Цитология наследственных заболеваний

Концепция генетической непрерывности клеток. Основные достижения современной цитологии. Законы наследственности и генная классификация наследственных болезней. Болезни с наследственной предрасположенностью, их типология и клиническая характеристика.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 21.03.2015
Размер файла 19,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СПХФА

Кафедра биологической химии

РЕФЕРАТ

на тему: «Цитология наследственных заболеваний»

Выполнила: Хахулина Анастасия

Санкт- Петербург,2014 год

1. Закон генетической непрерывности

Фундаментальное значение для дальнейшего развития клеточной теории имела концепция генетической непрерывности клеток. В свое время Шлейден считал, что клетки образуются в результате своего рода кристаллизации из клеточной жидкости, а Шванн в этом ошибочном направлении пошел еще дальше: по его мнению, клетки возникали из некой «бластемной» жидкости, находящейся вне клеток.

Сначала ботаники, а затем и зоологи (после того как разъяснились противоречия в данных, полученных при изучении некоторых патологических процессов) признали, что клетки возникают только в результате деления уже существующих клеток. В 1858 Р.Вирхов сформулировал закон генетической непрерывности в афоризме «Omnis cellula e cellula» («Каждая клетка из клетки»). Когда была установлена роль ядра в клеточном делении, В.Флемминг (1882) перефразировал этот афоризм, провозгласив: «Omnis nucleus e nucleo» («Каждое ядро из ядра»). Одним из первых важных открытий в изучении ядра было обнаружение в нем интенсивно окрашивающихся нитей, названных хроматином. Последующие исследования показали, что при делении клетки эти нити собираются в дискретные тельца - хромосомы, что число хромосом постоянно для каждого вида, а в процессе клеточного деления, или митоза, каждая хромосома расщепляется на две, так что каждая клетка получает типичное для данного вида число хромосом. Следовательно, афоризм Вирхова можно распространить и на хромосомы (носители наследственных признаков), поскольку каждая из них происходит от предсуществующей.

В 1865 было установлено, что мужская половая клетка (сперматозоид, или спермий) представляет собой полноценную, хотя и высокоспециализированную клетку, а спустя 10 лет О.Гертвиг проследил путь сперматозоида в процессе оплодотворения яйцеклетки. И наконец, в 1884 Э. ван Бенеден показал, что в процессе образования как сперматозоида, так и яйцеклетки происходит модифицированное клеточное деление (мейоз), в результате которого они получают по одному набору хромосом вместо двух. Таким образом, каждый зрелый сперматозоид и каждая зрелая яйцеклетка содержат лишь половинное число хромосом по сравнению с остальными клетками данного организма, и при оплодотворении происходит просто восстановление нормального числа хромосом. В итоге оплодотворенная яйцеклетка содержит по одному набору хромосом от каждого из родителей, что является основой для наследования признаков и по отцовской, и по материнской линии. Кроме того, оплодотворение стимулирует начало дробления яйцеклетки и развитие нового индивида.

Представление о том, что хромосомы сохраняют свою идентичность и поддерживают генетическую непрерывность от одного поколения клеток к другому, окончательно сформировалось в 1885 (Рабль). Вскоре было установлено, что хромосомы качественно отличаются друг от друга по своему влиянию на развитие (Т.Бовери, 1888). Начали появляться также экспериментальные данные в пользу высказанной ранее гипотезы В.Ру (1883), согласно которой даже отдельные части хромосом влияют на развитие, структуру и функционирование организма.

Таким образом, еще до конца 19 в. было сделано два важных заключения. Одно состояло в том, что наследственность есть результат генетической непрерывности клеток, обеспечиваемой клеточным делением. Другое - что существует механизм передачи наследственных признаков, который находится в ядре, а точнее - в хромосомах. Было установлено, что благодаря строгому продольному расщеплению хромосом дочерние клетки получают совершенно такую же (как качественно, так и количественно) генетическую конституцию, как исходная клетка, от которой они произошли.

2. Законы наследственности

Второй этап в развитии цитологии как науки охватывает 1900-1935. Он наступил после того, как в 1900 были вторично открыты основные законы наследственности, сформулированные Г.Менделем в 1865, но не привлекшие к себе внимания и надолго преданные забвению. Цитологи, хотя и продолжали заниматься изучением физиологии клетки и такими ее органеллами, как центросома, митохондрии и аппарат Гольджи, основное внимание сосредоточили на строении хромосом и их поведении. Проводившиеся в это же время эксперименты по скрещиванию быстро увеличивали объем знаний о способах наследования, что привело к становлению современной генетики как науки. В результате возник «гибридный» раздел генетики - цитогенетика.

3. Достижения современной цитологии

Новые методы, особенно электронная микроскопия, применение радиоактивных изотопов и высокоскоростного центрифугирования, появившиеся после 1940-х годов, позволили достичь огромных успехов в изучении строения клетки. В разработке единой концепции физико-химических аспектов жизни цитология все больше сближается с другими биологическими дисциплинами. При этом ее классические методы, основанные на фиксации, окрашивании и изучении клеток под микроскопом, по-прежнему сохраняют практическое значение.

Цитологические методы используются, в частности, в селекции растений для определения хромосомного состава растительных клеток. Такие исследования оказывают большую помощь в планировании экспериментальных скрещиваний и оценке полученных результатов. Аналогичный цитологический анализ проводится и на клетках человека: он позволяет выявить некоторые наследственные заболевания, связанные с изменением числа и формы хромосом. Такой анализ в сочетании с биохимическими тестами используют, например, при амниоцентезе для диагностики наследственных дефектов плода.

цитология генный наследственный болезнь

4. Генная классификация наследственных болезней

Клиническая медицинская генетика все болезни в зависимости от этиологической значимости наследственных и родовых факторов делит на наследственные болезни, болезни с наследственной предрасположенностью и ненаследственные болезни. Большинство болезней относятся к группе заболеваний с наследственной предрасположенностью.

Наследственными болезнями называют болезни, вызываемые только мутациями - изменениями генетического материала. Мутации приводят к различным нарушениям нормального развития организма.

Особенностью наследственных болезней является то, что мутации, как этиологические факторы заболеваний, не зависят от среды обитания животного, его кормления и содержания. Из наследственных болезней выделяют хромосомные, генные, геномные и цитоплазматические болезни.

Хромосомными болезнями называют заболевания обусловленные изменениями (мутациями) числа хромосом.

Генные болезни обусловлены изменениями нуклеотидного состава ДНК отдельных генов, т. е. генными мутациями. Генных болезней у человека около 2000 (Н. П.Бочков,2004) .

Геномные болезни связаны с геномными мутациями - изменениями генома, т. е. гаплоидного набора хромосом: слияния и раздаление хромосом в области центромера, изменение числа хромосом, не кратное гаплоидному набору (добавление или потеря 1-2 хромосом диплоидного набора). Такая патология часто приводит к смерти животного.

Цитоплазматические болезни связаны с цитоплазматическими (митохондрии, хлоропласты) мутациями и чаще проявляются в форме различных невропатий и миопатий.

5. Болезни с наследственной предрасположенностью

К болезням с наследственной предрасположенностью относят такие заболевания, которые проявляются у животных с отягощенной генетической наследственностью под влиянием факторов окружающей среды - мутагенов.

Мутагены - вещества способные изменить материал наследственности. Из многочисленного числа мутагенов выделяют: физические (ионизирующее излучение, коротковолновое УФ излучение и др.), химические (различные химические вещества, в том числе и токсины патогенных грибов, пестициды), биологические (вирусы, некоторые бактерии, микоплазмы).

Ионизирующее излучение вызывает повреждение ДНК, ведёт к образованию в клетках мобильные ионы (свободные радикалы), способные вторично вызывать повреждение генетического материала.

Многие физические и химические мутагены индуцируют злокачественный рост клеток, являясь канцерогенами.

Для возникновения болезней с наследственной предрасположенностью необходима соответствующая генетическая конституция животного, и фактор или комплекс факторов среды, вызывающих мутацию генов. В итоге с помощью средового фактора или факторов реализуется наследственная предрасположенность.

При генетической классификации наследственных болезней ещё выделяются болезни, возникающие при несовместимости матери и плода по антигенам. Сущность этих болезней заключается в том, что в процессе развития плода часть его крови попадает в организм матери. Если плод от отца унаследовал такой аллель антигена (Аг+), которого нет у матери (Аг-), то организм беременной отвечает иммунной реакцией. Антитела матери, проникая в кровь плода, вызывают у него иммунный конфликт (см. гемолитическая болезнь новорожденных).

6. Клиническая классификация наследственных болезней

Клиническая классификация наследственных болезней объединяет болезни обмена веществ (ферментопатии, нарушение обмена аминокислот, нарушение обмена углеводов, липидов, витаминов, другие нарушения), наследственно обусловленные заболевания эндокринных органов (биосинтеза гормонов), генетически обусловленные заболевания кожи, наследственно обусловленные заболевания сердечно-сосудистой системы, крови и кроветворных органов, почек, другие наследственно обусловленные заболевания и врождённые аномалии (эпилепсия, астма бронхиальная, грипп, глухота и др.).

Следует иметь ввиду, что большинство наследственных болезней имеют полиморбидный характер, при очень немногих наследственных болезнях избирательно поражается один орган или одна система. Большинство генных мутаций, особенно хромосомные и геномные, вызывают генерализованное поражение какой-либо ткани или захватывают несколько органов.

Приведённая выше классификация наследственных болезней является целостной.

Список распространённых заболеваний с генетическим компонентом включает фактически всё состояния, с которыми сталкивается практическая медицина (Новик А. А., и другие; 2001).

Наследственные генетические аномалии связаны с гетерозиготностью родителей. Гетерозиготность - явление организма, при котором имеется два разных аллеля определённого гена, в отличии от гомозиготности - когда организм имеет два одинаковых аллеля определённого гена. Под аллелем- понимают варианты одного гена, возникающие в результате изменений (мутаций).

Аллельные болезни называют фенотипическими (фенотип - совокупность морфологических, физиологических, поведенческих признаков организма).

Генетические аномалии отмечаются у животных, рождённых от фенотипически нормальных, но гетерозиготных родителей. Аномальные гены в соответствии с правилами чистоты гамет (зрелых половых клеток) могут сохраняться в гетерозиготном состоянии в генотипе (наборе генов индивида или вся генетическая информация организма) неопределённое время и проявляться лишь у потомства, рождённого от двух гетерозиготных по аналогичному аллелю половых партнёров. Например, врождённая аномалия - тазобедренная дисплазия у животных может проявиться через 17 поколений.

Генетические аномалии могут заканчиваться гибелью эмбрионов, рождением молодняка с признаками уродства, проявлением аномалии в последующие периоды роста и развития.

Врождённые аномалии могут наследоваться по аутосомно-рецессивному, аутосомно-доминантному типам и наследовании - сцепленным с Х-хромосомой.

Аутосомно-рецессивное наследование - это такой тип наследования признака или болезни (аномалии), при котором мутантный аллель, локализованный в аутосоме (любая реполовая хромосома) должен быть уна-следован от обоих родителей. При аутосомно-рецессивном типе наследования аномалия обусловлена рецессивным геном, находящимся в аутосоме. У мужских и женских особях дефект проявляется с одинаковой частотой. Наследственный дефект при этом типе наследования проявляется не в каждом поколении, а с перерывами.

При аутосомно-доминантном типе наследования аномалии проявляются как у гетеро - так и у гомозиготных особей, что и обнаруживается в каждом поколении, без пропуска.

Гетерозигота - клетка (или организм), содержащая два различные аллеля в конкретном локусе (области локализации определённого генетического элемента на хромосоме).

Аутосомно-рецессивный тип наследования отличается от аутосомно-доминантного типа наследования тем, что при нём наследственный дефект проявляется не в каждом поколении, как это наблюдается при аутосомно-доминантном типе наследования, а через несколько поколений.

Наследование, сцепленное с Х-хромосомой, относится к признакам, аллели которого находятся в Х-хромосоме и могут быть как рецессивными, так и доминантными.

При этом типе наследования исключается передача признака от отца к сыну.

Хромосомный механизм определения пола обусловлен присутствием в кариотипе (хромосомном наборе клетки или организма) особых половых хромосом. Пол, имеющий одинаковые половые хромосомы, называется гомогометным, пол, имеющий разные половые хромосомы - гетерогометным.

Неполовые хромосомы кариотипа называются аутосомами. У млекопитающих животных гетерогаметным является мужской пол, а гомогаметным - женский.

У птиц гетерогаметным полом является женский (WZ), а гомогаметным - мужской (ZZ).

Наследование генов, локализованных на половых хромосомах, называется сцепленным с полом наследованием. У млекопитающих и человека Х-хромосома имеет много генов, Y-хромосома, наоборот, мало. У самцов рецессивные гомозиготные гены Х-хромосомы могут проявлять свой фенотипический (признак, проявляющийся в результате действия генов в определённых условиях среды) эффект. У самок так же одна из двух Х-хромосом подвергается гетерохромотизации в раннем эмбриогенезе и инактивируется. Процесс гетерохроматизации Х-хромасом носит случайный характер, поэтому в разных клетках женского организма инактивированы разные Х-хромосомы (либо отцовские, либо материнские), а значит могут функционировать разные аллели гомологического гена (Н. А.Курчанов,2006).. Классическим примером наследования патологического признака, сцепленного с Х-хромосомой, является гемофилия - болезнь, при которой кровь теряет способность свёртываться из-за нарушения синтеза особого белка - антигемофилического глобулина.

Ген, контролирующий синтез этого глобулина, располагается на Х-хромосоме (см. гемофилию).

Классификация врождённых пороков.

Чёткой классификации врождённых пороков из-за многообразия их форм не существует.

В гуманной медицине врождённые пороки классифицируют по локализации и этиологии.

Врождённые пороки развития подразделяют на изолированные (в одном органе), системные (в пределах одной системы органов), множественные (в органах двух систем и более).

Множественные врождённые пороки развития называют синдромами, при которых прослеживается этиологическая и патогенетическая связь и определённые клинические признаки. Врождённые пороки могут быть наследственными, экзогенными и многофакторными.

Наследственно обусловленные врождённые пороки развития могут быть обусловлены генными или хромосомными и геномными мутациями. При генных мутациях происходит нарушения эмбриогенеза не редко с гибелью эмбриона.

При хромосомных и геномных мутациях появляются хромосомные болезни.

Экзогенно обусловленные пороки развития являются следствием действия тератогенных факторов на эмбрионы.

Выраженным таратогенным действием обладают ионизирующая радиация, некоторые лекарственные вещества (стрептомицин, варфарин, амидоперин, тестостерон, метилтестостерон и др.), пестициды и др.

Патогенный фактор может действовать на стадии гаметогенеза (развития половых клеток); бластогенеза, эмбриогенеза и плодной (фетальной) стадии.

В случаях когда в гаметах есть мутации, нарушающие нормальное развитие организма, называют гаметопатиями.

Когда поражаются бластоциты и развивается пороки их называют бластопатиями, при поражении зародыша возникают эмбриопатии. Поэтому все врождённые пороки развития тератогенной природы являются эмбриопатиями, так как в эмбриональном периоде происходит формирование органов. (Н. А. Бочков).

Пороки или аномалии, возникающие на плодной (фетаплацентарной) стадии развития, называются фетапатиями. Они возникают в результате действия тератогенных факторов в период от первых недель внутриутробного развития до родов. Причинами фетапатии могут быть недоброкачественные корма, особенно поражение токсикогенными грибами и пестицидами.

Размещено на Allbest.ru

...

Подобные документы

  • Наука о клетках - структурных и функциональных единицах почти всех живых организмов. Создание клеточной теории. Открытие протоплазмы, основные свойства живых клеток. Развитие новых методов в цитологии. Законы генетической непрерывности и наследственности.

    реферат [20,2 K], добавлен 04.06.2010

  • Цитология как наука о клетках – структурных и функциональных единицах почти всех живых организмов. Основные положения клеточной теории. Открытие клетки. Основные свойства живых клеток. Открытие закона наследственности. Достижения современной цитологии.

    контрольная работа [1,5 M], добавлен 28.10.2009

  • Тайны и механизмы передачи наследственной информации, роль клетки как функциональной и морфологической единицы. Классификация форм наследственной патологии, характеристика наследственных болезней. Значимость наследственных факторов в патологии человека.

    реферат [33,7 K], добавлен 05.07.2010

  • Методы изучения клетки, их зависимость от типа объектива микроскопа. Положения клеточной теории. Клетки животного и растительного происхождения. Фагоцитоз - поглощение клеткой из окружающей среды плотных частиц. Подходы к лечению наследственных болезней.

    презентация [881,2 K], добавлен 12.09.2014

  • Предпосылки возникновения генетики. Основание мутационной теории. Генетика как наука о наследственности: ее исходные законы и развитие. Генная инженерия: научно-исследовательские аспекты и практические результаты. Клонирование органов и тканей.

    реферат [28,9 K], добавлен 02.01.2008

  • История развития, предмет цитологии. Основные положения современной клеточной теории. Клеточное строение живых организмов. Жизненный цикл клетки. Сравнение процессов митоза и мейоза. Единство и многообразие клеточных типов. Значение клеточной теории.

    реферат [17,1 K], добавлен 27.09.2009

  • Место цитологии среди других дисциплин. Исследование положений современной клеточной теории. Реакция клетки на повреждающее действие. Характеристика основных механизмов повреждения клетки. Анализ традиционных точек зрения на причины развития старения.

    презентация [6,8 M], добавлен 28.02.2014

  • Роль наследственности в непрерывности жизни. Непрерывность передачи генетической информации от родителей к потомству - обеспечение единства организмов и среды. Понятие генома, генотипа и фенотипа. Генетические модели и уровни изучения наследственности.

    реферат [27,4 K], добавлен 27.01.2010

  • Характеристика среды как совокупности окружающих человека условий. Способность родительских организмов передавать потомству все свои признаки и свойства, роль наследственных и средовых факторов развития человека. Связь наследственности и среды обитания.

    презентация [3,9 M], добавлен 02.01.2012

  • Положения клеточной теории. Особенности электронной микроскопии. Детальная характеристика строения и функции клеток, их связи и отношения в органах и тканях у многоклеточных организмов. Гипотеза тяготения Роберта Гука. Сущность строения клетки эукариот.

    презентация [1,6 M], добавлен 22.04.2015

  • Раскрытие содержания генетической инженерии как системы использования методов молекулярной генетики и молекулярной биологии для конструирования наследственных свойств организмов. Синтез ДНК и полимеразная цепная реакция. Ферменты генетической инженерии.

    презентация [2,6 M], добавлен 05.02.2014

  • Дигибридное и полигибридное скрещивание, закономерности наследования, ход скрещивания и расщепления. Сцепленное наследование, независимое распределение наследственных факторов (второй закон Менделя). Взаимодействие генов, половые различия в хромосомах.

    реферат [322,8 K], добавлен 13.10.2009

  • Система зашифровки наследственной информации в молекулах нуклеиновых кислот в виде генетического кода. Сущность процессов деления клеток: митоза и мейоза, их фазы. Передача генетической информации. Строение хромосом ДНК, РНК. Хромосомные заболевания.

    контрольная работа [28,4 K], добавлен 23.04.2013

  • Явления, относящиеся к наследственности: сходство признаков потомков и родителей, отличия признаков потомков от родительских, возникновение признаков, которые были у далеких предков. Понятие наследственности, ее типы и методы изучения, основные законы.

    курсовая работа [20,1 K], добавлен 27.08.2012

  • Цитология как наука, изучающая строение, функции и эволюцию клеток. История изучения клетки, появление первых микроскопов. Открытие мастерской оптических приборов в России. История развития клеточной теории, ее основные положения в современной биологии.

    презентация [347,3 K], добавлен 23.03.2010

  • История, цели и основы генетической инженерии; биоэтические аспекты. Группы генетических заболеваний, их диагностика и лечение. Применение генетической инженерии в медицинской практике: генные вакцины, генотерапия, производство лекарственных препаратов.

    реферат [55,0 K], добавлен 26.10.2011

  • Концепция неделимого гена как функциональной единицы наследственности. Хромосомы и их строение, клеточный цикл, мейоз и образование гамет. Наследование одиночных признаков. Независимые сегрегация и комбинирование. Перенос генетической информации в клетке.

    реферат [2,9 M], добавлен 26.07.2009

  • Общая характеристика науки биологии. Этапы развития биологии. Открытие фундаментальных законов наследственности. Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии. Вопрос о функциях живого вещества.

    контрольная работа [28,1 K], добавлен 25.02.2012

  • Возникновение молекулярной биотехнологии. История проблемы биологического кода. Политика в области генной терапии соматических клеток. Накопление дефектных генов в будущих поколениях. Генная терапия клеток зародышевой линии. Генетика и проблема человека.

    реферат [41,9 K], добавлен 25.09.2014

  • Цитология как раздел биологии, наука о клетках, структурных единицах всех живых организмов, предмет и методы ее изучения, история становления и развития. Этапы исследований клетки как элементарной единицы живого организма. Роль клетки в эволюции живого.

    контрольная работа [378,6 K], добавлен 13.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.