Анатомия и физиология головного мозга

Функции головного мозга и внутренние механизмы его интегративной деятельности. Основные рефлекторные центры нервной системы. Рассмотрение особенностей кровоснабжения мозга. Эфферентные импульсы от мозжечка. Кора больших полушарий головного мозга.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 28.05.2015
Размер файла 549,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Анатомия и физиология головного мозга

Головной мозг человека пока еще является "черным ящиком" для ученых. С физиологической точки зрения головной мозг состоит из нервных клеток и структур, обеспечивающих их жизнедеятельность и защиту. Нервные клетки управляют работой всего организма человека. Для этого они должны хорошо и постоянно питаться, поэтому клетки головного мозга потребляют много кислорода и глюкозы, которая является основным источником энергии для них. Об этом свидетельствуют факты:

· Относительная масса мозга (по отношению ко всему телу) взрослого человека составляет около 2%, а кислорода мозг потребляет в состоянии покоя целых 25%.

· Клетки мозга потребляют примерно 115 грамм глюкозы в сутки, что составляет 17% от всей глюкозы, поступающей в организм.

Теперь понятно, какой это "прожорливый" механизм, управляющий нашим телом и сознанием.

Чтобы обеспечить такие значительные потребности головного мозга, природа снабдила его густой сетью кровеносных сосудов, обеспечивающей высокий кровоток. За 1 минуту через головной мозг проходит до 1 литра крови, что составляет 20% всего кровотока. Поэтому, даже кратковременное нарушение кровотока головного мозга (пусть даже какой-то его части) сразу заставляет "голодать" клетки мозга. После 5 минут абсолютного голода нервные клетки мозга безвозвратно отмирают.

ГОЛОВНОЙ МОЗГ, передний (высший) отдел центральной нервной системы позвоночных животных и человека, расположенный в полости черепа; материальный субстрат высшей нервной деятельности. Наряду с эндокринной системой регулирует все жизненно важные функции организма. Состоит из больших полушарий, промежуточного, среднего, заднего и продолговатого мозга. Отделы, расположенные между промежуточным и спинным мозгом, образуют ствол головного мозга. Наивысшего развития головной мозг достиг у человека (весит в среднем 1375 г у мужчин и 1275 г у женщин). Функции головного мозга и внутренние механизмы его интегративной деятельности до конца не выяснены.

Кровоснабжение мозга

Кровь в мозг поступает по двум парным артериям: внутренней сонной и позвоночной. В полости черепа обе позвоночные артерии сливаются, вместе образуя основную (базальную) артерию. На основании головного мозга основная артерия сливается с двумя сонными артериями, образуя единое артериальное кольцо. Такой каскадный механизм кровоснабжения головного мозга гарантирует достаточный кровоток, если какая-то из артерий выйдет из строя.

От артериального кольца отходят три сосуда: передняя, задняя и средняя мозговые артерии, питающие полушария головного мозга. Эти артерии идут по поверхности головного мозга, а уже от них вглубь мозга кровь доставляется более мелкими артериями.

Систему сонных артерий называют каротидным бассейном, который обеспечивает 2/3 потребностей мозга в артериальной крови и кровоснабжает передние и средние отделы мозга.

Систему артерий "позвоночная - основная" называют вертебробазилярным бассейном, который обеспечивает 1/3 потребностей головного мозга и доставляет кровь в задние отделы.

Оболочки мозга

Оболочки головного мозга защищают его от механических повреждений и от проникновения инфекций и токсических веществ.

Первая оболочка, защищающая наш мозг, носит название "мягкая мозговая оболочка". Она тесно прилегает к мозгу, заходит во все борозды и полости (желудочки), имеющиеся в толще самого мозга. Желудочки мозга заполнены жидкостью, которую называют ликвором или спинномозговой (цереброспинальной) жидкостью.

Твердая мозговая оболочка непосредственно примыкает к костям черепа. Между мягкой и твердой оболочкой располагается паутинная (арахноидальная) оболочка. Между паутинной и мягкой оболочками существует пространство (подпаутинное или субарахноидальное пространство), заполненное ликвором. Над бороздами мозга паутинная оболочка перекидывается, образуя мостик, а мягкая сливается с ними. Благодаря этому между двумя оболочками образуются полости, называемые цистернами. В цистернах находится цереброспинальная жидкость. Эти цистерны защищают мозг от механических травм, выполняя роль "подушек безопасности".

Нервные клетки и сосуды окружены нейроглией - специальными клеточными образованиями, которые выполняют защитную, опорную и обменную функции, обеспечивая реактивные свойства нервной ткани и участвуя в образовании рубцов, в реакциях воспаления и т.п.

При повреждениях головного мозга включается механизм пластичности, когда сохранившиеся структуры головного мозга берут на себя функции пораженных участков.

«Мозг состоит из двух нервов: «один в голове, другой в спине»

Анатомия головного мозга:

Все живое в природе, в том числе и человек постоянно находится под воздействием окружающей среды. На разнообразное раздражение реакцию дает центральная нервная система, которая отвечает за анализ и синтез поступаемой информации центральной нервной системы.

Центральная нервная система имеет два основных сегмента - головной и спинной мозг, которые характеризуются своими анатомо-физиологическими особенностями.

Головной мозг состоит из:

1. двух полушарий, соединенных между собой мозолистым телом - corpus collosum;

2. промежуточного мозга (зрительные бугры и подбугорная область);

3. среднего мозга (пластинки крыши четверохолмия и ножки большего мозга);

4. заднего мозга (мост, мозжечок и половина заднего мозга - мост, входящий в систему ствола мозга);

5. продолговатого мозга.

Средняя масса мозга составляет 1300 - 1500 грамм, но это не зависит ни от умственных, ни от интеллектуальных способностей. Это зависит от межнейрональных связей и межполушарных взаимоотношений.

Головной мозг имеет 12 пар черепномозговых нервов:

- I пара - обонятельный нерв;

- II пара - зрительный нерв, образующий неполный перекрест между собой под названием chiasma opticum;

- III пара - глазодвигательный нерв;

- IV пара - блоковый нерв;

- V пара - тройничный нерв;

- VI пара - отводящий нерв;

- VII пара - лицевой нерв;

- VIII пара - преддверноулитковый (слуховой) нерв;

- IX пара - языкоглоточный нерв;

- X пара - блуждающий нерв;

- XI пара - добавочный нерв;

- XII пара - подъязычный нерв.

Также центральная нервная система включает спинной мозг, который делится на цервикальный (шейный), дорсальный (грудной), люмбальный (поясничный), кокцигиальный (крестцовый) и копчиковый отдел.

ЗАПОМНИТЕ! Со II или III сегмента поясничного отдела позвоночника спинной мозг отсутствует: там находятся только нервные окончания и стволы (образующие сидалищный нерв).

Кровообращение головного мозга:

В головной мозг поступает 20% питательных веществ от всего организма. Основным компонентом являются глюкоза и кислород. Головной мозг питается из двух основных систем по внутренней сонной артерии, которая делится на систему из трех основных артериальных бассейнов и из позвоночных артерий:

1. Передние мозговые артерии;

2. Средние мозговые артерии;

3. Задние мозговые артерии;

4. Система вертебрально-базилярного бассейна.

Отток крови происходит по двум основным системам - венозный синус, яремные вены, позвонковые вены. (рисунок)

Физиология головного мозга

Мозг человека имеет две основные реакции на окружающую действительность - возбуждение и торможение. Как говорил физиолог И.П.Павлов - главное вовремя затормозиться или возбудиться, но это дано тем, кто с этим способен справиться, во время определить то или иное (торможение или возбуждение). Определенный слой людей думают, что они это умеют, а на самом деле нет.

Головной мозг, как и спинной, окружен 3 мозговыми оболочками:

1. наружная - твердая.

2. средняя - паутинная (тонкая и прозрачная, не содержит сосудов).

3. внутренняя - мягкая оболочка (содержит сосуды и заходит во все борозды головного мозга).

Различают 4 желудочка мозга (полости мозга):

Два боковых желудочка ( I- левый; II - правый ) находятся в соответствующих полушариях мозга.

III (третий) желудочек - находится в промежуточном мозге.

IV (четвертый) желудочек - в области продолговатого и заднего мозга.

Спинномозговая жидкость выполняет важные функции:

1. предохраняет мозг от механических воздействий;

2. регулирует внутричерепное давление;

3. участвует в обмене веществ между нервной тканью и кровью.

Продолговатый мозг, его функции.

Продолговатый мозг является начальным отделом головного мозга.

На передней поверхности имеется два продольных возвышения и срединная щель, на задней поверхности - срединная борозда.

Серое вещество внутри белого, находятся ядра IX, X, XI, XIIпар, (т.е. с 9 по 12) черепных нервов.

Эти ядра являются центрами безусловных рефлексов:

1. защитных (кашель, чихание, мигание, слезотечение, рвота);

2. пищевых (сосание, глотание, сокоотделение пищеварительных желез);

3. сердечно- сосудистых(регулирующих работу сердца и сосудов);

4. дыхательных (регулируют вентиляцию легких);

5. рефлексов позы (положение тела).

При частичном поражении продолговатого мозга наблюдаются нарушение дыхания, работы сердца и других функций, а при полном повреждении (разрушении) наступает гибель организма от остановки дыхания и работы сердца.

Задний мозг и его функции.

Задний мозг включает мост и мозжечок.

Мостпредставляет утолщение в форме поперечного валика. В нем лежат ядра черепных нервов V, VI, VII, VIII (т.е. с 5 по 8).

Мозжечок имеет 2 полушария (правое и левое) и среднюю часть - червь мозжечка. Серое вещество на наружной поверхности образует кору мозжечка. Под корой белое вещество, а внутри его - ядра мозжечка.

Между мозжечком, продолговатым мостом и мостом располагается четвертый желудочек.

Основная функция мозжечка - координация сложных движений тела, регуляция мышечного тонуса, регуляция деятельности внутренних органов.

При удалении мозжечка наблюдаются нарушения: качательные движения, падает тонус мышц, мышечная слабость, нарушаются движения и др.

Средний мозг и его функции.

Средний мозг состоит из двух ножек мозжечка и крыши (пластинки четверохолмия).

Внутри среднего мозга имеется полость, называемая водопроводом мозга, который соединяет третий желудочек с четвертым и содержит спинномозговую жидкость.

В сером веществе среднего мозга расположены ядра IVи IIIпар черепных нервов (4 и 3).

Крыша среднего мозга состоит из 2 верхних и 2 нижних холмиков (в них ядра серого вещества).

Функции среднего мозга:

Ядра серого вещества верхних холмиков являются первичными двигательными центрами и зрачкового рефлекса (поворот головы и глаз в ответ на световые раздражения, сужение зрачка при ярком свете).

Ядра нижних холмиков являются центрами реакции на звук - поворот головы в сторону звукового раздражителя.

Средний мозг регулирует мышечный тонус (стояние и передвижение).

Промежуточный мозг, его отделы и функции.

Промежуточный мозг включает:

1. таламическую область (таламус, метаталамус, эпиталамус);

2. гипоталамус;

3. третий желудочек.

Таламус (зрительный бугор). Является подкорковым центром всех видов чувствительности (кроме обонятельной, вкусовой и слуховой).

Метаталамуспредставлен 2 парами коленчатых тел: латеральных и медиальных. Латеральное коленчатое тело - первичный подкорковый центр зрения, медиальное - слуха.

Эпиталамус включает эндокринную железу эпифиз.

Гипоталамус образует нижние отделы промежуточного мозга и участвует в образовании дна третьего желудочка.

Гипоталамус является высшим подкорковым центром вегетативной нервной системы, которая регулирует работу внутренних органов, все виды обмена веществ, включая водно- солевой.

В гипоталамусе образуются гормоны вазопрессин иокситоцин.

Конечный мозг (большой) состоит из двух полушарий - левого и правого, разделены продольной щелью и соединяются мозолистым телом (спайка из белого вещества).

Имеет полости: левый (первый) и правый (второй) боковые желудочки.

Различают три поверхности:

1. верхнелатеральную (выпуклую);

2. медиальную (плоскую);

3. нижнюю (неровная, на основании черепа).

Поверхности полушарий имеют извилины и борозды.

Наличие борозд увеличивает поверхность коры полушарий.

В каждом полушарии различают 5 долей:

- Лобная доля ограничена от теменной доли центральной бороздой.

- Теменная доля находится сзади центральной борозды.

- Височная доля отделена от лобной и теменной долей глубокой латеральной бороздой.

- Затылочная доля отделена от теменной теменно-затылочной бороздой.

- Островковая доля находится в глубине латеральной борозды.

Большой мозг построен из серого и белого вещества.

Серое вещество снаружи полушария образует кору (плащ) большого мозга, в глубине полушария - подкорковые (базальные) ядра. Между корой и подкорковыми ядрами располагается белое вещество.

В конечном мозге расположена лимбическая система (висцеральный мозг) - это комплекс образований, которые являются:

1. высшим корковым центром регуляции деятельности вегетативной нервной системы и гипофиза;

2. центром формирования мотиваций, эмоций, памяти;

3. регулируют состояние сна, бодрствования и др.;

Базальные ядра являются высшими подкорковыми двигательными центрами (регулируют бег, ходьбу, регулируют мимику, мышечный тонус).

Кора мозга, ее функциональные зоны в коре больших полушарий.

Кора мозга - слой серого вещества на поверхности больших полушарий, площадь ? 2200 см2, 6 слоев нервных клеток, клетки различные ? 14 млд, толщина коры ? 2 - 4 мм.

Кора мозга - высший отдел нервной системы, регулирует функции организма, устанавливает связь с внешней средой. Коре мозга присуща ВНД (высшая нервная деятельность) психическая, регулирует поведение человека, направлена на приспособление организма к изменяющимся условиям внешней среды, обеспечивает память, логическое мышление, чтение, письмо, речь.

При патологии коры могут возникнуть: нарушения памяти, узнавания, речи, письма, изменяется поведение человека (агрессивное, не понимает окружающих и др.).

Функциональные зоны коры рассматриваются как:

1. моторные (двигательные);

2. сенсорные (чувствительные): кожной чувствительности, слуховой, зрительной, вкусовой, обонятельной;

3. ассоциативные, осуществляют связь между различными областями коры.

Функции коры.

Кора мозга - сложная система анализаторов, где происходит анализ раздражений.

Различают:

-сенсорные (чувствительные) зоны коры;

- двигательные (моторные),которые регулируют все движения человека (работу мышц).

1. В лобных долях коры мозга расположены:

центр письма, анализатор письменной речи, центр одновременного поворота головы и глаз в одну сторону, центр регулирующий работу всех скелетных мышц (у правшей - слева, у левшей - справа), центр речи (т.е. двигательный анализатор).

2. В теменных долях коры мозга расположены:

центр чтения, анализатор письменной речи, центр осязания (температурный, болевой, узнавания предметов на ощупь), центр навыков трудового, спортивного характера, центр кожной чувствительности.

3. В височных долях коры мозга расположены:

-слуховой анализатор,

-центры обоняния, (восприятие запахов, их определение), центры вкуса.

4. В затылочной доле коры мозга расположен зрительный анализатор.

В коре головного мозга расположены центры условных рефлексов, которые обеспечивают приспособление организма к меняющимся условиям внешней среды.

Высшая нервная деятельность (ВНД) - способность мозга к образованию общих понятий, представлений, к отвлеченному логическому мышлению.

2. Основные рефлекторные центры нервной системы

Спинной мозг. Спинной мозг является низшим и наиболее древним отделом центральной нервной системы. Он имеет значительно меньшую самостоятельность у человека по сравнению с животными. У человека его вес по отношению к головному мозгу составляет всего 2% (у кошек--25%, у кролика--45%, у черепах-- 120%).

Надежность сегментарных функций спинного мозга обеспечена множественностью его связей с периферией: каждый сегмент спинного мозга иннервирует 3 метамера (участка) тела -- собственный, половину вышележащего и половину нижележащего, а каждый метамер тела получает иннервацию от 3 сегментов спинного мозга. Такое устройство гарантирует осуществление функций спинного мозга при возможных его перерывах и других поражениях.

Распределение функций входящих и выходящих волокон спинного мозга подчиняется определенному закону: все чувствительные (афферентные) волокна входят в спинной мозг через его задние корешки, а двигательные и вегетативные (эфферентные) выходят через передние корешки. В задних корешках волокон гораздо больше, чем в передних (их соотношение у человека примерно 5:1) т. е. при большом разнообразии поступающей информации организм использует незначительное количество исполнительных приборов Основную часть волокон в спинномозговых корешках составляют мякотные волокна. По задним корешкам в спинной мозг поступают импульсы от рецепторов скелетных мышц, сухожилий, кожи, сосудов, внутренних органов. Передние корешки содержат волокна к скелетным мышцам и вегетативным ганглиям.

Задние корешки образованы волокнами одного из отростков афферентных нейронов, тела которых расположены вне центральной нервной системы -- в межпозвоночных ганглиях, а волокна другого отростка связаны с рецептором. Общее число афферентных волокон у человека достигает примерно 1 млн. Они различаются по диаметру. Наиболее толстые идут от рецепторов мышц и сухожилий, средние по толщине--от тактильных рецепторов кожи, от части мышечных рецепторов и от рецепторов внутренних органов (мочевого пузыря, желудка, кишечника и др.), наиболее тонкие миелинизированные и не миелинизированные волокна--от болевых рецепторов и терморецепторов. Одна часть афферентных волокон заканчивается на нейронах спинного мозга, другая часть направляется к нейронам продолговатого мозга, образуя спинно-бульбарный путь.

Передние корешки состоят из отростков мотонейронов передних рогов спинного мозга и нейронов боковых рогов. Волокна первых направляются к скелетной мускулатуре, а волокна вторых переключаются в вегетативных ганглиях на другие нейроны и иннервируют внутренние органы.

В составе серого вещества спинного мозга человека насчитывают около 13,5 млн. нервных клеток. Из них двигательные клетки -- мотонейроны -- составляют всего 3%, а 97% представляют промежуточные клетки (вставочные, или интернейроны). Следует иметь в виду, что по функциональному механизму эти виды нейронов не различаются. Среди мотонейронов спинного мозга различают крупные клетки -- альфа-мотонейроны и мелкие клетки -- гамма-мотонейроны. От альфа-мотонейронов отходят наиболее толстые и быстропроводящие волокна двигательных нервов, вызывающие сокращение скелетных мышечных волокон. Тонкие волокна гамма-мотонейронов не вызывают сокращения мышц. Они подходят к проприорецепторам -- мышечным веретенам и вызывают сокращение их внутренних (интрафузальных) мышечных волокон. При этом сокращении растягиваются рецепторы веретен, повышается их чувствительность, усиливается поток афферентных импульсов от скелетных мышц к нервным центрам. Таким образом, альфа-мотонейроны вызывают двигательные акты, а гамма-мотонейроны регулируют чувствительность мышечных рецепторов, информирующих мозг о выполнении этих движений.

Группу альфа-мотонейронов, иннервирующих отдельную скелетную мышцу, называют ее моторным ядром. Ядра крупных скелетных мышц состоят из мотонейронов, расположенных в 2--3 сегментах спинного мозга. Отростки этих клеток выходят из спинного мозга в составе 2--3 передних корешков. Мелкие же мышцы иннервируются мотонейронами одного сегмента, волокна которого идут в составе одного переднего корешка.

Особое место в деятельности спинного мозга занимают его промежуточные нейроны, или интернейроны. Это в основном мелкие клетки, через которые осуществляются межнейронные взаимодействия в спинном мозгу и координация деятельности мотонейронов. К промежуточным нейронам относятся и тормозные клетки Рэншоу, с помощью которых осуществляются возвратное торможение альфа-мотонейронов и реципрокное торможение центров мышц-антагонистов.

Огромное значение в сложных процессах координации имеют межнейронные взаимодействия на уровне спинного мозга. Это может быть продемонстрировано следующими данными: из огромного количества межнейронных синапсов лишь 10% образовано волокнами, приходящими из головного мозга, и всего около 1 % -- афферентными волокнами, т. е. почти 90% остальных синаптических контактов на спинальных клетках образовано волокнами, которые начинаются и кончаются в самом спинном мозгу. Это указывает на существенную роль собственной интегративной деятельности спинного мозга. Благодаря такому множеству существующих связей имеются широкие возможности комбинаций различных нервных клеток для организации любой целесообразной ответной реакции организма.

У человека процессы координации на уровне спинного мозга в значительно большей мере подчинены регулирующим влияниям головного мозга, чем у животных. Нарушение связей спинного мозга с головным приводит к выраженному расстройству протекания спинно-мозговых рефлексов (спинальный шок). На вставочных и моторных нейронах импульсы, приходящие в спинной мозг из головного, взаимодействуют с сегментарными афферентными влияниями. Приказы вышележащих этажей нервной системы увязываются таким образом с текущим состоянием двигательного аппарата.

Рефлексы спинного мозга можно подразделить на двигательные, осуществляемые альфа-мотонейронами передних рогов, и вегетативные, осуществляемые эфферентными клетками боковых рогов. Мотонейроны спинного мозга иннервируют все скелетные мышцы (за исключением мышц лица). Спинной мозг осуществляет элементарные двигательные рефлексы -- сгибательные и разгибательные, возникающие при раздражении рецепторов кожи или проприорецепторов мышц и сухожилий, а также посылает постоянную импульсацию к мышцам, поддерживая их напряжение -- мышечный тонус.

Мышечный тонус возникает в результате раздражения проприорецепторов мышц и сухожилий при их растяжении во время движения человека или при воздействии силы тяжести. Импульсы от проприорецепторов поступают к мотонейронам спинного мозга, а импульсы от мотонейронов направляются к мышцам, обеспечивая поддержание их тонуса. При разрушении нервных центров спинного мозга или при перерезке нервных волокон, идущих от мотонейронов к мышцам, исчезает тонус скелетных мышц. Участие спинного мозга в двигательной деятельности проявляется не только в поддержании тонуса, но и в организации элементарных двигательных актов и сложной координации деятельности различных мышц (например, согласованной деятельности мышц-антагонистов). Это возможно благодаря мощному развитию системы вставочных нейронов и их богатым взаимосвязям внутри спинного мозга.

Специальные мотонейроны иннервируют дыхательную мускулатуру -- межреберные мышцы и диафрагму и обеспечивают дыхательные движения. Вегетативные нейроны иннервируют все внутренние органы (сердце, сосуды, железы внутренней секреции, пищеварительный тракт и др.) и осуществляют рефлексы, регулирующие их деятельность.

Проводниковая функция спинного мозга связана с передачей в вышележащие отделы нервной системы получаемого с периферии потока информации и с проведением импульсов, идущих из головного мозга в спинной. Наиболее важными восходящими путями спинного мозга являются: 1) путь в продолговатый мозг--спинно-бульбарный; 2) в мозжечок--спинно-мозжечковый, несущие импульсы ог проприорецепторов мышц, суставов и сухожилий, частично от рецепторов кожи; 3) в промежуточный мозг--спинно-таламический путь (от тактильных, болевых и терморецепторов). По различным восходящим путям передаются в головной мозг сигналы от интерорецепторов внутренних органов

Продолговатый мозг и варолиев мост. Продолговатый мозг и варолиев мост относят к заднему мозгу. Он является частью ствола мозга. Задний мозг осуществляет сложную рефлекторную деятельность и служит для соединения спинного мозга с вышележащими отделами головного мозга. В срединной его области расположены задние отделы ретикулярной формации, оказывающие неспецифические тормозные влияния на спинной и головной мозг.

Через продолговатый мозг проходят восходящие пути от рецепторов слуховой и вестибулярной чувствительности. Функции нейронов вестибулярных ядер продолговатого мозга разнообразны. Одна часть их реагирует на перемещение тела (например, при горизонтальных ускорениях в одну сторону они увеличивают частоту разрядов, а при ускорениях в другую сторону уменьшают их). Другая часть предназначена для связи с моторными системами. Эти вестибулярныенейроны, повышая возбудимость мотонейронов спинного мозга и нейронов двигательной зоны коры больших полушарий, позволяют регулировать двигательные акты в соответствии с вестибулярными влияниями.

В продолговатом мозгу оканчиваются афферентные нервы, несущие информацию от рецепторов кожи и мышечных рецепторов. Здесь они переключаются на другие нейроны, образуя путь в таламус и далее в кору больших полушарий. Восходящие пути кожно-мышечной чувствительности (как и большая часть нисходящих кортико-спинальных волокон) перекрещиваются на уровне продолговатого мозга.

В продолговатом мозгу и варолиевом мосту находится большая группа черепно-мозговых ядер (от V до XII пары), иннервирующих кожу, слизистые оболочки, мускулатуру головы и ряд внутренних органов (сердце, легкие, печень). Совершенство этих рефлексов обусловлено наличием большого количества нейронов, образующих ядра и соответственно большого числа нервных волокон. Так, только в одном нисходящем корешке тройничного нерва, проводящем болевую, температурную и тактильную чувствительность от головы, содержится во много раз больше волокон, чем в спинно-таламическом пути, содержащем волокна, идущие от болевых и температурных рецепторов остальной части тела.

На дне IV желудочка в продолговатом мозгу находится жизненно важный дыхательный центр, состоящий из центров вдоха и выдоха. Его составляют мелкие клетки, посылающие импульсы к дыхательным мышцам через мотонейроны спинного мозга. В непосредственной близости расположен сердечно-сосудистый центр. Его крупные клетки регулируют деятельность сердца и состояние сосудов. Функции этих центров взаимосвязаны. Ритмические разряды дыхательного центра изменяют частоту сердечных сокращений, вызывая дыхательную аритмию -- учащение сердцебиений на вдохе и замедление их на выдохе.

В продолговатом мозгу находится ряд рефлекторных центров, связанных с процессами пищеварения. Это группа центров моторных рефлексов (жевания, глотания, движений желудка и части кишечника), а также секреторных (слюноотделение, выделение пищеварительных соков желудка, поджелудочной железы и др.). Кроме того, здесь находятся центры некоторых защитных рефлексов: чихания, кашля, мигания, слезоотделения, рвоты.

Продолговатый мозг играет важную роль в осуществлении двигательных актов и в регуляции тонуса скелетных мышц (см. ниже). Влияния, исходящие из вестибулярных ядер продолговатого мозга, усиливают тонус мышц-разгибателей, что важно для организации позы.

Неспецифические отделы продолговатого мозга, наоборот, оказывают угнетающее влияние на тонус скелетных мышц, снижая его и в мышцах-разгибателях. Продолговатый мозг участвует в осуществлении рефлексов поддержания и восстановления позы тела, так называемых установочных рефлексов (см. ниже).

Средний мозг. Через средний мозг, являющийся продолжением ствола мозга, проходят восходящие пути от спинного и продолговатого мозга к таламусу, коре больших полушарий и мозжечку.

В состав среднего мозга входят четверохолмия, черная субстанция и красные ядра. Срединную его часть занимает ретикулярная формация (см. § 6 этой главы), нейроны которой оказывают мощное активирующее влияние на всю кору больших полушарий, а также на спинной мозг.

Передние бугры четверохолмия представляют собой первичные зрительные центры, а задние бугры--первичные слуховые центры. Ими осуществляют также ряд реакций, являющихся компонентами ориентировочного рефлекса при появлении неожиданных раздражителей. В ответ на внезапное раздражение происходит поворот головы и глаз в сторону раздражителя, а у животных--настораживания ушей. Этот рефлекс (по И. П. Павлову, рефлекс «Что такое?») необходим для подготовки организма к своевременной реакции на любое новое воздействие. Он сопровождается усилением тонуса мыщц-сгибателей (подготовка к двигательной реакции) и изменениями вегетативных функций (дыхание, сердцебиения).

Средний мозг играет важную роль в регуляции движений глаз. Управление глазодвигательным аппаратом осуществляют расположенные в среднем мозгу ядра блокового (IV) нерва, иннервирующего верхнюю косую мышцу глаза, и глазодвигательного (III) нерва иннервирующего верхнюю, нижнюю и внутреннюю прямые мышцы нижнюю косую мышцу и мышцу, поднимающую веко, а также расположенное в заднем мозгу ядро отводящего (VI) нерва, иннервирующего наружную прямую мышцу глаза. С участием этих ядер осуществляются поворот глаза в любом направлении, аккомодация глаза, фиксация взгляда на близких предметах путем сведения зрительных осей, зрачковый рефлекс (расширение зрачков в темноте и сужение их на свету).

У человека при ориентации во внешней среде ведущим является зрительный анализатор, поэтому особое развитие получили передние бугры четверохолмия (зрительные подкорковые центры). У животных с преобладанием слуховой ориентации (собака, летучая мышь), наоборот, в большей степени развиты задние бугры (слуховые подкорковые центры).

Черная субстанция среднего мозга имеет отношение к рефлексам жевания и глотания, участвует в регуляции тонуса мышц (особенно при выполнении мелких движений пальцами рук).

В среднем мозгу важные функции осуществляет красное ядро. О возрастании роли этого ядра в процессе эволюции свидетельствует резкое увеличение его размеров по отношению к остальному объему среднего мозга. Красное ядро тесно связано с корой больших полушарий, ретикулярной формацией ствола, мозжечком и спинным мозгом.

От красного ядра начинается руброспинальный путь к мотонейронам спинного мозга. С его помощью осуществляется регуляция тонуса скелетных мышц, происходит усиление тонуса мышц-сгибателей. Это имеет большое значение как при поддержании позы в состоянии покоя, так и при осуществлении движений. Импульсы, приходящие в средний мозг от рецепторов сетчатки глаза и от проприорецепторов глазодвигательного аппарата, участвуют в осуществлении глазодвигательных реакций, необходимых для ориентации в пространстве, выполнении точностных движений.

Промежуточный мозг. В состав промежуточного мозга, который является передним концом ствола мозга, входят зрительные бугры -- таламус и подбугровая область -- гипоталамус.

Таламус представляет собой важнейшую «станцию» на пути афферентных импульсов в кору больших полушарий.

Ядра таламуса подразделяют на специфические и неспецифические.

К специфическим относят переключательные (релейные) ядра и ассоциативные. Через переключательные ядра таламуса передаются афферентные влияния от всех рецепторов тела. Это так называемые специфические восходящие пути. Они характеризуются соматотопической организацией. Особенно большое представительство таламусе имеют эфферентные влияния, поступающие от рецепторов лица и пальцев рук. От таламических нейронов начинается путь к соответствующим воспринимающим областям коры -- слуховым, зрительных и др. Ассоциативные ядра непосредственно не связаны с периферией. Они получают импульсы от переключающих ядер и обеспечивают их взаимодействие на уровне таламуса, т. е. осуществляют подкорковую интеграцию специфических влияний. Импульсы от ассоциативных ядер таламуса поступают в ассоциативные области коры больших полушарий, где участвуют в процессах высшего афферентного синтеза.

Помимо этих ядер, в таламусе имеются неспецифические ядра, которые могут оказывать как активирующее, так и тормозящее влияние на кору (см. § 6 этой главы).

Благодаря обширным связям таламус играет важнейшую роль в жизнедеятельности организма. Импульсы, идущие от таламуса в кору, изменяют состояние корковых нейронов и регулируют ритм корковой активности. Между корой и таламусом существуют кольцевые кортико-таламические взаимосвязи, лежащие в основе образования условных рефлексов. С непосредственным участием таламуса происходит формирование эмоций человека. Таламусу принадлежит большая роль в возникновении ощущений, в частности ощущения боли.

Подбугровая область расположена под зрительными буграми и имеет тесные нервные и сосудистые связи с прилежащей железой внутренней секреции--гипофизом. Здесь расположены важные вегетативные нервные центры, регулирующие обмен веществ в организме, обеспечивающие поддержание постоянства температуры тела (у теплокровных) и другие вегетативные функции.

Участвуя в выработке условных рефлексов и регулируя вегетативные реакции организма, промежуточный мозг играет очень важную роль в двигательной деятельности, особенно при формировании новых двигательных актов и выработке двигательных навыков.

Подкорковые узлы. Подкорковыми узлами называют группу ядер серого вещества, расположенных непосредственно под полушариями большого мозга. К ним относятся парные образования: хвостатое тело и скорлупа, составляющие вместе полосатое тело (стриатум), и бледное ядро (паллидум). Подкорковые ядра получают сигналы от рецепторов тела через зрительные бугры. Эфферентные импульсы подкорковых ядер направляются к нижележащим центрам экстрапирамидной системы. Подкорковые узлы функционируют в единстве с корой больших полушарий, промежуточным мозгом и другими отделами мозга. Это обусловлено наличием кольцевых связей между ними. Через подкорковые ядра могут соединяться между собою разные отделы коры больших полушарий, что имеет большое значение при образовании условных рефлексов. Совместно с промежуточным мозгом подкорковые ядра участвуют в осуществлении сложных безусловных рефлексов: оборонительных, пищевых и др.

Представляя собой высший отдел мозгового ствола, подкорковые узлы объединяют деятельность нижележащих образований, регулируя мышечный тонус и обеспечивая необходимое положение тела во время физической работы. Бледное ядро выполняет моторную функцию. Оно обеспечивает проявление древних автоматизмов -- ритмических рефлексов. С его деятельностью связано также выполнение содружественных (например, движения туловища и рук при ходьбе), мимических и других движений.

Полосатое тело оказывает на двигательную деятельность тормозящее, регулирующее влияние, угнетая функции бледного ядра, а также моторкой области коры больших полушарий. При заболевании полосатого тела возникают непроизвольные беспорядочные сокращения мышц (гиперкинезы). Они обусловливают некоординированные толчкообразные движения головы, рук и ног. Нарушения возникают также в чувствительной сфере -- понижается болевая чувствительность, расстраиваются внимание и восприятие.

В настоящее время выявлено значение хвостатого тела в самооценке поведения человека. При неправильных движениях или умственных операциях из хвостатого ядра в кору больших полушарий поступают импульсы, сигнализирующие об ошибке.

Мозжечок. Это -- надсегментарное образование, не имеющее непосредственной связи с исполнительными аппаратами. Мозжечок входит в состав экстрапирамидной системы. Он состоит из двух полушарий и червя, находящегося между ними. Наружные поверхности полушарий покрыты серым веществом -- корой мозжечка, а скопления серого вещества в белом веществе образуют ядра мозжечка.

Мозжечок получает импульсы от рецепторов кожи, мышц и сухожилий через спинно-мозжечковые пути и через ядра продолговатого мозга (от спинно-бульбарного пути). Из продолговатого мозга в мозжечок поступают также вестибулярные влияния, а из среднего мозга--зрительные и слуховые. Корково-мосто-мозжечковый путь связывает мозжечок с корой больших полушарий. В коре мозжечка представительство различных периферических рецепторов имеет соматотопическую организацию. Кроме того, наблюдается упорядоченность связей этих зон с соответствующими воспринимающими областями коры. Так, зрительная зона мозжечка связана со зрительной зоной коры, представительство каждой группы мышц в мозжечке -- с представительством одноименных мышц в коре и т. д. Такое соответствие облегчает совместную деятельность мозжечка и коры в управлении различными функциями организма.

Эфферентные импульсы от мозжечка поступают к красным ядрам ретикулярной формации, продолговатому мозгу, таламусу, коре и подкорковым ядрам.

Мозжечок участвует в регуляции двигательной деятельности. Электрические раздражения поверхности мозжечка вызывают движения глаз, головы и конечностей, которые отличаются от корковых моторных эффектов тоническим характером и большой длительностью. Мозжечок регулирует изменение и перераспределение тонуса скелетных мышц, что необходимо для организации нормальной позы и двигательных актов.

Функции мозжечка изучались в клинике при его поражениях у человека, а также у животных путем удаления (экстирпации мозжечка) (Л. Лючиани, Л. А. Орбели). В результате выпадения функций мозжечка возникают двигательные расстройства: атония-- резкое падение и неправильное распределение тонуса мышц, астазия -- невозможность сохранения неподвижного положения, непрерывные качательные движения, дрожание головы, туловища и конечностей, астения -- повышенная утомляемость мышц, атаксия -- нарушение координированных движений, походки и др.

Мозжечок оказывает влияние также на ряд вегетативных функций, например желудочно-кишечного тракта, на уровень кровяного давления, на состав крови.

Таким образом, в мозжечке происходит интеграция самых различных сенсорных влияний, в первую очередь проприоцептивных и вестибулярных. Мозжечок даже ранее считали центром равновесия и регуляции мышечного тонуса. Однако его функции, как оказалось, гораздо обширнее--охватывают также регуляцию деятельности вегетативных органов. Деятельность мозжечка протекает в непосредственной связи с корой больших полушарий, под ее контролем.

3. Кора больших полушарий головного мозга

головной мозг нервный кровоснабжение

Общий план организации коры. Кора больших полушарий является высшим отделом центральной нервной системы, который в процессе филогенетического развития появляется позже всего и формируется в ходе индивидуального (онтогенетического) развития позже других отделов мозга. Кора представляет собой слой серого вещества толщиной 2--3 мм, содержащий в среднем около 14 млрд. (от 10 до 18 млрд.) нервных клеток, нервные волокна и межуточную ткань (нейроглию). На поперечном ее срезе по расположению нейронов и их связей различают 6 горизонтальных слоев. Благодаря многочисленным извилинам и бороздам площадь поверхности коры достигает 0,2 м2. Непосредственно под корой находится белое вещество, состоящее из нервных волокон, которые передают возбуждение в кору и из нее, а также от одних участков коры другим.

Корковые нейроны и их связи. Несмотря на огромное число нейронов в коре, известно очень немного их разновидностей. Основными типами их являются пирамидные и звездчатые нейроны. Которые не различаются по функциональному механизму.

В афферентной функции коры и в процессах переключения возбуждения на соседние нейроны основная роль принадлежит звездчатым нейронам. Они составляют у человека более половины всех клеток коры. Эти клетки имеют короткие ветвящиеся аксоны, не выходящие за пределы серого вещества коры, и короткие ветвящиеся дендриты. Звездчатые нейроны участвуют в процессах восприятия раздражении и объединении деятельности различных пирамидных нейронов.

Пирамидные нейроны осуществляют эфферентную функцию коры и внутрикорковые процессы взаимодействия между удаленными друг от друга нейронами. Они делятся на крупные пирамиды, от которых начинаются проекционные, или эфферентные, пути к подкорковым образованиям, и мелкие пирамиды, образующие ассоциативные пути к другим отделам коры. Наиболее крупные пирамидные клетки -- гигантские пирамиды Беца -- находятся в передней центральной извилине, в так называемой моторной зоне коры. Характерная особенность крупных пирамид -- их вертикальная ориентация в толще коры. От тела клетки вертикально вверх к поверхности коры направлен наиболее толстый (верхушечный) дендрит, через который в клетку поступают различные афферентные влияния от другихнейронов, а вертикально вниз отходит эфферентный отросток -- аксон.

Многочисленность контактов (например, только на дендритах крупной пирамиды их насчитывают от 2 до 5 тыс.) обеспечивает возможность широкой регуляции деятельности пирамидных клеток со стороны множества других нейронов. Это позволяет координировать ответные реакции коры (в первую очередь ее моторную функцию) с разнообразными воздействиями из внешней среды и внутренней среды организма.

Для коры больших полушарий характерно обилие межнейронных связей. По мере развития мозга человека после его рождения увеличивается число межцентральных взаимосвязей, особенно интенсивно до 18 лет.

Функциональной единицей коры является вертикальная колонка взаимосвязанных нейронов. Вытянутые по вертикали крупные пирамидные клетки с расположенными над ними и под ними нейронами образуют функциональные объединения нейронов. Все нейроны вертикальной колонки отвечают на одно и то же афферентное раздражение (от одного и того же рецептора) одинаковой реакцией и совместно формируют эфферентные ответы пирамидных нейронов.

Распространение возбуждения в поперечном направлении--от одной вертикальной колонки к другой -- ограничено процессами торможения. Возникновение активности в вертикальной колонке приводит к возбуждению спинальных мотонейронов и сокращению связанных с ними мышц. Этот путь используется, в частности, при произвольном управлении движениями конечностей.

Первичные, вторичные и третичные поля коры. Особенности строения и функционального значения отдельных участков коры позволяют выделить отдельные корковые поля.

Различают три основные группы полей в коре: первичные, вторичные и третичные поля.

Первичные поля связаны с органами чувств и органами движения на периферии, они раньше других созревают в онтогенезе, имеют наиболее крупные клетки. Это так называемые ядерные зоны анализаторов, по И. П. Павлову (например, поле болевой, температурной, тактильной и мышечно-суставной чувствительности в задней центральной извилине коры, зрительное поле в затылочной области, слуховое поле в височной области и двигательное поле в передней центральной извилине коры) (рис. 54). Эти поля осуществляют анализ отдельных раздражений, поступающих в кору от соответствующих рецепторов. При разрушении первичных полей возникают так называемая корковая слепота, корковая глухота и т. п. Рядом расположены вторичные поля, или периферические зоны анализаторов, которые связаны с отдельными органами только через первичные поля. Они служат для обобщения и дальнейшей обработки поступающей информации. Отдельные ощущения синтезируются в них в комплексы, обусловливающие процессы восприятия. При поражении вторичных полей сохраняется способность видеть предметы, слышать звуки, но человек их не узнает, не помнит их значения. Первичные и вторичные поля имеются и у человека, и у животных.

Наиболее далеки от непосредственных связей с периферией третичные поля, или зоны перекрытия анализаторов. Эти поля есть только у человека. Они занимают почти половину территории коры и имеют обширные связи с другими отделами коры и с неспецифическими системами мозга. В этих полях преобладают наиболее мелкие и разнообразные клетки. Основным клеточным элементом здесь являются звездчатые нейроны. Третичные поля находятся в задней половине коры -- на границах теменных, височных и затылочных ее областей и в передней половине -- в передних частях лобных областей. В этих зонах оканчивается наибольшее число нервных волокон, соединяющих левое и правое полушария, поэтому роль их особенно велика в организации согласованной работы обоих полушарий. Третичные поля созревают у человека позже других корковых полей, они осуществляют наиболее сложные функции коры. Здесь происходят процессы высшего анализа и синтеза. В третичных полях на основе синтеза всех афферентных раздражений и с учетом следов прежних раздражении вырабатываются цели и задачи поведения. Согласно им происходит программирование двигательной деятельности. Развитие третичных полей у человека связывают с функцией речи. Мышление (внутренняя речь) возможно только при совместной деятельности анализаторов, объединение информации от которых происходит в третичных полях.

При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью (произносит лишь бессмысленные звуки) и даже простейшими двигательными навыками (не может одеваться, пользоваться орудиями труда и т. п.).

Воспринимая и оценивая все сигналы из внутренней и внешней среды, кора больших полушарий осуществляет высшую регуляцию всех двигательных и эмоционально-вегетативных реакций.

Функции коры больших полушарии. Кора больших полушарий выполняет наиболее сложные функции организации приспособительного поведения организма во внешней среде. Это прежде всего функция высшего анализа и синтеза всех афферентных раздражении.

Афферентные сигналы поступают в кору по разным каналам, в разные ядерные зоны анализаторов (первичные поля), а затем синтезируются во вторичных и третичных полях, благодаря деятельности которых создается целостное восприятие внешнего мира. Этот синтез лежит в основе сложных психических процессов восприятия, представления, мышления. Кора больших полушарий представляет собою орган, тесно связанный с возникновением у человека сознания и регуляцией его общественного поведения. Важной стороной деятельности коры больших полушарий является замыкательная функция -- образование новых рефлексов и их систем (условные рефлексы, динамические стереотипы--см. главу XV).

Благодаря необычайно большой продолжительности сохранения в коре следов прежних раздражении (памяти) в ней накапливается огромный объем информации. Это имеет большое значение для сохранения индивидуального опыта, который используется по мере необходимости.

Электрическая активность коры больших полушарии. Изменения функционального состояния коры отражаются на характере ее биопотенциалов. Регистрация электроэнцефалограммы (ЭЭГ), т. е. электрической активности коры, производится непосредственно с ее обнаженной поверхности (в опытах на животных и при операциях на человеке) или через неповрежденные покровы головы (в естественных условиях на животных и человеке). И, т.о. регистрируют суммарную активность всех ближайших нейронов. Современные электро-энцефалографы усиливают этипотенциалы в 2--3 млн. раз и дают возможность исследовать ЭЭГ от многих точек коры одновременно.

В ЭЭГ различают определенные диапазоны частот, называемые ритмами ЭЭГ (рис. 55). В состоянии относительного покоя чаще всего регистрируется альфа-ритм (8--12 колебаний в 1 сек.), в состоянии активного внимания -- бета-ритм (выше 13 колебаний в 1 сек.), при засыпании, некоторых эмоциональных состояниях -- тэта-ритм (4--7 колебаний в 1 сек.), при глубоком сне, потере сознания, наркозе -- дельта-ритм (1--3 колебания в 1 сек.).

В ЭЭГ отражаются особенности взаимодействия корковых нейронов при умственной и физической работе. Отсутствие налаженной координации при выполнении непривычной или тяжелой работы приводит к так называемой десинхронизации ЭЭГ -- быстрой асинхронной активности (см. рис. 55). По мере формирования двигательного навыка происходит сонастраивание активности отдельных связанных с данным движением нейронов и отключение посторонних.

В ЭЭГ при этом возникают различные формы синхронизации (см. рис. 55, ж, з). Выполнение освоенного и автоматизированного движения может протекать при незначительной активности очень небольшого числа корковых нейронов, находящихся в ограниченных областях коры. При этом почти на всей остальной поверхности коры восстанавливается исходный ритм колебаний -- альфа-ритм (см. рис. 55, з).

В процессе спортивной тренировки происходит перестройка и совершенствование функций коры больших полушарий. С ростом спортивного мастерства увеличиваются амплитуда и регулярность проявления фоновой активности -- альфа-ритма в состоянии покоя. При развитии качества быстроты (например, у баскетболистов) повышается частота волн альфа-ритма, что способствует ускорению произвольных движений.

В процессе мышечной работы значительно усиливается по сравнению с состоянием относительного покоя взаимосвязанность (синхронность и синфазность) электрической активности различных областей коры. Это облегчает функциональные взаимодействия между различными корковыми центрами. Процесс формирования двигательного навыка сопровождается концентрацией взаимосвязанной активности в ограниченных зонах коры, наиболее важных для текущей деятельности. Между этими зонами устанавливается общий ритм активности. В такие характерные системы взаимодействующих корковых зон включаются не только первичные поля (моторные, зрительные и др.), но и вторичные (например, премоторные и др.) и особенно третичные поля: передние -- программирующие лобные области и задние -- зоны афферентного синтеза (нижнетеменные и др.).

Размещено на Allbest.ru

...

Подобные документы

  • Общий обзор строения больших полушарий головного мозга человека, его доли и их функциональные особенности. Архитектоника коры больших полушарий. Строение промежуточного мозга, ствола мозга, мозжечка и продолговатого мозга, его ретикулярная формация.

    контрольная работа [5,2 M], добавлен 04.04.2010

  • Изучение особенностей строения и функций головного мозга высших позвоночных - центрального органа нервной системы, который состоит из ряда структур: коры больших полушарий, базальных ганглиев, таламуса, мозжечка, ствола мозга. Стадии эмбриогенеза мозга.

    реферат [21,9 K], добавлен 07.06.2010

  • Анатомия серого вещества, расположенного по периферии полушарий большого мозга, его роль в осуществлении высшей нервной деятельности. Борозды и извилины верхнелатеральной поверхности. Цитоархитектонические поля, филогенез и онтогенез коры головного мозга.

    презентация [1,1 M], добавлен 05.12.2013

  • Состав белого вещества головного мозга. Строение и функции ствола. Анатомические особенности мозжечка. Функции большого мозга. Вертикальная и горизонтальная организация коры. Аналитико-синтетическая деятельность коры полушарий. Лимбическая система мозга.

    реферат [38,9 K], добавлен 10.07.2011

  • Строение головного мозга человека, гистология его сосудистой оболочки. Функции желез мозга: эпифиза, таламуса, гипоталамуса, гипофиза. Характеристика ассоциативных зон коры больших полушарий мозга и их участие в процессах мышления, запоминания и обучения.

    презентация [6,8 M], добавлен 03.11.2015

  • Исследование расположения и отделов головного мозга человека. Изучение функций промежуточного, среднего и продолговатого мозга. Строение мозжечка. Особенности развития головного мозга у детей первых лет жизни. Органы зрения и слуха у новорожденных детей.

    презентация [1,7 M], добавлен 18.03.2015

  • Строение и функционирование головного мозга человека. Влияние параметров головного мозга на его работу. Причины отклонений деятельности головного мозга. Особенности хранения информации. Существование без головного мозга. Упражнения для остроты ума.

    реферат [664,0 K], добавлен 02.06.2012

  • Понятие о строении и физиологии коры головного мозга. Ее функциональные зоны и синдромы их поражения. Основные группы полей в коре. Высшие корковые функции как основа деятельности человека. Причины их нарушения. Современные методы их исследования.

    реферат [24,7 K], добавлен 25.11.2014

  • Особенности строения головного мозга человека. Борозды и извилины полушарий и теменной доли конечного мозга. Прецентральная извилина как участок лобной доли коры больших полушарий. Функция постцентральной извилины и анализаторы теменной доли мозга.

    контрольная работа [470,0 K], добавлен 29.12.2010

  • Общее строение головного мозга, его отделы. Строение мозжечка - отдела головного мозга, отвечающего за координацию движений, регуляцию равновесия и мышечного тонуса. Клинические проявления, развивающиеся при поражении мозжечка или его недостаточности.

    контрольная работа [28,8 K], добавлен 16.09.2015

  • Развитие головного мозга человека. Функции отделов мозга: лобной, теменной, затылочной, височной доли, островка. Общий обзор головного мозга, строение и функции ромбовидного, среднего и промежуточного мозга. Морфологические особенности конечного мозга.

    реферат [33,4 K], добавлен 03.09.2014

  • Строение головного мозга человека. Функции его отделов: лобной, теменной, затылочной, височной доли, островка. Лимбическая система. Кора больших полушарий. Локализация функций в коре больших полушарий. Базальные ядра. Белое вещество конечного мозга.

    презентация [603,0 K], добавлен 27.08.2013

  • Строение и структура головного мозга. Мозговой мост и мозжечок. Промежуточный мозг как основа сенсорных, двигательных и вегетативных реакций. Функции головного мозга. Отличительные черты и задачи спинного мозга как части центральной нервной системы.

    реферат [27,1 K], добавлен 05.07.2013

  • Развитие анатомии (научная анатомия – после XVI века). Желудочковая система головного мозга. Спинно-мозговая жидкость (ликвор), её состав, функции, пути циркуляции. Элементы периферической нервной системы. Черепные нервы: характеристика V–VII пар.

    реферат [23,0 K], добавлен 31.10.2008

  • Схема головного мозга человека. Отделы промежуточного мозга и мозжечка; ядра таламуса и гипоталамуса, их функции и симптомы поражения. Афферентные связи коры мозжечка; связи вестибулоцеребеллюма, спиноцеребеллюма и неоцеребеллюма. Мозжечок как компаратор.

    презентация [2,3 M], добавлен 08.01.2014

  • Изучение расположения, строения и основных функций головного мозга человека, который координирует и регулирует все жизненные функции организма и контролирует поведение. Отделы головного мозга. Сколько весит головной мозг человека. Заболевания и поражения.

    презентация [3,1 M], добавлен 28.10.2013

  • Полушария большого мозга. Продолговатый мозг. Мост. Мозжечок. Средний мозг. Промежуточный мозг. Конечный мозг. Кора большого мозга. Белое вещество полушарий. Боковые желудочки. Оболочки головного мозга.

    реферат [378,0 K], добавлен 05.10.2006

  • Исследование выраженности предпочтения к использованию правой или левой руки у учащихся гуманитарных классов. Обзор функциональной асимметрии больших полушарий головного мозга. Анализ проявления асимметрии мозга в разных областях человеческого организма.

    реферат [204,7 K], добавлен 26.12.2011

  • Строение ствола мозга, основные функции его тонических рефлексов. Особенности функционирования продолговатого мозга. Расположение варолиева моста, анализ его функций. Ретикулярная формация мозга. Физиология среднего и промежуточного мозга, мозжечка.

    презентация [751,7 K], добавлен 09.10.2016

  • Специализация полушарий головного мозга. Связь асимметрии мозга с восприятием эмоциональных сигналов и особенностями мыслительной деятельности. Взаимоотношение полушарий и творческая деятельность. Функциональная структура и стадии поведенческого акта.

    контрольная работа [36,9 K], добавлен 12.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.