Пищевая биотехнология продуктов из сырья растительного происхождения

Сущность метода культивирования клеток и тканей растений и его практическое применение. Выделение целевого продукта из глубинной и поверхностной культуры в технологии ферментных препаратов. Биотехнологические аспекты переработки растительного сырья.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 14.05.2015
Размер файла 39,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Культивирование клеток и тканей растений. Сущность метода и его практическое применение

2. Выделение целевого продукта из глубинной и поверхностной культуры в технологии ферментных препаратов

Заключение

Библиография

Введение

Растения являются незаменимым источником получения очень многих практически важных веществ. При этом следует подчеркнуть, что промышленное получение некоторых соединений, например, сердечных гликозидов, флавоноидов, кумаринов, эфирных масел достигается только путем выделения их из растительного сырья. Между тем возможности получения так называемых " метаболитов интереса" в достаточном количестве зачастую ограничены. Это связано с сокращением ресурсов некоторых ценных дикорастущих растений, принадлежностью многих лекарственных растений к группам эндемов, редким и исчезающим видам. В связи с этим большой интерес в качестве источника биологически активных веществ представляют культуры растительных клеток.

Биотехнология растений основана на методах культуры клеток и тканей. Культурой клеток, тканей и органов растений называется выращивание отдельных клеток, а также тканей и органов на искусственной питательной среде в асептических условиях. Этот метод лежит в основе изучения биологии клетки, существующей вне организма.

Культура клеток высших растений может рассматриваться с трех точек зрения - как уникальная биологическая система, как модель в физиологии, биохимии и генетике растений и как инструмент для разнообразных исследований и биотехнологии.

Популяциям растительных клеток, выращиваемым в искусственных условиях, присущи специфические особенности, благодаря которым культура клеток и тканей растений представляет новую экспериментально созданную биологическую систему. Отличия культивируемых клеток от клеток организма, часто специально усиленные путем создания биохимических мутантов, гибридных или трансформированных клеток, помогают глубже проникнуть в механизмы процессов, происходящих в растении.

В качестве биологической модели клетки in vitro представляют интерес для многих физиологов и биохимиков растений, а также генетиков. Однако степень адекватности такой модели зависит от изучаемого процесса. Культура клеток, как правило, является адекватной моделью для тех процессов, которые протекают в любой растительной клетке, независимо от существующих систем контроля. Для тех клеточных функций, где принципиальную роль играют механизмы организменного контроля развития, модель может быть неадекватной.

Культура клеток растений широко используется в самых разнообразных фундаментальных и прикладных исследованиях. На основе культивируемых клеток и тканей высших растений в настоящее время созданы и активно развиваются перспективные, принципиально новые технологии для различных отраслей промышленности и сельского хозяйства.

1. Культивирование клеток и тканей растений. Сущность метода и его практическое применение

История развития метода культуры тканей начинается на рубеже XIX-XX вв. с опытов немецких ученых Фехтинга, Рехингера и Хаберландта, которые пытались выращивать на растворах сахарозы изолированные из растений кусочки тканей, группы клеток, волоски. Не достигнув экспериментальных успехов, эти исследователи, однако, высказали ряд важных идей и гипотез, которые были подтверждены значительно позже. В 1947 г. Телл и Готре впервые показали способность синтеза вторичных соединений, а именно алкалоидов, в клеточной культуре белены черной. В нашей стране систематические исследования в этой области были начаты Р.Г. Бутенко в 1957 г. в Институте физиологии растений им. К.А. Тимирязева АН СССР, которая получила клеточные культуры женьшеня и ряда других лекарственных растений. До начала 70-х годов спектр соединений, образуемых клеточными культурами в количествах, характерных для целого растения, был очень ограничен. Это Nicotiana tabacum, в которой некоторые исследователи наблюдали синтез относительно больших количеств никотина (0.7 %), Dioscorea deltoidea, накапливающая до 1.6 % диосгенина, Ammi visnaga, содержащая в 20 раз больше виснагина в культуре ткани, чем в растении, и некоторые другие. Экспериментальные данные, накопившиеся к этому периоду, указывали, что биосинтез многих соединений в недифференцированных тканях сильно подавлен, а появление продуктов во многих случаях было связано с регенерацией корней, побегов и других морфологических структур, т.е. с процессом дифференциации ткани. С начала 70-х годов список фармакологически ценных вторичных продуктов биосинтеза, обнаруженных в культурах тканей, значительно расширился. В 80-е годы на основе метода культуры тканей возникли новые направления биотехнологии, важнейшим из которых была клеточная инженерия - генетическое конструирование новых форм.

Культивирование растительных клеток и тканей основано на тотипотентности живой клетки растения - способности любой соматической клетки полностью реализовать свой потенциал развития (образовать целый организм).

Основной тип культивируемых клеток - каллусные клетки; это один из типов клеточной дифференцировки, присущей высшему растению. Каллус - ткань, возникающая на растении в исключительных обстоятельствах (обычно при травмах) и функционирующая непродолжительное время; она защищает место поранения, накапливает питательные вещества для регенерации анатомических структур. Каллусную ткань in vitro (в искусственной среде) возможно получить практически из любой живой ткани высшего растения.

Дедифференцировка и каллусогенез начинаются при механическом повреждении ткани. В клетках экспланта (кусочка ткани, высаживаемого на питательную среду) в начале культивирования наблюдаются изменения в метаболизме, связанные с травматическими синтезами, дедифференцировкой и подготовкой к делению. Предполагают, что травма приводит к высвобождению из клеток элиситоров (стимуляторов) клеточных делений, например, продуктов разрушения полисахаридов клеточной стенки. Действием элиситоров можно объяснить и быструю дедифференцировку (переход дифференцированных клеток к делению) специализированной клетки. В первую очередь идет метаболизация запасных веществ - липидов, крахмала, белков; перестраиваются пластидный аппарат, ЭПР и элементы цитоскелета. При подготовке к делению в клетке стимулируется синтез РНК, начинается репликация ядерной ДНК, исчезают тканеспецифичные белки-антигены и появляются белки, специфичные для делящихся клеток и для каллусной ткани.

Для получения культивируемых каллусных клеток первичные экспланты помещают на питательную среду в пробирки, колбы или чашки Петри. Это требует полной асептики, так как грибная и/или бактериальная инфекция ингибирует рост клеток и приводит культуру к гибели; поэтому эксплант поверхностно стерилизуют растворами, содержащими активный хлор или ртуть, к которым добавляют детергенты. В состав питательных сред для культуры тканей и клеток растений входят минеральные соли (макро- и микроэлементы); источник углеродного питания (сахароза, глюкоза и др.); витамины; регуляторы роста (фитогормоны или их искусственные аналоги) - ауксины, цитокинины, гиббереллины; агар-агар (для твердых сред). Иногда включают комплексные органические добавки.

Каллусные клетки способны дать начало различным процессам дифференцировки и морфогенеза от появления в каллусной ткани дифференцированных клеток до гисто-, органо- и эмбриогенеза. На эти процессы влияет соотношение фитогормонов в среде.

Культуры растительных клеток могут синтезировать самые разнообразные по химической природе вещества. Среди них эфирные масла, фенольные соединения, алкалоиды, стероиды, терпеноиды и др. Но несмотря на то, что биомасса культивируемых клеток с начала 80-х годов используется в качестве источника экономически важных продуктов, ряд трудностей и нерешенных вопросов сдерживает широкомасштабное применение культивируемых клеток, обусловливает нерентабельность биотехнологических производств многих ценных видов растений. Содержание практически важных вторичных метаболитов в высших растениях определяется активностью их синтеза, эффективностью транспорта и депонирования в органах запаса растения. Все эти признаки определяются генетически, находятся под контролем развития организма и максимально реализуются в оптимальных внешних условиях.

В самом общем смысле культура клеток и тканей - это искусственное in vitro индуцирование делений клеток или выращивание в пересадочной культуре тканей, возникших путём пролиферации клеток изолированных сегментов разных частей растения.

Все объекты, культивируемые in vitro, выращиваются стерильными. Стерилизуются исходные кусочки ткани растений (экспланты), питательная среда; антисептически в специальных боксах стерильным инструментом проводятся манипуляции по выращиванию объектов. Сосуды в которых культивируются ткани и клетки, закрываются так, чтобы предотвратить инфицирование в течение продолжительного времени. В культуре тканей лекарственных растений можно выделить три главных направления: получение недифференцированной каллусной массы, создание источников генетического разнообразия форм растений, а также клеточную селекцию и клональное микроразмножение растений. В природе каллусообразование - естественная реакция на повреждение растений. В культуре изолированных тканей при помещении экспланта (т. е. фрагмента ткани или органа) на питательную среду его клетки дедифференцируются, переходят к делению, образуя однородную недифференцированную массу - каллус. В асептических условиях каллус отделяют и помещают на поверхность агаризованной питательной среды для дальнейшего роста. В результате получают культуру каллусной ткани, которую можно поддерживать неограниченно долго, периодически разделяя её на трансплантаты и пересаживая её на свежую среду. Каллусы легко образуются на эксплантах из различных органов и частей растений: отрезков стебля, листа, корня, проростков семян, фрагментов паренхимы, тканей клубня, органов цветка, плодов, зародышей и т. д. Культивирование каллусных клеток проводят главным образом двумя способами: на агаризованных питательных средах или различных гелеобразующих подложках (силикагель, биогели, полиакриламидные гели, пенополиуретан и др.) и в жидкой питательной среде. В жидкой питательной среде каллус легко распадается на отдельные агрегаты клеток и даёт начало так называемой суспензионной культуре.

Каллусные клетки в культуре in vitro подвержены значительной генетической изменчивости. Изменчивость геномов может приводить к генетическим изменениям у растений-регенерантов, полученных из культуры каллусных клеток, клеточных суспензий или изолированных протопластов. Такие растения получили названия сомаклональных вариантов. Сомаклональные варианты, сохраняя основные свойства прототипа, часто выгодно отличаются от него устойчивостью к болезням, экологическим стрессам, а иногда несколько изменённой биосинтетической способностью и более высокой продуктивностью.

Неотселектированные недифференцированные клетки накапливают, как правило, незначительное, по сравнению с интактным растением, количество веществ специализированного обмена. Только благодаря правильно разработанной стратегии получения высокопроизводительных штаммов к настоящему времени получены культуры тканей, в которых содержание вторичных продуктов достаточно велико, чтобы служить лекарственным сырьем. Однако для многих культур неоднократные попытки различных исследователей определить условия накопления продуктов, характерных для родительских растений, были неудачными. Это касается, в частности, индукции морфинановых алкалоидов в культуре ткани Papaver somniferum, винбластина - в Catharanthus roseus, хинолиновых алкалоидов - в Cinchona ledgeriana, дигоксина - Digitalis lanata и др. Чаще всего в клеточных культурах при длительном культивировании снижается или совсем теряется способность клеток накапливать соединения вторичного метаболизма из-за возникновения малоактивных, но более жизнеспособных вариантов. Снижение биосинтетического потенциала в культуре in vitro происходит из-за подавления дифференциации клеток и их специализации, т.е. в результате потери способности к реализации генетической информации, относящейся ко вторичному обмену.

Важной характеристикой клеточной популяции является ее стабильность в отношении синтеза, транспорта и депонирования метаболитов " интереса". Стабильность может сохраняться в течение всего времени существования популяции. При этом сохраняются и активно работают гены синтеза, системы транспорта и депонирования. Возможен случай постепенного (в течение нескольких лет) увеличения числа клеток со сниженным синтезом метаболитов. И, наконец, в случае полной нестабильности клетки популяции очень быстро теряют свой биосинтетический потенциал. Вопрос о стабильности и нестабильности тесно связан с изучением биологии клеток разных популяций. В организме растения синтез метаболитов, их транспорт и отложение в запас находятся под строгим контролем развития. Часто эти события не только разведены во времени, но и происходят в разных органах растения. Клетка вне организма обычно не транспортирует метаболиты в соседние клетки или в питательную среду, хотя в ряде случаев это явление наблюдается (биосинтез алкалоидов в клеточных культурах мака). На выход вторичных продуктов в культурах растительных клеток влияют многие факторы, однако все способы регуляции вторичного метаболизма в культуре in vitro можно разделить на две группы: физиологическая и генетическая регуляции синтеза вторичных метаболитов.

Подбор физических и химических условий культивирования является наиболее простым и часто применяемым подходом для повышения продуктивности. В основе физиологического регулирования процессов вторичного синтеза лежит изучение влияния факторов культивирования на рост и метаболизм клеток. Большое внимание уделяется таким факторам культивирования, как регуляторы роста, минеральные вещества, витамины, сахара, свет, аэрация, температура, а также иммобилизация клеток и обработка элиситорами. Во многих случаях эти работы привели к успеху, однако они выполняются эмпирически и поэтому длительны и трудоемки. К тому же следует оговориться, что несмотря на эффективность повышения уровня биосинтеза физиологическими методами, добиться количественно значимых изменений в дедифференцированных клеточных культурах, сопоставимых с уровнем в интактном растении, лишь за некоторым исключением, не удается. Стимулирование же синтеза элиситорами носит, к сожалению, временный характер.

Более эффективной в этом плане является генетическая регуляция синтеза вторичного метаболизма в системе in vitro. С использованием экспериментального мутагенеза стало возможным получение довольно продуктивных штаммов. С помощью этого метода в ИФР РАН был получен мутантный штамм Dioscorea deltoidea DM-0.5 (мутаген - N- нитрозометилмочевина, доза - 0.5 ммоль/ч) - сверхпродуцент фуростаноловых гликозидов, высокая способность к синтезу - 6-8 % в сухой массе клеток - сохранялась в течение длительного времени (около 30 лет). Следует отметить, что метод индуцированного мутагенеза носит также эмпирический характер и не менее трудоемок, чем физиологические способы регуляции вторичного метаболизма. Ряд перспективных культур был получен в результате генетической трансформации и других генно-инженерных манипуляций. Особенно следует отметить трансформанты, полученные с помощью плазмид агробактерий (Agrobacterium rhizogenes A. Tumefaciens), в частности " бородчатых корней", продуктивность которых оказалась достаточно высокой. Поскольку одной из основных причин снижения уровня биосинтеза в культурах in vitro является дедифференциация ткани, то один из путей повышения синтеза вторичных соединений в клеточных культурах связан с дифференцировкой ткани и органогенезом. Повышение содержания вторичных соединений было отмечено в органогенных культурах видов Senecio, Lichroa ledgeriana.

Известно, что физиологическое действие условий in vitro приводит к генетической гетерогенности системы. Речь идет о так называемой сомаклональной изменчивости, которая возникает при длительном культивировании. На генетической изменчивости клеток в культуре in vitro основана селекция штаммов, обеспечивающая большой выход ценных продуктов вторичного метаболизма растительных клеток. При клонировании суспензионной культуры клеток паслена были выделены линии, накапливающие больше 3 % соланидина, получен штамм клеток руты душистой, содержащей в 20 раз больше алкалоида рутакридона по сравнению с растением. Биотехнологическое использование клеточных культур в качестве сырья в промышленных масштабах становится реальностью. Методы выращивания изолированных тканей растений были разработаны Ф. Уайтом и Р. Готре. Сущность метода заключается в том, что выделенные кусочки ткани или отдельные клетки выращивают на искусственной питательной среде в стерильных условиях. Если полностью дифференцированную клетку изолировать, то в стерильных условиях на соответствующей питательной среде она снова начинает делиться, и затем из нее может развиться целый растительный организм. Так, из одной полностью дифференцированной клетки флоэмы, выделенной из корнеплода моркови, из клетки сердцевинной паренхимы табака и других можно получить целое, полностью развившееся растение. В опытах Р.Г. Бутенко с клетками флоэмы моркови при выращивании на питательной среде в стерильных условиях сначала клетки быстро делились. Получалась недифференцированная масса мелких клеток - каллюс меристематической структуры (увеличенное число рибосом, митохондрий и т. д.) с интенсивным синтезом РНК и белка. При этом возрастала интенсивность дыхания и увеличивалась доля пентозофосфатного пути. Затем в массе однородных клеток возникали очаги дифференциации, клетки дифференцировались вторично. Процесс вторичной дифференцировки можно разделить на две фазы. Первая фаза - это образование в массе однородных клеток очагов регенерационной меристемы и возникновение зародышевых структур (эмбриоидов), которые напоминают настоящие и имеют зачаточную почечку и зачаточный корешок. На второй фазе происходит рост этих зародышевых структур. При этом в зависимости от соотношения фитогормонов (ауксинов и цитокининов) происходит преимущественный рост тех или иных органов. В настоящее время ведутся исследования с изолированными протопластами, которые выделяют путем разрушения клеточных стенок специальными ферментами. Изолированные протопласты при помещении их на подходящую питательную среду образуют новую оболочку, т. е. превращаются в клетки. Вместе с тем протопласты способны сливаться вежду собой и образовывать клеточную оболочку. Таким образом, можно получить гибридную клетку, а из нее растение. Рост и дифференциация и в этом случае зависят от соотношения физических и гормональных веществ в питательной среде. Метод выращивания изолированных тканей, клеток, протопластов позволяет решать многие теоретические вопросы, связанные с раскрытием механизмов дифференцировки (морфогенеза), регуляции физиологических процессов и др. Этот метод получил также широкое практическое применение в области сельского хозяйства, биотехнологической промышленности.

Биотехнология - наука, использующая биологические принципы в практических целях. Эта отрасль науки охватывает очень широкий круг вопросов. Ряд из них решается с помощью клеточных культур. Так, все более важное значение приобретает клональное размножение. Клон - ряд поколений генетически однородных потомков одной исходной особи, образующейся в результате бесполого размножения. Клонирование позволяет получать большое количество посадочного материала, полностью идентичного исходной особи. При клональном микроразмножении в большинстве случаев в качестве исходного материала используются фрагменты верхушечной апикальной меристемы. Верхушечные меристемы не содержат патогенных микроорганизмов, поэтому растения, полученные от них, являются здоровыми. Изолированные меристемы выращивают в стерильных условиях на ряде последовательно меняющихся питательных сред. В результате получаются растения с корневой системой, пригодные для посадки в почву. Этим методом от клеток меристемы одного растения можно получить практически неограниченное число потомков. Метод широко применяется для размножения декоративных, ягодных и других растений. Все большее значение в селекции приобретает метод изолированных клеток. Здесь возможны разные направления: направленный отбор клеток, оказавшихся устойчивыми к тем или иным неблагоприятным условиям среды или болезням, и выращивание из них устойчивых растений (клеточная селекция). Важное значение имеет получение гаплоидных растений, содержащих одинарный набор хромосом. Этот метод предполагает получение растений из мужских либо из женских гамет. Гаплоидные растения после обработки колхицином имеют два набора идентичных хромосом, полностью соответствующих материнскому растению. Большие надежды возлагаются на соматическую гибридизацию, заключающуюся в слиянии двух протопластов. Таким путем были получены гибриды между картофелем и томатами, названные "помато". Преимущества такой гибридизации заключаются в том, что наследуются признаки, не только закодированные в ядре, но и в органеллах цитоплазмы. Следовательно, можно управлять такими важными процессами, как фотосинтез, дыхание и др. Наконец, нельзя не отметить широкое использование культуры изолированных тканей для промышленного получения ряда важнейших лекарственных и пищевых препаратов. В качестве примера можно привести получение тонизирующих веществ из клеток женьшеня, стероидных сапонинов из клеток дискореи дельфитовидной и др.

2. Выделение целевого продукта из глубинной и поверхностной культуры в технологии ферментных препаратов

Ферменты - это специфические катализаторы белковой природы, вырабатываемые клетками и тканями организмов. Они способны во много раз ускорять течение химических и биохимических реакций, не входя в состав конечных продуктов. Практические применения ферментов основаны на их высокой каталитической активности и более высокой по сравнению с небиологическими каталитическими системами субстратной специфичностью. Источником ферментов служат растительные и животные ткани, микроорганизмы. Химический синтез ферментов в промышленных масштабах очень сложен, дорог и экономически не целесообразен. Микробиологический метод получения ферментов наиболее перспективен. Его преимущества заключаются в следующем:

1) богатство ассортимента ферментов, синтезируемых микроорганизмами,

2) возможность управления ферментативными системами и составом производимых препаратов,

3) высокие скорости размножения микроорганизмов и возможность использования различных, в том числе доступных и недорогих, субстратов. Ферменты в микробных клетках могут локализоваться, а также выделяться в окружающую среду.

Последние более доступны для препаративного получения, поэтому в промышленных масштабах получают главным образом внеклеточные ферменты. Из описанных к настоящему времени более 2000 ферментов практическое значение имеют около 50. Согласно современной классификации, все ферменты подразделяются на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и линазы (синтетазы). Негидролитические ферменты - оксидоредуктазы, лиазы, изомеразы и лигазы - применяются сравнительно редко. Наиболее широкое применение получили микробные гидролазы, взаимодействующие с пептидами, гликозидами и другими соединениями с участием воды.

Среди гидролаз - гликозидазы, протеиназы, липазы. Гликозидазы катализируют гидролиз гликозидных соединений. Так, крахмал гидролизуют амилазы, продуцентами которых служат различные микроорганизмы (Bacillus, Aspergillus); декстраназа, взаимодействующая с гликозидными связями декстрана, синтезируется Penicillium purpurogenium; пуллоназа, гидролизующая пуллан, гликоген, декстрины, продуцируется бактериями Klebsiella; инвертаза синтезируется многими представителями рода Aspergillus; целлюлолитические ферменты, являющиеся сложным комплексом активных белков, воздействуют на различные участки молекулы целлюлозы. Фитопатогенные грибы Fusarium oxysporum, Erwinia образуют пектинолитические ферменты; анаэробные бактерии Clostridium felsineum продуцируют полигалактуроназу, пектинэстеразу. Очень разнообразны протеиназы, катализирующие разрыв пептидных связей белков с образованием пептидов и свободных аминокислот. Протеиназы различных микроорганизмов существенно различаются своими свойствами; среди продуцентов протеиназ - Aspergillus, Actinomyces, Clostridium, E.coli. Продуценты липаз, осуществляющих гидролиз триацилглицеролов с образованием жирных кислот и глицерина, - различные микроорганизмы (Aspergillus, Mucor, Rhizopus, Geotrichum, Candida). Фосфокиназы, синтезируемые бактериями Clostridium, Bacillus, расщепляют сложные связи между жирными кислотами, глицерином и фосфатидной кислотой.

2.1 Глубинное культивирование микроорганизмов

Этот способ имеет ряд очевидных преимуществ перед поверхностным, так как позволяет значительно сократить производственные площади, исключить тяжелый непроизводительный ручной труд, улучшить гигиену труда, упрощает механизацию и автоматизацию производства, делает возможным переход на непрерывный способ культивирования. При глубинном способе культивирования более рационально используются питательные вещества сред, что дает возможность значительно сократить отходы производства в виде нерастворимых осадков твердой питательной среды, получать препараты ферментов с меньшим содержанием примесей и большей удельной активностью.

Глубинное культивирование проводят в вертикальных емкостях различного размера, называемых ферментаторами. Основное требование к ферментатору - возможность проведения процесса культивирования продуцента в асептических условиях при интенсивном аэрировании среды. В процессе культивирования приходится иметь дело со сложной трехфазной системой жидкость - твердая взвесь - газ. В такой системе затруднены массообменные процессы, и поэтому усложняется аппаратурное оформление всей стадии выращивания.

Существующие промышленные ферментаторы по способу подвода энергии на аэрирование и перемешивание можно подразделить на три группы: аппараты с механическим перемешиванием и барботажем (комбинированные); с эжекционной системой аэрирования (подвод энергии к жидкой фазе) и барботажные (подвод энергии к газовой фазе). Для ферментной промышленности наибольший интерес представляет первая группа аппаратов, предназначенная для асептических процессов. Эти аппараты в основном имеют цилиндрическую форму и отличаются по объему, конструкции отбойников, перемешивающих устройств, уплотнений вращающегося вала и теплообменным устройствам. Максимальный объем ферментаторов с механическим перемешиванием и пеногашением составляет 2000 м3. Фирма "Хемап" располагает внедрёнными разработками герметичных ферментаторов вместимостью до 360-400 м 3. Из отечественных аппаратов наиболее широко используются герметизированные ферментаторы вместимостью 50 м 3 и вместимостью 100 м3 с механическим перемешиванием и барботажем воздуха. Кроме этих двух ферментаторов на многих ферментных предприятиях работают аппараты вместимостью 63 м 3 производства ГДР.

Аппараты рассчитаны для работы под избыточным давлением 0,25 МПа и стерилизации при температуре 130-140 °С. Во избежание инфицирования культуры предусмотрены торцовые уплотнения вала перемешивающего устройства с паровой защитой. Торцовые уплотнения позволяют практически полностью предотвратить утечку среды или попадание воздуха в полость аппарата в месте выхода из него вала, что очень важно для обеспечения асептических условий процесса.

Важным фактором с точки зрения асептики процесса культивирования продуцента является правильная обвязка ферментатора. Под обвязкой подразумевают подвод всех коммуникаций с учетом возможности стерилизации острым паром участков, которые могут явиться источником заражения.

Анализ монтажных схем показывает, что они обычно состоят из типовых элементов. Рассмотрим одну из монтажных схем с нижним спуском среды, применяемых в самых различных микробиологических производствах. Ее характерной особенностью является установление термических затворов 3 и 5 для предупреждения проникновения посторонней микрофлоры в аппарат по коммуникациям через неплотности в уплотнениях "седло - клапан" запорной арматуры. В материальные трубопроводы, непосредственно соединенные с внутренней полостью аппарата, постоянно подается пар, а образующаяся пароконденсатная смесь отводится в канализацию или специальное устройство (при наличии открытых трубных окончаний). Как показывает опыт микробиологических производств, такие термические затворы обеспечивают весьма эффективную защиту аппаратов и коммуникаций от инфицирования.

В монтажных схемах должен предусматриваться свободный доступ пара во все точки стерилизуемых внутренних полостей аппаратов, трубопроводов и запорной арматуры, что обеспечивает достижение и поддержание требуемой температуры стерилизации. Однако на практике часто одно и то же монтажное оформление коммуникаций и запорной арматуры различного диаметра не обеспечивает равного стерилизующего эффекта. Например, в запорной арматуре и штуцерах малого диаметра требуемой степени стерильности достичь труднее. Ещё большие трудности возникают при термической стерилизации открытых трубных окончаний (пробник 4, штуцер для введения посевного материала 1 трубопровод для удаления отработавшего технологического воздуха 2). Открытые трубные окончания коммуникаций и узлов монтажных схем не позволяют создать в них давление, необходимое для эффективной стерилизации. Использование резиновых шлангов для подключения бутылей и колб с посевным материалом, пробоотборников и ёмкостей с жидкими добавками ещё больше затрудняет процесс стерилизации.

К открытым трубным окончаниям относятся и так называемые штуцеры для продувки коллекторного трубопровода для стерильной питательной среды, соединяющего установку непрерывной стерилизации питательной среды (или аппарат периодического действия) с ферментаторами. Такая схема коммуникации предусматривает подачу острого пара в линию в течение времени, гарантирующего стерилизуемость коллекторов питательной среды.

В процессе культивирования ведётся постоянный контроль за уровнем пены, накоплением ферментов, состоянием биомассы продуцента, рН среды, потреблением некоторых составляющих среды и т. д. По окончании культивирования культуральная жидкость подаётся либо непосредственно в производство, где она используется (спиртовое, пивоваренное, производство глюкозы и т. д.), либо на отделение жидкой фазы от биомассы и твёрдых нерастворимых частиц среды с целью использования фильтрата культуральной жидкости. В некоторых случаях биомасса продуцента поступает на получение ферментных препаратов различной степени очистки.

Последовательность процесса получения культуры микроорганизма является общей как для поверхностного, так и для глубинного способа культивирования. Она включает стадии приготовления посевного материала, приготовления питательной среды, её стерилизации, охлаждения, засева посевным материалом и выращивания. Однако в зависимости от способа культивирования аппаратурное оформление технологической схемы существенно различается.

Технологические схемы глубинного культивирования аэробных и анаэробных микроорганизмов почти не отличаются одна от другой, за исключением того, что в схемах культивирования анаэробных микроорганизмов исключается стадия подготовки воздуха и используются ферментаторы без аэрирующих и перемешивающих устройств.

Из циклона с помощью трубоконвейера они поступают в бункера, а из них по трубоконвейеру - на автоматические весы. Если требуется ввести в состав среды соли или какие-то иные компоненты в небольшом количестве, то они поступают в шнек, транспортирующий сыпучие материалы в норию. Из нории компоненты среды поступают в смеситель для приготовления производственной питательной среды. Сюда же поступают вода и жидкие компоненты через соответствующие дозирующие и мерные устройства.

Для растворения солей и клейстеризации крахмала среду подогревают. Подготовленная подогретая среда с помощью насоса поступает в нагреватель системы непрерывной стерилизации питательной среды и затем подается в спиральный теплообменник для выдерживания при температуре 140 °С. Стерильная питательная среда охлаждается в теплообменнике и направляется в чистый стерильным ферментатор, который заполняют на 65-75 % в зависимости от степени пенообразования при росте культуры.

Посевной материал получают в посевном отделении. Среду для него готовят в специальной небольшой емкости, нагревают, перемешивают и насосом направляют в инокуляторы первой и второй ступеней, где проводятся стерилизация, охлаждение и засев среды. Суспензия исходной культуры пересевается вначале в колбы на качалке, затем подается в инокулятор первой ступени, выращивается в нем и полностью передавливается в инокулятор второй ступени со стерильной охлажденной средой. Выращенный посевной материал из инокулятора передается в ферментатор. В процессе культивирования проводится пеногашение. Пеногаситель стерилизуют в специальном аппарате периодического действия, затем охлаждается и поступает через мерник в ферментатор. В процессе культивирования в инокуляторах и ферментаторе растущая культура аэрируется кондиционированным стерильным воздухом. Сжатый в компрессоре и нагретый от 80 до 220 °С воздух после удаления конденсационной влаги поступает в головной фильтр, заполненный стекловатой. Далее очищенный воздух поступает в индивидуальные фильтры тонкой очистки и подается для охлаждения пеногасителя и аэрирования растущей культуры в инокуляторах и ферментаторе. Отходящий воздух из инокуляторов и ферментатора перед выбросом в атмосферу очищается в фильтрах. Готовая культуральная жидкость насосом или самотеком при перемешивании поступает в теплообменник для охлаждения перед поступлением в сборник. Необходимость охлаждения вызвана тем, что сразу всю культуральную жидкость обработать невозможно, а при длительном хранении в сборнике может произойти инактивация ферментов. Из сборника охлажденная жидкость по мере необходимости подается на фильтровальную установку.

2.2 Получение ферментных препаратов из культур микроорганизмов

Культура микроорганизмов, выращенная поверхностным способом, и культуральная жидкость после глубинного культивирования содержат большое количество балластных веществ. Выделение и очистка ферментов - трудоёмкий и дорогостоящий процесс поэтому, если ферментный препарат можно использовать в виде неочищенной культуры микроорганизмов, его очистку не проводят. В таких отраслях, как спиртовая и кожевенная, целесообразнее использовать именно неочищенную культуру микроорганизма; то же самое можно сказать и об использовании культур микроорганизмов в сельском хозяйстве при приготовлении комбикормов и при непосредственной обработке кормов на фермах.

В большинстве отраслей пищевой промышленности (хлебопекарной, пивоварении, виноделии, сыроделии, крахмалопаточном и сокоэкстрактном производствах), а также в текстильной, меховой, микробиологической промышленности и особенно медицине можно использовать только очищенные препараты ферментов, частично или полностью освобожденные от балластных веществ.

Исходным материалом для получения очищенных ферментных препаратов может служить фильтрат культуральной жидкости, реже - биомасса продуцента или водный экстракт из поверхностной культуры продуцента. Ферментные препараты могут быть получены в виде порошков или жидких концентратов. В процессе выделения происходит повышение доли активного белка в общей массе препарата, т. е. увеличивается его удельная активность.

2.3 Принципиальная схема получения ферментных препаратов

Схема очистки фермента от балластных веществ сводится к освобождению его от нерастворимых веществ, сопутствующих растворимых веществ и других ферментов. Процессы получения очищенных препаратов из поверхностных и глубинных культур несколько различны. Из поверхностных культур труднее получить высокоочищенные препараты из-за большого количества балластных веществ. Из глубинных культур получить очищенные препараты несколько легче, но при этом приходится вести выделение из разбавленных растворов, если выделение ферментов проводится из жидкой части культуры. Выделение осложняется, если фермент внутриклеточный, и тогда необходимо разрушать клетки микроорганизмов.

Принципиальную схему выделения и очистки ферментов из глубинных и поверхностных культур микроорганизмов можно представить в виде следующей схемы.

Из схемы ясно, что экстракт из поверхностной культуры или фильтрат культуральной жидкости является исходным материалом для получения препаратов ферментов различной степени очистки. На первом этапе выделения отходом процесса является нерастворимая часть культуры - биошрот, содержащий нерастворимые включения среды и биомассу продуцента.

Завершающая стадия биотехнологического процесса - выделение целевого продукта. Эта стадия существенно различается в зависимости от того, накапливается продукт в клетке или он выделяется в культуральную жидкость, или же продуктом является сама клеточная масса (рис. И). Наиболее сложно выделение продукта, накапливающегося в клетках.

2.4 Получение очищенных ферментных препаратов

Для получения более очищенного препарата концентрат из сборника подается на осаждение органическим растворителем. Предварительно концентрат охлаждают в теплообменнике до температуры 2-3 °С и подают через дозатор в осадитель. Одновременно в осадитель дозируется охлажденный растворитель. Образовавшийся осадок отделяют на сепараторе. Надосадочную жидкость направляют на регенерацию, а осадок - на промывку спиртом и повторное сепарирование. Промытый осадок высушивают в вакууме, измельчают, взвешивают, смешивают с наполнителем и направляют на фасование и упаковывание.

При получении ферментных препаратов из культур микроорганизмов, выращенных поверхностным способом, процесс очистки начинается с экстракции ферментов водой. Нерастворимый осадок высушивают и в виде сухого биошрота утилизируют на корм скоту.

Экстракт с содержанием сухого вещества 7-14 % при получении из него сухих препаратов не нуждается в дополнительном концентрировании и поэтому может быть сразу направлен на распылительную сушку с целью получения технического препарата, или же экстракт направляется в охладитель, а затем на осаждение органическими растворителями или солевыми растворами. Из экстракта можно получать стабильный жидкий концентрат с содержанием сухого вещества 50 %, для чего экстракт направляют в сборник, затем в подогреватель и на вакуум-выпарную установку. Готовый жидкий концентрат фасуют в специальные емкости и направляют на склад готовой продукции. Из глубинной культуры можно также получать жидкие концентраты, например, методом ультрафильтрации.

Существуют многочисленные схемы получения ферментных препаратов различной степени очистки, вплоть до кристаллических и гомогенных препаратов. Такие схемы, созданные в различных странах мира, в большинстве своём очень сложны и сочетают в себе самые различные комбинации технологических приёмов. Поэтому давать какие-то общие рекомендации крайне трудно, и в каждом конкретном случае необходимо проводить кропотливые исследования на всех стадиях выделения фермента из данной культуры продуцента. Только в результате такой работы можно придти к практическим рекомендациям, которые будут справедливы только для данного фермента, данной культуры микроорганизма и для данной среды.

2.5 Получение неочищенных ферментных препаратов

Неочищенные ферментные препараты представляют собой культуру микроорганизма вместе с остатками питательной среды, высушенную при мягком режиме до влажности не более 8-12 %.

Неочищенный ферментный препарат может быть получен на основе поверхностной или глубинной культуры. Глубинная культура может быть перед сушкой очищена от нерастворимой части (твердая взвесь среды и биомассы продуцента) или высушена вместе с ней.

Большинство продуцентов накапливает основную часть синтезируемых ими ферментов в питательной среде. При получении очищенных ферментных препаратов нерастворимую часть среды вместе с биомассой продуцента отделяют на фильтрах, центрифугах или сепараторах.

На этой стадии стерильность процесса чаще всего нарушается.

Эффективность отделения биомассы во многом зависит не только от типов используемых аппаратов, но и от состава среды, размеров отделяемых частиц, количества нерастворимой фракции, физико-химических характеристик фильтрующих материалов, температурных режимов и т. д. Для улучшения процесса фильтрования проводят предварительную химическую обработку культуральной жидкости. Для этого культуральную жидкость подщелачивают до рН 8-8,5 и вводят 0,1 %-ный раствор хлористого кальция, в результате образуется гель фосфата кальция, который способствует наиболее полному отделению осадка при наименьших потерях. Но предварительная химическая обработка не всегда дает хорошие результаты, поэтому для повышения эффективности процесса часто используют различные кизельгуры, например, диатомит и радиолит (Япония), микрозил (Франция), диатомит (Бельгия), кларгель (Великобритания) и т. д. Использование этих наполнителей может резко повысить скорость фильтрования, но вместе с этим увеличиваются потери активности на этой технологической стадии.

Полученную биомассу продуцента вместе с нерастворимыми частицами среды (биошрот) при необходимости стерилизуют, высушивают и используют на корм животным. Фильтрат культуральной жидкости нестабилен, он не может храниться и должен немедленно направляться на дальнейшую обработку для получения очищенных ферментных препаратов.

2.6 Экстрагирование ферментов

Все ферменты являются водорастворимыми белками, поэтому наилучшим экстрагентом для них является вода. Для извлечения ферментов из дрожжей или бактерий необходимо подвергнуть механическому или автолитическому разрушению их клеточные стенки, обладающие высоким диффузионным сопротивлением. Оболочки мицелиальных нитей имеют меньшее диффузионное сопротивление, чем оболочки бактериальных и дрожжевых клеток, поэтому дезинтеграции культуры грибов не требуется.

Извлечение ферментов проводят как из влажных, так и из сухих поверхностных культур грибов. Сухая культура может храниться длительное время без потери активности ферментов, и из нее получают более концентрированные экстракты. Технологически это выгоднее, но при подсушивании культуры имеют место потери активности, и потому экстрагирование целесообразно вести из влажной культуры. При экстрагировании различные водорастворимые вещества извлекаются из культуры с неодинаковой скоростью, происходит их частичное фракционирование, удельная активность ферментов в экстракте повышается в 3,5-4 раза по сравнению с исходной культурой в результате отделения большой части веществ (до 75 %) с нерастворимым остатком - биошротом.

На полноту экстрагирования ферментов из культур оказывают влияние многие факторы: температура, рН, длительность процесса, конструктивные особенности экстракционных аппаратов, природа извлекаемого фермента, количество отобранного экстракта с единицы массы загруженной в аппарат культуры и т. д.

Одновременно с ферментами экстрагируются многие другие соединения, и часто скорость извлечения балластных веществ больше скорости экстрагирования из культуры целевого фермента. Поэтому рациональнее пойти на некоторые потери фермента и закончить экстрагирование на оптимальном значении отношения активности фермента в экстракте к сумме извлекаемых веществ. Этот вопрос решается экспериментально для каждого вида продуцента.

Влиять на процесс экстрагирования с помощью такого фактора, как температура, практически невозможно, так как ферменты очень термолабильны и инактивируются даже при 35-40 °С (рис. 4). Кроме того, повышение температуры до 35-40 °С влечет за собой увеличение содержания сухого вещества в экстракте и уменьшение удельной ферментативной активности на 1 г сухого вещества, повышение опасности инфицирования экстрактов. Поэтому при проведении экстракции в заводских условиях стремятся подавить развитие микрофлоры путем максимального снижения температуры воды до 22-25 °С и применения антисептиков (формалин, бензол, толуол, хлороформ и др.). В большинстве случаев ферменты наиболее полно извлекаются при рН 5-7.

2.7 Другие промышленные методы очистки, концентрирования и стабилизации ферментных препаратов

В ферментной промышленности для очистки белков от различных низкомолекулярных примесей (ионов солей, сахаров и т.д.) применяют мембранные методы очистки: диализ и электродиализ и баромембранные методы: обратный осмос, ультрафильтрацию, микрофильтрацию и тонкую фильтрацию.

Также используют осаждение белков органическими растворителями, высаливанием, органическими полимерами и путём избирательной денатурации; разделение белов хроматографическими методами.

Сушка ферментных препаратов имеет целью получить стабильный при хранении ферментный препарат из культуральной жидкости, её концентратов, из пастообразной массы, образующейся при высаливании, осаждении фермента спиртом или другими осадителями и т. д. Для обезвоживания ферментных растворов и осадков применяют сушку в вакуум-сушильных шкафах, распылительных и сублимационных установках. При этом возникает ряд проблем, связанных с большой термолабильностью ферментов. культивирование клетка биотехнологический растительное

Получаемые ферменты порой с целью стабилизации иммобилизуют, микрокапсулируют, гранулируют.

Заключение

Производство ферментных препаратов является одним из ведущих направлений в развитии микробиологической промышленности. Год от года растет объем выпускаемых ферментных препаратов, расширяется их ассортимент и область применения. Ферментные препараты широко используются в самых различных отраслях пищевой и легкой промышленности, в косметике, в производстве моющих средств, в сельском хозяйстве, в аналитических исследованиях, медицинской промышленности и здравоохранении. Все больше заводов микробиологической промышленности осваивают выпуск этой продукции. Успешное развитие производства ферментных препаратов зависит от глубоких знаний, исследований в области производства, а также и от умелого использования знаний в области микробиологии, биохимии, коллоидной и физической химии, генетики, энзимологии - то есть наук, являющихся теоретической основой промышленного получения ферментных препаратов.

Библиография

1. Неверова О.А., Гореликова Г.А., Поздняковский В.М. Пищевая биотехнология продуктов из сырья растительного происхождения: учебник. - Новосибирск: Сиб. унив. изд-во, 2007.

2. Грачева И.М. Технология ферментных препаратов. /И.М. Грачева, А.Ю. Кривова - М.: Элевар, 2000.

3. Кислухина О. Биотехнологические аспекты переработки растительного сырья. / О. Кислухина, И. Кюдулас - Каунас: Технология, 1997.

4. Елинов Н.П. Основы биотехнологии. / Н.П. Елинов. - Спб: Изд. Фирма "Наука", 1995.

5. Васильев Н.Н. Моделирование процессов микробиологического синтеза. / Н.Н. Васильев. - М.: Лесная пром-сть, 1975.

6. Матвеева И.В. Биотехнологические основы приготовления хлеба. / И.В. Матвеева, И.Г. Белявская. - М.: ДеЛи принт. - 2001.

7. http://www.bestlibrary.ru Онлайн библиотека.

8. http://www.rsl.ru/ru/s97/s339/ Российская государственная библиотека.

Размещено на Allbest.ru

...

Подобные документы

  • Применение клеточных технологий в селекции растений. Использование методов in vitro в отдаленной гибридизации. Работы по культивированию каллуса с целью получения нового селекционного материала. Гибридизация соматических клеток и ее основные результаты.

    реферат [28,6 K], добавлен 10.08.2009

  • Технология ферментных препаратов. Производство ферментов при поверхностном культивировании продуцентов. Характеристика ферментных препаратов. Перспективы совершенствования приемов ферментативного катализа в виноделии. Биологическая очистка сточных вод.

    контрольная работа [76,6 K], добавлен 15.12.2009

  • Биотехнология как совокупность методов использования живых организмов и биологических продуктов в производственной сфере. Клонирование как бесполое размножение клеток растений и животных. Использование микроорганизмов для получения энергии из биомассы.

    реферат [15,2 K], добавлен 30.11.2009

  • Основные методы биотехнологии. Размножение организмов с интересующими человека свойствами с помощью метода культуры клеток. Особенности применения методов генной инженерии. Перспективы метода клонирования. Технические трудности применения методов.

    презентация [616,1 K], добавлен 04.12.2013

  • Классификация и номенклатура ферментных препаратов, характеристика их активности. Микробиологический и биохимический контроль производства. Регуляция синтеза и технологические схемы производства микробных протеиназ. Экстрагирование ферментных препаратов.

    курсовая работа [1,1 M], добавлен 19.12.2010

  • Биообъекты растительного происхождения, используемые в культуре ткани для получения лекарственных веществ. Ферменты, используемые в генетической инженерии, механизм их действия. Сущность метода иммобилизации ферментов путем включения в структуру геля.

    контрольная работа [617,9 K], добавлен 14.02.2013

  • Классификация токсинов природного происхождения на химические компоненты растительного и животного происхождения. Ингибиторы ферментов пищеварения, антивитамины, гликоалкалоиды, цианогенные гликозиды, токсины растений и грибов. Клиника отравления.

    реферат [20,4 K], добавлен 24.03.2009

  • Микрофлора готовых лекарственных форм. Объекты санитарно-бактериологического обследования в аптеках. Определение микробной обсемененности растительного лекарственного сырья. Микробная обсемененность препаратов. Определение патогенных микроорганизмов.

    презентация [2,4 M], добавлен 06.03.2016

  • Особенности роста и развития растений. Культура и морфогенетические особенности каллусных тканей. Клональное микроразмножение отдаленных гибридов. Применение культур растительной ткани. Вспомогательное использование методов in vitro в селекции растений.

    реферат [7,0 M], добавлен 22.09.2009

  • Характеристика целлюлозы и ее производных. Ферментативный гидролиз лигноцеллюлозных материалов в ацетатном буфере и в водной среде. Зависимость эффективности ферментативного гидролиза от условий перемешивания, от концентрации субстрата, от сырья.

    дипломная работа [993,2 K], добавлен 19.01.2016

  • Характер питания и мест обитания молей-кератофагов. Защита материалов и изделий от них. Основные методы борьбы с молями. Питание и размножение жуков-кожеедов. Классификация молей по месту обитания. Ветчинный кожеед как самый распространенный вид.

    реферат [30,7 K], добавлен 05.12.2012

  • Признаки живой материи, которые отличают ее от неживой. Ферменты, их применение в пищевых технологиях. Отличие ферментов от небиологических катализаторов. Органы и ткани животных. Углеводы, получаемые из растительного сырья. Полисахариды второго порядка.

    контрольная работа [35,1 K], добавлен 26.11.2012

  • Общие понятия, основные вехи и задачи биотехнологии. Рассмотрение применения методов генной инженерии в животноводстве, их практическое значение и перспективы. Клонирование животных с помощью переноса ядер из дифференцированных тотипотентных клеток.

    реферат [35,7 K], добавлен 13.07.2014

  • Биотехнология как наука о методах и технологиях производства. Понятие генной и клеточной инженерии. Биотехнология сельскохозяйственных растений. Повышение урожайности и естественная защита растений. Устойчивость к гербицидам и неблагоприятным факторам.

    реферат [34,6 K], добавлен 14.11.2010

  • Виды вегетативного размножения растений. Типы искусственного вегетативного размножения растений. Деление куста, корневые и стеблевые отпрыски. Размножение растений отводками и прививками, окулировка и копулировка. Характеристика метода культуры клеток.

    реферат [6,0 M], добавлен 09.12.2011

  • Углеводы как неотъемлемый компонент клеток и тканей живых организмов растительного и животного мира и основная часть органического вещества на Земле. Простые и сложные углеводы, их химические свойства. Особенности моносахаридов, их виды и классификация.

    презентация [1,2 M], добавлен 17.11.2014

  • Понятие о флоре, ландшафте, о растительном сообществе и растительности. Основные этапы развития мира животных на земле. Виды и важнейшие породы домашних животных. Загрязнение природной среды и роль растений в ее защите. Охрана растительного покрова.

    реферат [21,7 K], добавлен 03.07.2010

  • Яды растительного и животного происхождения - токсические вещества белковой и небелковой природы, способные при воздействии на живой организм вызвать острое или хроническое отравление. Исход поражения ядом, механизм токсического действия; антидоты.

    контрольная работа [243,4 K], добавлен 06.08.2013

  • Общая характеристика водного обмена растительного организма. Структура и свойства воды, ее функции в метаболизме растений. Значение транспирации и влияние внешних условий на степень открытости устьиц. Физические основы устойчивости растений к засухе.

    курсовая работа [673,5 K], добавлен 12.09.2011

  • Особенности биотехнологии на службе пищевой промышленности. Жиры и углеводы как источники энергии, и проблема питания при их дефиците. Лизин, метионин - питательные добавки. Типы окислительных процессов бактерий. Биотехнологические процессы в пивоварении.

    контрольная работа [27,3 K], добавлен 25.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.