Синергетика в физике, химии, биологии
Инновационность синергетической парадигмы. Комплексное исследование процессов самоорганизации систем природы. Методология теории изменений и понятийный аппарат процессов движения систем. Образование пространственных, временных или функциональных структур.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 07.04.2015 |
Размер файла | 31,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Синергетика в физике, химии, биологии
Термин «синергетика» ввел в научный обиход профессор Штутгартского университета Георг Хакен в 1973 г. в своем докладе «Корпоративные явления в сильно неравновесных и не физических явлениях». В хронологическом смысле синергетика имеет точную дату рождения в отличие от других наук. Более того, синергетика представляет собой не только новую науку, но и новое мировоззрение. По своему значению она может приравниваться к возникновению таких наук как кибернетика или генетика. На самом деле, с возникновением кибернетики появилась новая кибернетическая картина мира, аналогично обстоит дело и с синергетикой.
Одновременно и независимо от Хакена идеи синергетики были разработаны лауреатом Нобелевской премии Ильей Пригожиным, возглавлявшим Брюссельскую школу. Эта школа работала над проблемами самоорганизации в неустойчивых системах, с использованием термодинамического подхода. Согласно Хакену синергетика представляет собой новую парадигму исследования открытых самоорганизующихся систем, подверженных кооперативному эффекту, который сопровождается образованием пространственных, временных или функциональных структур. Область исследований синергетики четко не определена и вряд ли может быть ограничена, так как ее интересы распространяются на все отрасли естествознания, общим признаком является рассмотрение динамики любых необратимых процессов и возникновения принципиальных новаций.
Объектами исследования синергетики стали такие явления как:
- фазовые переходы (переход из газообразного состояния в жидкое, твердое, или наоборот);
- гидродинамические неустойчивости (завихрения, турбулентность);
- автокаталитические реакции (при которых в системе отсутствует теплоперенос);
- динамика популяции;
- образование макромолекул;
- динамика моды;
- распространение слухов.
Говоря кратко, инновационность синергетической парадигмы состояла в способности решать проблемы, связанные с исследованием процессов самоорганизации систем различной природы.
И. Пригожин и его школа разработали методологию теории изменений и соответствующий понятийный аппарат исследования процессов движения систем, в особенности фазы «скачка». Г. Хакен считает, что синергетика «шире» концепции И. Пригожина, поскольку она исследует явления, происходящие в точке неустойчивости, а также структуру, которая возникает за порогом неустойчивости. Однако с другой стороны, в определенном смысле более широким следует признать подход И. Пригожина, поскольку в его рамках рассматриваются как неравновесные, необратимые процессы, протекающие в открытых системах, так и обратимые, имеющие место в закрытых системах. В целом синергетика и теория изменений уже с трудом отделимы друг от друга, поскольку, будучи очень близки объектами и методами исследования, они впитали понятийный аппарат друг друга. Это особенно характерно для синергетики, поэтому концепцию Брюссельской школы можно рассматривать как синергетическую. Синергетика и теория изменений составили фундамент концепций самоорганизации, на котором уже построены многие физические, химические, биологические теории.
Методология Хакена и Пригожина была распространена на области самоорганизации различных систем. Самоорганизация - процесс самоструктурирования, саморегуляции систем природы. Остановимся на этом подробнее. Мир можно описывать при помощи категорий порядок и хаос. Порядок - это выражение структурно-энергетического состояния системы с минимальной энтропией. Хаос - это выражение структурно-энергетического состояния системы с максимальной энтропией. Существует следующая закономерность: чем выше порядок, тем меньше энтропия и наоборот. При этом переход одних видов энергии в другие сопровождается выделением тепла, которое рассеивается во Вселенной. Это находит выражение в росте энтропии. Флуктуации в какой-либо небольшой системе за счет влияния среды увеличивают порядок. В большой системе энтропия возрастает, что ведет к хаосу. В XIX в. возникла теория «тепловой смерти» Вселенной, согласно которой температура во всех точках сравняется. Однако есть силы, не дающие осуществиться такому сценарию. И одной из таких сил являются процессы самоорганизации, сопровождающиеся повышением порядка организации.
В современной науке "порядок" и "хаос" - вполне определенные понятия. Насколько важно изучать хаос и переходы в это состояние из равновесия, показывают такие примеры, как, например, распад СССР. Ранее налаженная жизнь людей, производство, взаимные обязательства разрушились вместе со страной. Страна погрузилась "во тьму", остановились фабрики, заводы; люди не знали, как им жить дальше. Огромная страна была охвачена паникой. Многие республики бывшего СССР до сих пор не могут толком встать на ноги. А что говорить о людях: родственники стали гражданами и жителями разных стран и их стали разделять натуральные границы.
Упорядоченность и хаос. Две крайности, наблюдаемые в реальном мире. С одной стороны, четкая, подчиняющаяся определенному порядку смена событий: движение планет, вращение Земли, появление комет, размеренный стук маятников, поезда, идущие по расписанию. С другой стороны, хаотическое метание шарика в рулетке, броуновское движение частиц под случайными ударами "соседей", беспорядочные вихри турбулентности, образующиеся при течении жидкости с достаточно большой скоростью. В природе протекает множество хаотических процессов, но далеко не всегда они воспринимаются как хаос. Поэтому наблюдаемый мир кажется нам вполне стабильным. Наше сознание, как правило, интегрирует, обобщает информацию, воспринимаемую органами чувств, и поэтому мы не видим мелких "дрожаний" в окружающей нас природе, например: самолет надежно держится в воздушных турбулентных вихрях, хотя неупорядоченно пульсирует. Порядок в физических, экологических, экономических и любых других системах может быть двух видов: равновесный и неравновесный. При равновесном порядке система находится в равновесии со своим окружением; параметры, которые ее характеризуют, одинаковы с теми, которые характеризуют окружающую среду. При неравновесном порядке эти параметры различны. На первый взгляд, равновесный порядок более стабилен, чем неравновесный. В самой природе равновесного порядка заложено противодействие любым возмущениям состояния системы. В термодинамике это свойство систем называется принципом Ле Шателье-Брауна, т. е если на систему, находящуюся в равновесии, воздействовать извне, изменяя какое-нибудь из условий (температура, давление, концентрация), то равновесие смещается таким образом, чтобы компенсировать изменение.
В лице равновесной и неравновесной синергетики современная наука выражает идею своего рода двух состояний материи. Материя может находиться в более инертном, равновесном состоянии, описываемой средствами равновесной термодинамики, и материя способна достигать некоторого "возбужденного", или "активированного", состояния, выражаемого средствами неравновесной нелинейной термодинамики и синергетики. Способность возвращаться к исходному состоянию - непременное свойство так называемых саморегулирующихся систем.
Природа неравновесного порядка имеет искусственное происхождение и существует только при условии подачи энергии извне. Поэтому для поддержания порядка требуется компенсация потерь, к которым приводят необратимые "выравнивающие" потоки, и, следовательно, для этого нужны определенные энергетические затраты. Так как перетекание тепла или массы связано с рассеянием энергии (диссипацией), то потери энергии, возникающие при этом, называются диссипативными. В открытых системах, обменивающихся с окружающей средой потоками вещества или энергии, однородное состояние равновесия может терять устойчивость и необратимо переходить в неоднородное стационарное состояние, устойчивое относительно малых возмущений. Такие стационарные состояния получили название диссипативных структур. Например: возникновение когерентного излучения в лазере, когда, после первоначального хаотического излучения и начиная с некоторой мощности накачки, атомы вещества начинают излучать фотоны одной фазы, что выражается в возникновении мощного пучка лазерного излучения. В условиях диссипации часто возникает порядок.
Самое элементарное определение системы утверждает, что она представляет собой совокупность элементов, а также взаимосвязь между ними. Системный подход состоит в рассмотрении любого объекта как системы - совокупности взаимосвязанных элементов, образующих единое целое и предназначенных для выполнения определенной функции. Системный подход можно рассматривать по отношению к естественным системам и искусственным. Синергетика рассматривает процесс становления организации, а более точно самоорганизации системы, как естественный процесс. Не случайно синергетику понимают в сугубо онтологическом смысле как совместное, резонансное действие.
Между тем, искусственная система - это целое, в котором существует хотя бы один элемент, привнесенный человеком. Синергетику можно рассматривать также как науку об искусственных системах, поскольку она по определению носит искусственный, модельный характер. Другими словами, синергетика представляет собой искусственно-естественную систему. Искусственная или конструктивная система имеет четыре фундаментальных признака: функциональность, целостность, организацию, системное качество. В конструктивной системе цель задается человеком, и она предназначена для выполнения полезной функции. Появление цели - результат осознания потребности. Возникновение потребности, осознание цели и формулирование функции - процессы, происходящие внутри человека. Можно выделить также внешний план деятельности - методы и средства, которые помогают реализовать, овеществляют предвосхищенную цель. Сложнее обстоит дело с целесообразностью в живой природе, механизмы которой моделирует синергетика как теория самоорганизации через адаптацию и стремление к выживанию. Построение структуры в конструктивной системе представляет собой частный и предельно упрощенный случай самоорганизации. Рассмотрим процесс построения структуры в конструктивной системе более подробно. Структура - это способ взаимного соединения элементов системы. Формирование, составление структуры - это проектирование системы, задание ее функционирования. Структура является инвариантом, неизменным во времени при функционировании системы. Элемент - минимальная единица системы, сохраняющая способность выполнять элементарную функцию. Получение будущего системного свойства является основой конструирования системы, которая основывается на формировании структуры. Сложные системы имеют иерархическую структуру, а элемент имеет бинарную природу - обладает одновременно индивидуальными и системными качествами.
Основная миссия системной методологии и состоит в создании конструктивных систем, раскрытии закономерностей их функционирования и развития. Организация возникает одновременно со структурой и является алгоритмом совместного функционирования элементов системы. Главное условие возникновения организации: связи между элементами должны быть сильнее связей с несистемными элементами. Управление - это одно из важнейших свойств организации, состоящее в возможности менять свойства системы в соответствии с замыслом (управляющим воздействием). Данная конструктивная системная методология наиболее адекватна к процессу конструирования системы, рассматриваемому как синергетика взаимодействия управляющей структуры, находящейся внутри саморазвивающейся системы. С другой стороны, самоорганизацию можно рассматривать как процесс, приводящий к образованию структур, пространственных и пространственно-временных. Например, Вселенная когда-то была хаосом из газа, пыли, бесструктурных молекул и атомов. Под влиянием полей, течений флуктуаций, возникают турбулентные завихрения, которые могут создавать структурированные формы вещества во Вселенной. В природе существует не только образование новых структур, но и обратный процесс, т. е. понижение упорядоченности, переход от порядка к хаосу, вырождение материи.
Нобелевский лауреат Илья Пригожин положил начало новому принципу осмысления действительности. В свете этого принципа, признающего за Вселенной первичную динамическую неопределенность, оказалось возможным выработать новое понимание эволюции. Одна и та же энергия, одни и те же принципы обеспечивают эволюцию на всех уровнях: от физико-химических процессов до человеческого сознания и социально-культурной информации. Вселенная оказывается единой во всех своих пластах, живой, развивающейся, восходящей на новые ступени бытия.
Природа - растительный и животный мир - постоянно поражает нас разнообразием своих форм и изяществом их структур: начиная с тех, которые мы встречаем в природе, и, заканчивая теми, что присущи разумной жизни; мы настолько привыкли к ним, что зачастую уже не осознаем, каким чудом является само их существование. А как зарождаются эти структуры, ведь их самозарождение противоречит всем физическим принципам. Однако синергетика, как новая парадигма, переворачивает наше сознание того, что и в мире неживой природы новые упорядоченные структуры могут возникать из неупорядоченного хаоса и сохраняться неизменными при наличии постоянного притока энергии.
В каждом процессе становления структуры принимает участие великое множество отдельных элементов, которые неизбежно вступают во взаимодействие друг с другом, образовывая комплексные системы. Эти системы подчинены правилам - правилам поведения отдельных составляющих элементов - неким шаблонам поведения. А для синергетики интерес представляют не отдельные эти правила, а общие законы, по которым формируются структуры, состоящие из сложных процессов.
Главной заслугой синергетики считается открытие ею процессов самоорганизации и кооперации в природе - это шаг вперед в познании мира. Вместе с тем анализ показывает, что самоорганизация - это не кооперация под воздействием случайных факторов в состоянии неустойчивости, а процессы, причины которых заложены в природе. Эти процессы происходят на всех уровнях иерархии Вселенной и обеспечиваются всеми действующими в ней законами и силами. Самоорганизация проявляется на уровне живой клетки, тканей, образованных из клеток, на уровне органов, систем органов, выполняющих определенные функции организма, и, наконец, всего организма в целом. Не только одного организма, но и всей популяции в целом.
В качестве примера можно привести регулирование численности популяции у животных. При чрезмерном увеличении популяции наблюдается ослабление особей из-за нехватки пищи, появления болезней, хищников и других факторов, которые регулируют численность, доводя ее до оптимального размера. То же можно сказать и в отношении к человечеству. В последние десятилетия получили распространение гомосексуализм и наркомания, которые ведут к вырождению человечества. И тут же появляется СПИД, жертвами которого становятся в первую очередь эти люди. Рассмотренные выше примеры показывают, что хотя такие регулирующие факторы, как, например, вирусы новых болезней и др., проявляются материально, но сами они являются проявлениями Высших законов, которые нельзя вывести из законов существования материи.
В неживой природе мы также видим принципы самоорганизации на всех уровнях. На микроуровнях это проявляется в законах, по которым существуют элементарные частицы, атомы и молекулы, по которым они взаимодействуют и создают сложные структуры материи. Химические реакции - это процессы самоорганизации на атомно-молекулярном уровне. На макроуровнях самоорганизация проявляется в законах возникновения, развития и взаимодействия планет, звезд, галактик и других космических образований. И, наконец, самый высший уровень самоорганизации - это совокупность всех законов и сил, обеспечивающих эволюцию. Наука призвана не просто собирать фактический материал, но и стремиться создать целостную картину мира, целостное мировоззрение. Химик Дмитрий Иванович Менделеев (1834-1907) впервые упорядочил многообразие существующих в природе веществ, создав периодическую систему химических элементов. В современной атомной физике периодическая система Менделеева может считаться воплощением основного закона строения атомов. В биологии, в соответствии с открытыми им законами, происходит передача от поколения к поколению наследственных признаков при скрещивании, к примеру, растений с различной окраской цветков или при выведении новой породы собак. Уже в наше время были обнаружены химические механизмы такой передачи, происходящей благодаря гигантским молекулам дезоксирибонуклеиновой кислоты (ДНК).
Таким образом, человечество неустанно ищет и находит все новые и новые законы, единые для всех происходящих в природе процессов. В то время как явления самого разнообразного свойства усилиями ученых сводятся, наконец, воедино как проявления неких законов природы, исследователи обнаруживают совершенно новые факты, касающиеся еще более сложных явлений, и порой наука оказывается близка к полному погребению под лавиной добываемых учеными сведений. Отсюда - бесконечная гонка, борьба между потоком новых фактов и стремлением ученых эти факты систематизировать, понять и соотнести с действием единых законов мироздания.
Самоорганизация - это основной закон природы, это - механизм управления процессами, происходящими на всех уровнях, направленный на возникновение и поддержание процессов, связанных с образованием новых более высокоорганизованных форм и структур, предусмотренных эволюцией, и подавлением процессов, которые находятся в стороне от эволюции, противодействуют ей. Все эти силы и законы, механизмы управления, заложенные в природе, не имеют смысла, если изначально развитие всей Вселенной случайно, не имеет Высшей Цели и обеспечивающей ее Программы.
До появления синергетики в мире господствовал второй закон термодинамики. В соответствии с этим законом эволюционирование природы сопровождалось ростом отклонения реального процесса от идеального, выравниванием всех точек возрастания и потенциалов. Мир стремился к состоянию однородного хаоса, который был назван "тепловой смертью". Из уныния от такой перспективы человечество вывела синергетика - наука о самоорганизации и кооперации в природных явлениях. Синергетика как научное направление исследований является востребованной обществом. Значительное количество результатов исследований в разных областях знания соотносится исследователями с синергетикой. Ее контекст дает возможность плодотворно взаимодействовать ученым разных специализаций на языке системного осмысления и поиска новых решений.
Любая наука, с точки зрения синергетики, прежде всего это открытая система, в которую постоянно проникают всевозможные новые идеи. Открытия могут быть до такой степени радикальными, т.е. ведущими к коренным переменам, что потрясают сами основы существовавшей прежде науки и изменяют картину мира, созданную представителями этой самой науки. Ученые пребывают в сомнениях. В синергетическом смысле при этом возникают все более сильные флуктуации, проявляющие себя в форме новых идей или новых экспериментов, которые приобретают сторонников и тем самым набирают все большую силу; затем многие из этих идей опровергаются и отвергаются, их сменяют другие идеи, и так продолжается до тех пор, пока не появится идея, которая окажется в состоянии объяснить многие до сих пор необъяснимые явления, а потому будет окончательно принята учеными. Эта наука, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы, еще далека от завершения и единой общепринятой терминологии (в том числе и единого названия всей теории) пока не существует.
С точки зрения синергетики, наша Вселенная это система, находящаяся вдали от точки равновесия. Вместе с тем, все в ней стремится к равновесию, к устойчивости, а гармония сил сохранения, разрушения и созидания обеспечивают жизнь и эволюцию.
Список использованной литературы
синергетический парадигма природа
1. «Основы современного естествознания». - Методическое пособие под общей редакцией А.И. Лойко.
2. Хакен Г. Синергетика, - М., Мир.
Размещено на Allbest.ru
...Подобные документы
Принципы осмысления действительности. Принципы нелинейной термодинамики неравновесных процессов в синергетике. Синергетика как научная теория о самоорганизации в природе и обществе как открытых системах. Катастрофы и бифуркации синергетической системы.
реферат [32,4 K], добавлен 24.06.2010Характеристики самоорганизующихся систем. Открытость. Нелинейность. Диссипативность. Системная модель мира. Самоорганизация и эволюция сложных систем, далеких от равновесия. Основы теории самоорганизации систем. Синергетическая картина мира.
реферат [53,9 K], добавлен 18.11.2007Синергетика – наука о процессах развития и самоорганизации сложных систем произвольной природы. Характеристика структурных принципов бытия и становления (гомеостатичности, иерархичности, незамкнутости, неустойчивости, эмерджентности, наблюдаемости).
реферат [18,8 K], добавлен 14.03.2011Исследование понятия синергетики, нового направления в познании человеком природы, общества и самого себя, смысла своего существования. Анализ синергетической теории управления, принципов нелинейного мышления, синергетических подходов к синтезу систем.
реферат [34,9 K], добавлен 19.12.2012Синергетика как новое направление междисциплинарных исследований и новое миропонимание. Основные этапы развития синергетики: термины, понятия и категориальный аппарат, уровни самоорганизации материи, концепция развития. Диалектика эволюции живой природы.
курсовая работа [42,6 K], добавлен 09.06.2010Исторические этапы и структура процессов эволюции. Суть теории бифуркации в синергетике. Кризис современной цивилизации и пути выхода. Синергетика как составляющая научной картины мира. Идея самоорганизации системы. Эволюционно-синергетическая концепция.
презентация [23,6 M], добавлен 22.11.2011Раскрытие понятия научной картины мира как системы представлений человека о свойствах и закономерностях окружающей действительности. Анализ синергетической парадигмы как системы научных исследований, изучающей природные процессы на основе самоорганизации.
контрольная работа [31,4 K], добавлен 04.05.2011Исследование теории самоорганизации. Основной критерий рaзвития сaмооргaнизующихся систем. Неравновесные процессы и открытые системы. Самоорганизация диссипативных структур. Химическая реакция Белоусова-Жаботинского. Самоорганизация в физических явлениях.
реферат [636,7 K], добавлен 30.09.2010Основные свойства эволюционных процессов и их отличие от динамических и статистических процессов и явлений в природе. Современные подходы к анализу сложных самоорганизующихся систем. Особенности синергетики. Экономика с точки зрения синергетики.
курсовая работа [23,1 K], добавлен 01.10.2010Использование принципов симметрии в математике и физике, химии и биологии, технике и архитектуре, живописи и скульптуре, и даже в поэзии и музыке. Значение симметрии в познании природы. Симметрия на уроках геометрии. Внутренняя симметрия Вселенной.
презентация [1,8 M], добавлен 07.01.2011Мир живого как система систем. Открытость - свойство реальных систем. Открытость. Неравновесность. Нелинейность. Особенности описания сложных систем. Мощное научное направление в современном естествознании - синергетика.
реферат [24,1 K], добавлен 28.09.2006Самоорганизующиеся системы как предмет изучения синергетики. Подходы к изучению синергетики, ее диалогичность. Модели самоорганизации в науках о человеке и обществе. Сверхбыстрое развитие процессов в сложных системах. Коэволюция, роль хаоса в эволюции.
курсовая работа [47,0 K], добавлен 30.01.2010Согласно центральной догме молекулярной биологии, основная программа химических процессов, происходящих в любом организме, записана в последовательности пар оснований молекулы ДНК. Генетический аппарат человека; генетическая уникальность индивида.
реферат [31,2 K], добавлен 31.10.2008Особенность синергетики как науки. Синергетика Ч. Шеррингтона, синергия Улана и синергетический подход И. Забуского. Объекты исследования синергетики. Структура и хаос. Теория диссипативных структур и автоволновых процессов. Поиски универсальной модели.
контрольная работа [31,5 K], добавлен 16.04.2011Развитие неживой и живой природы. Структура и ее роль в организации живых систем. Современный взгляд на структурную организацию материи. Проблемы самоорганизации, изучаемые в синергетике, законы построения организации и возникновения упорядоченности.
контрольная работа [38,2 K], добавлен 31.01.2010Кибернетика и ее принципы. Самоорганизующиеся системы. Связь кибернетики с процессом самоорганизации. Синергетика как новое направление междисциплинарных исследований. Отличие синергетики от кибернетики. Структурные компоненты процесса самоорганизации.
реферат [58,1 K], добавлен 09.09.2008Формирование эволюционной биологии. Использование эволюционной парадигмы в биологии в качестве методической основы под влиянием теории Ч. Дарвина. Развитие эволюционных концепций в последарвиновский период. Создание синтетической теории эволюции.
контрольная работа [64,7 K], добавлен 20.08.2015Современное понятие "открытая система". Проблема анализа целостных свойств открытых систем в зависимости от времени. Общность процессов типа 1/f (процессов типа фликкер-шума) для всех систем. Старое и новое математическое описание процессов типа 1/f.
курсовая работа [344,8 K], добавлен 23.11.2011Ритмичность всех процессов живых организмов и надорганизменнных систем, подчинение периодическим ритмам, отражающим реакции биосистем на ритмы природы и всей Вселенной. Синхронизация биохимических процессов в организме, классификация и природа биоритмов.
реферат [138,6 K], добавлен 23.05.2010Исследование строения, деятельности функциональных систем организма, особенности и принципы их организации. Теории изучения закономерностей развития организма ребенка и особенностей функционирования его физиологических систем на разных этапах онтогенеза.
контрольная работа [22,9 K], добавлен 08.08.2009