Применение генетики в животноводстве
Различия разных видов организмов по кариотипу. Совместное наследование генов, локализованных в одной хромосоме в генетике. Использование групп крови и биохимического полиморфизма в практике животноводства. Генетическая устойчивость к гельминтозам.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 01.05.2015 |
Размер файла | 50,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ
ФГБОУ ВПО МГАВМиБ
ФАКУЛЬТЕТ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ
КАФЕДРА ГЕНЕТИКИ И РАЗВЕДЕНИЯ ЖИВОТНЫХ ИМЕНИ В.Ф. КРАСОТЫ
Контрольная работа
По дисциплине: «Генетика»
Москва 2015
Содержание
генетика кариотип хромосома животноводство
1. Понятие о кариотипе
2. Сцепленное наследование
3. Полное и не полное сцепление генов
4. Использование групп крови и биохимического полиморфизма в практике животноводства
5. Генетическая устойчивость к гельминтозам
Список использованной литературы
1. Понятие о кариотипе
Набор хромосом, надодящихся в ядре соматической клетки, называется кариотипом. Число и морфология хромосом относятся к видовым признакам. Различные виды организмов различаются по кариотипу, в то время как в пределах одного вида таких различий не наблюдается, и аномалии кариотипа чаще всего ассоциированы с тяжелыми патологическими состояниями.
Кариотип -- совокупность признаков (число, размеры, форма и т.д.) полного набора хромосом, присущий клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы). Он включает все особенности хромосомного комплекса: число хромосом, их форму, наличие видимых под световым микроскопом деталей строения отдельных хромосом. Число хромосом в кариотипе всегда четное. Это объясняется тем, что в соматических клетках находятся две одинаковые по форме и размеру хромосомы - одна из отцовского организма, вторая - от материнского. Число хромосом у человека- 46.
В соматических клетках обычно находятся две половые хромосомы. В женском кариотипе половые хромосомы представлены крупными парными (гомологичными) хромосомами (ХХ). В мужском кариотипе пара половых хромосом включает одну Х-хромосому и небольшую палочковидную У-хромосому. Таким образом, хромосомный набор человека содержит 22 пары аутосом, половых хромосом, по которой различаются оба пола.
При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. Все яйцеклетки имеют по одной Х-хромосоме, а сперматозоиды будут двух сортов: половина при сперматогенезе получит У-хромосому, другая половина - Х-хромосому. Пол, который образует гаметы, одинаковые по половой хромосоме, называют гомогаметным, а пол, образующий разные гаметы, - гетерогаметным. Численное соотношение самцов и самок у большинства раздельнополых организмов близко к единице, что является прямым результатом хромосомного механизма определения пола. Гомогаметный пол продуцирует гаметы одного типа, гетерогаметный - двух, причем в равном количестве. Таким образом, пол большинства организмов определяется в момент оплодотворения и зависит от хромосомного набора зиготы.
У млекопитающих (в том числе человека), червей, ракообразных, большинства насекомых (в том числе дрозофилы), большинства земноводных, некоторых рыб гомогаметным является женский пол, гетерогаметным - мужской.
У птиц, пресмыкающихся, некоторых земноводных и рыб, части насекомых (бабочка и ручейники) гетерогаметным является женский пол. В этом случае для обозначения половых хромосом используют другие символы. Например, у кур, имеющих в соматических клетках 78 хромосом, хромосомная формула мужского пола 76А+ ZZ, женского - 76А+ ZW.
У некоторых насекомых (например, водяного клопа, кузнечика и др.) У-хромосома вообще отсутствует. В этих случаях у самцов имеется всего одна Х-хромосома. В результате половина сперматозоидов имеет половую хромосому, а другая - ее лишена.
У пчел и муравьев нет половых хромосом: самки диплоидны, самцы гаплоидны. Самки развиваются из оплодотворенных яйцеклеток, трутни - из неоплодотворенных.
2. Сцепленное наследование
Под сцеплением генов генетики понимают совместное наследование генов, локализованых в одной хромосоме.
Г. Мендель проследил наследование семи пар признаков у гороха. Многие исследователи, повторяя опыты Менделя, подтвердили открытые им законы. Было признано, что эти законы носят всеобщий характер. Однако в 1906 г. английские генетики В.Бэтсон и Р.Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве. Потомки всегда повторяли признаки родительских форм. Стало ясно, что не для всех генов характерно независимое распределение в потомстве и свободное комбинирование.
Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков.
Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался выдающийся американский генетик Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила. Мушка каждые две недели при температуре 25°С дает многочисленное потомство. Самец и самка внешне хорошо различимы -- у самца брюшко меньше и темнее.
Кроме того, они имеют всего 8 хромосом в диплоидном наборе и отличия по многочисленным признакам, могут размножаться в пробирках на дешевой питательной среде.
Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибридов, имеющих серое тело и нормальные крыльяи (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев -- над геном недоразвитых). При проведении анализирующего скрещивания самки F1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% серые длиннокрылые и 41,5% черные с зачаточными крыльями) и лишь незначительная часть мушек имела перекомбинированные признаки (8,5% черные длиннокрылые и 8,5% серые с зачаточными крыльями).
Анализируя полученные результаты, Морган пришел к выводу, что гены, обусловливающие развитие серой окраски тела и длинных крыльев, локализованы в одной хромосоме, а гены, обусловливающие развитие черной окраски тела и зачаточных крыльев, -- в другой. Явление совместного наследования признаков Морган назвал сцеплением. Материальной основой сцепления генов является хромосома. Гены, локализованные в одной хромосоме, наследуются совместно и образуют одну группу сцепления. Поскольку гомологичные хромосомы имеют одинаковый набор генов, количество групп сцепления равно гаплоидному набору хромосом (например, у человека 46 хромосом, или 23 пары гомологичных хромосом, соответственно количество групп сцепления в соматических клетках человека -- 23). Явление совместного наследования генов, локализованных в одной хромосоме, называют сцепленным наследованием. Сцепленное наследование генов, локализованных в одной хромосоме, называют законом Моргана.
Вернемся к нашему примеру скрещивания мушек дрозофил. Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов -- АВ и ав, а отцовский -- один тип -- ав. Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и аавв. Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Аавв и ааВв. Для объяснения этого факта необходимо вспомнить механизм образования половых клеток -- мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Ав и аВ, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но поскольку кроссинговер происходит не во всех гаметах, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.
В зависимости от особенностей образования гамет, различают:
-некроссоверные гаметы -- гаметы с хромосомами, образованными без кроссинговера;
-кроссоверные гаметы -- гаметы с хромосомами, претерпевшими кросинговер.
Соответственно этому различают:
-рекомбинантные (кроссоверные) особи -- особи, возникшие с участием кроссоверных гамет;
-нерекомбинантные (некроссоверные) особи -- особи, возникшие без участия кроссоверных гамет.
Результатом исследований Т.Моргана стало создание им хромосомной теории наследственности:
1) гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов, причем набор генов каждой из негомологичных хромосом уникален;
2) каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
3) гены расположены в хромосомах в определенной линейной последовательности;
4) гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
5) сцепление генов может нарушаться в процессе кроссинговера; это приводит к образованию рекомбинатных хромосом; частота кроссинговера:
- является функцией расстояния между генами: чем больше расстояние, тем больше величина кроссинговера (прямая зависимость);
-зависит от силы сцепления между генами: чем сильнее сцеплены гены, тем меньше величина кроссинговера (обратная зависимость);
6) каждый вид имеет характерный только для него набор хромосом.
Наследование признаков, сцепленных с полом. Генетические исследования установили, что половые хромосомы отвечают не только за определение пола организма -- они, как и аутосомы, содержат гены, контролирующие развитие определенных признаков.
Наследование признаков, гены которых локализованы в Х- или Y-хромосомах, называют наследованием, сцепленным с полом.
Изучением наследования генов, локализованных в половых хромосомах, занимался Т.Морган.
У дрозофилы красный цвет глаз доминирует над белым. Проводя реципрокное скрещивание, Т.Морган получил весьма интересные результаты. При скрещивании красноглазых самок с белоглазыми самцами, в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F1, то во втором поколении все самки оказываются красноглазыми, а у самцов происходит расщепление -- 50% белоглазых и 50% красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F2 половина самок и самцов -- красноглазые, половина -- белоглазые.
Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т.Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х-хромосоме, а Y-хромосома таких генов не содержит.
Таким образом, благодаря проведенным скрещиваниям, был сделан очень важный вывод: ген цвета глаз сцеплен с полом, то есть находится в Х-хромосоме.
У человека мужчина получает Х-хромосому от матери. Половые хромосомы человека имеют небольшие гомологичные участки, несущие одинаковые гены (например, ген общей цветовой слепоты), это участки конъюгации. Но большинство генов, сцепленных с Х-хромосомой, отсутствуют в У-хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных.
Х-хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм). Эти аномалии чаще встречаются у мужчин (так как они гетерогаметны), хотя носителем этих аномалий чаще бывает женщина.
У большинства организмов генетически активна только Х-хромосома, в то время как Y-хромосома практически инертна, так как не содержит генов, определяющих признаков организма. У человека лишь некоторые гены, не являющиеся жизненно важными, локализованы в Y-хромосоме (например, гипертрихоз -- повышенная волосатость ушной раковины). Гены, локализованные в Y-хромосоме, наследуются особым образом -- только от отца к сыну.
Полное сцепление с полом наблюдается лишь в том случае, если Y-хромосома генетически инертна. Если же в Y-хромосоме имеются гены, аллельные генам Х-хромосомы, характер наследования признаков иной. Например, если мать имеет рецессивные гены, а отец доминантные, то все потомки первого поколения будут гетерозиготны с доминантным проявлением признака. В следующем поколении получится обычное расщепление 3:1, причем с рецессивными признаками будут только девочки. Такой тип наследования называют частично сцепленным с полом. Так наследуются некоторые признаки человека (общая цветовая слепота, кожный рак)
3. Полное и не полное сцепление генов
Гены в хромосомах имеют разную силу сцепления. Сцепление генов может быть:
- полным, если между генами, относящимися к одной группе сцепления, рекомбинация невозможна (у самцов дрозофилы полное сцепление генов, хотя у подавляющего большинства других видов кроссинговер протекает сходно как у самцов, так и у самок);
-неполным, если между генами, относящимися к одной группе сцепления, возможна рекомбинация.
Вероятность возникновения перекреста между генами зависит от их расположения в хромосоме: чем дальше друг от друга расположены гены, тем выше вероятность перекреста между ними. За единицу расстояния между генами, находящимися в одной хромосоме, принят 1 % кроссинговера. Его величина зависит от силы сцепления между генами и соответствует проценту рекомбинантных особей от общего числа потомков, полученных при скрещивании. Например, в рассмотренном выше анализирующем скрещивании получено 17% особей с перекомбинированными признаками. Следовательно, расстояние между генами серой окраски тела и длинных крыльев (а также черной окраски тела и зачаточных крыльев) равно 17%. В честь Т. Моргана единица расстояния между генами названа морганидой.
4. Использование групп крови и биохимического полиморфизма в практике животноводства
Полиморфизм - одновременное присутствие в популяции двух и более генетических форм одного признака в таком соотношении, что их нельзя отнести к повторным мутациям. Термин биохимический (генетический) полиморфизм применяют в тех случаях, когда редкий аллель встречается с частотой 0,01 или больше. В течение эволюционного процесса в результате мутаций происходят изменения генов, поэтому в популяции они встречаются не в одной, а в двух и более формах. Ген, представленный более чем одним аллелем, называют полиморфным геном. Доля полиморфных локусов точно не известна, но предполагают, что в популяциях животных их доля составляет 20 - 50%.
У сельскохозяйственных животных изучено более 150 полиморфных локусов белков крови, молока, слюны и других веществ организма. Аллели, например, гемоглобинового локуса, обозначают следующим образом: НЬА, НЬВ, НЬС и т.д., а генотипы - НЬАНЬА, НЬВНЬВ или HbA/A, HbB/B. В связи с кодоминантным наследованием большинства биохимических полиморфных систем фенотип животного соответствует его генотипу.
Цели использования групп крови и полиморфных систем белков в животноводстве:
1. Контроль достоверности происхождения животных. Одним из основных направлений применения групп крови и полиморфных систем белков является контроль происхождения животных. По данным обследований племенных стад, установлено, что ошибки в данных о происхождении животных в некоторых из них достигают 20%. Это может быть следствием не только недостатков в работе техников по искусственному осеменению (потери номеpов, неправильного их чтения, нарушения учета спермадоз), но и результатом осеменений животных спермой разных производителей при повторных охотах после плодотворного осеменения. Поэтому в соответствии с приказом Министерства сельского хозяйства в нашей стране на племпредприятиях организованны иммуногенетические лаборатории, основная задача которых - подтверждение достоверности происхождения ценных племенных животных. Контроль достоверности происхождения животных возможен благодаря: кодоминантному наследованию антигенных факторов, неизменности их в течение онтогенеза, большому числу комбинаций групп крови и полиморфных систем, которые в пределах вида практически не бывают одинаковыми у двух особей. Для подтверждения данных о происхождении нужно взять кровь у трех животных: мать, отец и потомок и определить группы крови. Происхождение потомка от предполагаемых родителей подтверждается, если у него выявлены антигены матери и отца. Если же у него обнаружены антигены, которых нет у родителей, родители для потомка указаны неправильно. Рассмотрим это на примере. мать ВAD/ZOE Hb A/A отец BZH/K Hb A/A потомок 1 BAD/K Hb A/A происхождение подтверждается потомок 2 BZOE/M Hb A/B происхождение не подтверждается.
2. Иммунологический анализ близнецов. С помощью групп крови можно определить, являются ли близнецы разнояйцовыми или однояйцовыми. Однояйцовые или монозиготные близнецы всегда рождаются одного пола и имеют одинаковые группы крови. Разнополые двойни всегда дизиготны и с разными группами крови. В среднем у крупного рогатого скота рождается около 2 - 3% двоен, из них 10% являются однояйцовыми. У 90% двоен крупного рогатого скота возникает анастомоз (срастание) кровеносных сосудов и, как следствие этого, у дизиготных двоен наблюдается химеризм (смесь двух типов эритроцитов). Если двойни рождаются разнополыми, то обычно телки оказываются бесплодными и их приходится выбраковывать из воспроизводства. Это явление получило название фримартинизма.
3. Связь групп крови с продуктивностью. Прогнозирование продуктивных качеств животных является актуальной задачей. Селекционеры постоянно ищут надежные маркеры (показатели), которые имели бы связь с продуктивностью. Для этих целей используются экстерьерные показатели, состав крови и тканей. Однако надежность этих маркеров не отвечает точным прогнозам. Многими учеными проведены исследования по изучению связи групп крови с продуктивными качествами животных. Теоретической основой такой связи может быть плейотропное действие аллелей групп крови на продуктивность за счет сцепления генов. Так, у шведского черно-пестрого скота установлена связь аллеля BYD с содержанием жира в молоке. У животных голштинской породы обнаружена положительная связь антигенов G, Y, E и J с жирномолочностью. З. Вагонис показал, что в одном стаде коровы с антигеном Е превосходили по удою сверстниц, а в другом стаде, наоборот, имели более низкий удой. Повышение продуктивности может быть связано с гетерозиготностью по группам крови. Так, увеличение гетерозиготности по локусу В у кур привело к повышению вылупляемости цыплят, интенсивности роста и яйценоскости. В.Н. Тихонов установил, что гетерозиготность по некоторым антигенам групп крови ведет к гетерозису. В его опытах при спаривании гомозиготных особей типа Gbb x Gbb в среднем от свиноматки получено 10,67 поросят, а при спаривании животных разных генотипов Gaa xGbb - 12,34 поросенка.
Сложная наследственная обусловленность количественных признаков и сильное влияние на них различных факторов среды пока не позволяют дать надежных рекомендаций по использованию групп крови в качестве генетических маркеров при селекции животных.
5. Генетическая устойчивость к гельминтозам
Подчиняясь общефизиологическим и общеиммунологическим закономерностям, иммунитет при гельминтозах зависит от хозяина, паразитных отношений и экологических особенностей возбудителей.
При гельминтозах он делится на первичный и приобретенный, или вторичный.
Видовая устойчивость -- это хозяинная специфичность, то есть чем она выраженнее, тем в данной хозяин-паразитной системе ярче проявляется видовой иммунитет, не имеющий абсолютного значения. У представителей определенного вида животных гельминты могут не развиваться, но проделывать более ранние фазы развития. Так, аскариды не развиваются в организме кролика или морской свинки до половозрелой стадии, однако они мигрируют в легкие. В других случаях, гельминт не только не может развиваться в данном хозяине, но и внедриться через кожу и фиксироваться к слизистой пищеварительного тракта. Например, анкилостомы не развиваются в организме хомяков, но внедряются в него и совершают миграцию. На различную устойчивость животных разных пород к гельминтам впервые обратил внимание Ackert (1933). По его данным, в организме кур породы айленд, белые плимутроки и беррел-плимутроки аскаридий было меньше и меньших размеров, чем у белых леггорнов и минорок. П. Т. Твердохлебов (1966) и П. А. Величкин (1973) пришли к заключению, что яичные породы кур более восприимчивы к аскаридиозу, чем мясные. Овцы породы шевиот устойчивее к заражению нематодами и их патогенному воздействию, чем такие породы, как бордер-лейсистер.
У овец породы ромни-марш, содержащих гемоглобин А, приживается меньше гемонхов как в полевых, так и в экспериментальных условиях. Связано это с более высокой частотой встречаемости и эффектом самоосвобождения гельминтов у инвазированных овец.
Овцы породы шотландская черномордая (гемоглобин А) были более устойчивы к заражению нематодами, чем породы финский дорсет (гемоглобин В). Эти различия ярче выражены при среднем уровне инвазии (350 личинок на 1 кг массы). После слабого инвазирования у овец породы шотландская черномордая оказалось меньше гельминтов, чем у животных породы финский дорсет с одним и тем же гемоглобином. Желудочно-кишечные геморрагии были наиболее ярко выражены у овец породы финский дорсет с гемоглобином В. Способность овец противостоять заражению гемонхами выражалась не только через механизмы, регулирующие развитие и созревание популяций гельминта, но также через развитие реакций гиперчувствительности немедленного типа, которые приводят к выведению из организма гельминтов. Самоосвобождение было скорее признаком породы, чем признаком типа гемоглобина (Altaif, 1976).
При наличии четко установленных различий восприимчивости овец к заражению нематодами возникает вопрос о возможности направленного отбора для получения потомства с повышенной устойчивостью к гельминтам (Gregory, 1937). Породные различия в устойчивости к заражению нематодами имеются и у других видов животных. Вариации в уровнях инвазии, вызванной Trichostrongylus sp у чистопородных и кроссбредных коз, отмечены Isakovfch, Саmacaro (1973). Установлено, что у поросят породы гепшир поддерживается более высокий уровень выделения числа яиц стронгилоид, чем у поросят породы дюрок; кроссбредные поросята занимали промежуточное положение.
Yamashito et al. (1958), Z. Allkhan (1974) изучали способность мышей 10 линий к заражению Е. multilocularis. Восприимчивость к заражению была подтверждена у мышей трех линий. У мышей линии С-57 отмечен наиболее быстрый рост цист, более слабая реакция образования антител в ответ на заражение. Сыворотка этих животных имела более низкий титр при постановке реакции непрямой гемагглютинации и меньше полос преципитации при постановке проб по Оухтерлони. Инвазии, вызываемые личинками Cysticercus fasciolaris, изучали у мышей разных линий многие исследователи (Dorf et al, 1974; Oliver, 1962; Orihara, 1962). Из семи испытанных линий мышей нормальное развитие стройилоцерков наблюдали только у мышей двух линий (А и АКК). У мышей остальных линий отмечали гибель и распад личинок гельминта в тканях.
Stoll (1962) указывает, что долгое время не изучали генетику хозяина при его заражении нематодами. По-видимому, целесообразнее создавать линии животных более устойчивых к нематодам, чем лечить антгельминтиками.
Список использованной литературы
1. Иванова В.И., Генетика: учебник для вузов. М.: ИКЦ «Академкнига», 2006. 638 с.
2. Пехов А.П. Биология: медицинская биология,генетика и паразитология: учебник для вузов. М.: ГЭОТАР-Медиа, 2011. 656 с.
3. Сазанов А.А., Генетика: учебное пособие. СПб. 2011. 264 с.
4. Шевченко В.А., Топарнина Н.А., Стволинская Н.С., Генетика человека., М.: ВЛАДОС, 2002. 240 с.
5. Козлов Ю.Н., Костомахин Н.М., Генетика и селекция сельскохозяйственных животных, М.: КолосС, 2009. 264 с.
Размещено на Allbest.ru
...Подобные документы
Рассмотрение разных наследственных форм мухи дрозофилы. Выведение Морганом закона о сцепленном наследовании генов, находящихся в одной хромосоме. Хромосомная теория наследственности. Изучение случаев нарушения сцепления генов в процессе кроссинговера.
презентация [1,9 M], добавлен 11.04.2013Понятие "ген", развитие представлений о нем, раскрытие фундаментального понятия современной генетики. Структура генов и генетическая информация о первичной структуре белка. Структурные гены, характеризующиеся уникальными последовательностями нуклеотидов.
реферат [167,3 K], добавлен 29.09.2009Менделевская генетика. Гибридологический метод. Моногибридное и поли- схрещивание. Типы межаллельных взаимодействий. Наследование групп крови. Взаимодействие генов. Неменделевская генетика. Хромосомные аберрации. Наследование сцепленное с полом.
курсовая работа [1,9 M], добавлен 17.05.2004Этапы развития генетики, ее связь с другими науками. Вклад отечественных учёных в ее развитие. Строение ядра и хромосом. Свойство хромосом и понятие о кариотипе. Особенности кариотипов разных видов с/х животных. Митоз, его биологическое значение.
шпаргалка [98,7 K], добавлен 08.05.2009Обзор процесса циркуляции крови по организму, уничтожения болезнетворных организмов. Изучение состава и форменных элементов крови. Описания классификации групп крови, зависимости группы ребенка от группы родителей, лечения заболеваний переливание крови.
презентация [1,9 M], добавлен 23.09.2011Инсерционный мутагенез как метод прямой и обратной генетики. Типы инсерционных мутагенов и их особенности. Использование инсерционного мутагенеза для инактивации генов на основе явления РНК-интерференции. Выделение генов, маркированных инсерцией.
контрольная работа [1,3 M], добавлен 25.03.2016Особенности и этапы развития популяционной генетики животных. Характер наследования сцепленных с полом генов окраски меха у кошек. Механизмы наследования аутосомных генов влияющих на длину и цветовую вариацию меха у кошек. Геногеография данных животных.
курсовая работа [37,4 K], добавлен 11.09.2012Сущность генеалогического метода и его применение в генетике человека. Особенности наследования различных признаков. Гипотеза и ход исследования родословной. Генетические закономерности наследования признаков человека и сравнение результатов с гипотезой.
практическая работа [90,5 K], добавлен 20.05.2009География распределения групп крови и отрицательного резус-фактора. Изучение групп крови народов Земли. Исследование популяционного родства. Качества характера и особенности человека по группе его крови. Статьи о группах крови человека и их появлении.
презентация [371,1 K], добавлен 13.12.2016Явление полиморфизма в генетике. Семейство глутатион-S-трансфераз. Полиморфные формы белков семейства ГСТ и их сочетанное действие. Экстрагирование ДНК из соскоба с внутренней стороны щеки / цельной крови, фиксированных на Whatman FTA Classic Card.
курсовая работа [923,9 K], добавлен 18.12.2013Эволюция представлений о гене. Основные методы идентификации генов растений. Позиционное клонирование (выделение) генов, маркированных мутациями. Выделение генов, маркированных делециями методом геномного вычитания и с помощью метода Delet-a-gen.
контрольная работа [937,4 K], добавлен 25.03.2016Адаптация животных организмов к загрязнению среды обитания. Мутационный процесс и молекулярные основы эволюции. Характеристика водоемов и исследование межпопуляционного полиморфизма пресноводных видов моллюсков, обитающих в разных экологических условиях.
дипломная работа [890,0 K], добавлен 31.01.2018Методы изучения генетики человека: генеалогический, популяционно-статистический, генодемографический. Открытие групп крови и направления исследований в данной сфере. Полиморфизм гематологических признаков. Группы крови по системе АВО и инфекционные.
курсовая работа [345,8 K], добавлен 06.02.2014Дифференциальная экспрессия генов и ее значение в жизнедеятельности организмов. Особенности регуляции активности генов у эукариот и их характеристики. Индуцибельные и репрессибельные опероны. Уровни и механизмы регуляции экспрессии генов у прокариот.
лекция [2,8 M], добавлен 31.10.2016Основы и техника клонирования ДНК. Этапы генной инженерии бактерий. Развитие генетической инженерии растений. Генетическая трансформация и улучшение растений с помощью агробактерий, источники генов. Безопасность генетически модифицированных растений.
реферат [26,3 K], добавлен 11.11.2010Хромосомная теория наследственности Томаса Моргана. Установление закономерностей расположения генов в хромосомах. Понятие кроссинговера. Аутосомы и половые хромосомы организма. Гемофилия и дальтонизм - наследование заболеваний, сцепленных с полом.
презентация [1,1 M], добавлен 12.12.2010Гаметогенез и развитие растений. Основы генетики и селекции. Хромосомная теория наследственности. Моногибридное, дигибридное и анализирующее скрещивание. Сцепленное наследование признаков, генетика пола. Наследование признаков, сцепленных с полом.
реферат [24,6 K], добавлен 06.07.2010Природа и функции белков, синтез которых стимулируется гипотермией. Влияние генов, локализованных в определенных хромосомах ядра, на активность митохондрий при гипотермии. Белки, препятствующие льдообразованию, их использование в сельском хозяйстве.
реферат [18,7 K], добавлен 11.08.2009Этапы получения трансгенных организмов. Агробактериальная трансформация. Схема создания генетически модифицированного организма. Пример селективного маркера растений. Процесс подавления экспрессии генов (сайленсинг). Направления генной инженерии растений.
презентация [6,2 M], добавлен 24.06.2013Изучение регуляции экспрессии генов как одна из актуальных проблем современной генетики. Строение генома Drosophila melanogaster. Характеристика перекрывающихся генов leg-arista-wing complex и TBP-related factor 2. Подбор рациональной системы экспрессии.
дипломная работа [2,0 M], добавлен 02.02.2018