения крайне высоких частот, его особенности и свойства. Общее описание d-элементов (железо, цинк, медь и т.д.): атомный радиус, активность, значимость в организме. Процессы обмена d-элементов в организме, влияние излучения на них.
курсовая работа [389,5 K], добавлен 18.07.2014Понятие о биоэлектрических явлениях. Возникновение современной мембранной теории возбуждения. Основные виды биоэлектрических потенциалов, механизм их возникновения и применение в медико-биологических лабораториях, в клинической практике при диагностике.
реферат [275,0 K], добавлен 27.08.2012Абиогенное или небиологическое, возникновение органических молекул из неорганических. Образование биологических полимеров. Формирование мембранных структур и первичных организмов (пробионтов). Развитие жизни на Земле.
реферат [7,4 K], добавлен 05.06.2004Строение ионных каналов - специализированных белков клеточной мембраны, образующих гидрофильный проход, по которому заряженные ионы могут пересекать клеточную мембрану по электрохимическому градиенту. Свойства активного транспорта, его потенциал.
презентация [1,3 M], добавлен 30.10.2016Проблемы сборки мембранных белков, методы исследования и условия переноса белков через мембраны. Сигнальная и мембранная (триггерная) гипотеза встраивания белков в мембрану. Процесс сборки мультисубъединичных комплексов и обновление мембранных белков.
курсовая работа [289,5 K], добавлен 13.04.2009Количественное описание механизмов, участвующих в генерации потенциала действия. Натриевые и калиевые токи, соотношение натрия и калия на фазе роста потенциала клетки. Положительная и отрицательная обратная связь во время изменений проводимости.
контрольная работа [27,7 K], добавлен 26.10.2009Электрический потенциал на мембране нейронов в состоянии покоя. Изменение проницаемости мембраны. Распределение ионов в идеальной клетке. Ионное равновесие, электрическая нейтральность. Влияние внеклеточного калия и хлора на мембранный потенциал.
реферат [432,3 K], добавлен 24.10.2009Потребление кислорода как основной показатель затраты энергии организмом. Возникновение потенциала покоя и энергия, которая на него затрачивается. Устройство и принцип действия внутренних "ионных насосов" и каналов, сферы их использования организмами.
реферат [19,6 K], добавлен 08.08.2009Особенности физиологии мышечной системы. Проведение потенциала действия (ПД) по нерву, его передача через синапс. Синаптическая щель, медиатор (химический посредник). Скелетные (поперечно-полосатые) и гладкие мышцы. Шаговый механизм мышечных сокращений.
презентация [640,8 K], добавлен 29.08.2013Причины токсичности тяжелых металлов и поливалентных катионов. Строение высшего растения, особенности корневой системы и надземной части растений. Роль различных тканей растения в транспорте и распределении тяжелых металлов и поливалентных катионов.
курсовая работа [2,1 M], добавлен 27.05.2012Клеточные механизмы контроля состояния окружающей среды, работа рецепторных систем. Рецепторы, определяющие клеточную адгезию. Группирование в структурно родственные семейства. Передача сигналов в животных клетках. Рецептор фактора роста эпидермиса.
курсовая работа [3,3 M], добавлен 31.07.2009Физиологические процессы, обеспечивающие газообмен между организмом, внешней средой и окислительными процессами в клетках. Особенности строения, расположение и функции органов дыхания. Механизм вдоха и выдоха; искусственное дыхание; заболевания и смерть.
презентация [1,4 M], добавлен 14.09.2014