Понятие рибосом

Химический состав и морфофункциональная характеристика рибосом. Взаимодействие органоидов клетки в процессе биосинтеза белка. Особенности эмбриогенеза птиц. Классификация и строение нервных волокон. Изучение основных стадий развития куриного зародыша.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 01.06.2015
Размер файла 29,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Содержание

1. Рибосомы. Химический состав и морфофункциональная характеристика. Взаимодействие органоидов клетки в процессе биосинтеза белка

2. Особенности эмбриогенеза птиц

3. Нервные волокна. Классификация и строение

Список использованных источников

рибосома клетка белок

1. Рибосомы. Химический состав и морфофункциональная характеристика. Взаимодействие органоидов клетки в процессе биосинтеза белка

Рибосомы представляют собой крупный рибонуклеопротеидный комплекс с молекулярной массой около 2,5 мДа, состоящий из рибосомных белков, молекул рРНК и ассоциированных с ними факторов трансляции. Рибосомы - немембранные органеллы, на которых происходит синтез белка в клетке. Они представляют собой сферические структуры с диаметром около 20 нм. Эти самые мелкие клеточные органеллы устроены чрезвычайно сложно. Ни одна молекула, входящая в состав рибосом, не повторяется дважды. Лучше других изучены рибосомы бактерии Е. coli (кишечной палочки). Рибосомы прокариотических и эукариотических организмов различаются по размерам. Электронно-микроскопические изображения рибосом всех известных организмов ясно показывают, что эти частицы построены из двух неравных субчастиц. Если в среде, окружающей рибосомы, понизить концентрацию ионов магния или каким-либо еще образом увеличить электростатическое отталкивание фосфатных групп рибосомной РНК, то рибосома диссоциирует на две неравные субчастицы - большую и малую, с соотношением их масс около 2:1.

При диссоциации прокариотической субчастицы образуются 30S и 50S субчастицы, а эукариотической - 40S и 60S. Полные рибосомные частицы и их субчастицы принято обозначать в соответствии с их коэффициентами седиментации (скоростями осаждения, лат. sedimentum - осадок) в ультрацентрифуге, выражаемыми в единицах Сведберга (S). S - коэффициент седиментации, он зависит от молекулярной массы и пространственной конформации частицы, осаждаемой при центрифугировании. Бактериальная рибосома с молекулярной массой около 3-х миллионов (3 на 10 в степени 6) имеет коэффициент седиментации 70S и обозначается как 70S-частица , а несколько более крупная рибосома эукариотических организмов (животные, растения и грибы) предстает как 80S-частица . Их диссоциация на субчастицы обратима, и при восстановлении условий субчастицы реассоциируют в полные рибосомные частицы. Электронно-микроскопические наблюдения, эксперименты по диссоциации рибосом, и более изощренные подходы в изучении этих частиц показывают, что рибосома построена из двух неравных блоков - большой и малой субчастиц. Блоки (субчастицы) рибосомы довольно лабильно ассоциированы друг с другом. 70S рибосомы эубактерий в своем составе содержат 55-60 рибосомных белков, для 80S рибосом эукариот это число составляет 75-85. В обоих случаях рибосомные белки, в составе рибосом ассоциированы с молекулами рРНК, образуя пространственно организованные рибонуклеопротеиновые тяжи.

Коэффициент седиментации бактериальной рибосомы равен 70S, т.к нельзя механически складывать 30S и 50S, поскольку конформация ассоциированной рибосомы отличается от конформации каждой субчастицы).

30S-субчастица состоит из 21 рибосомных белка и одной молекулы 16S рибосомной РНК. В состав 50S-субчастицы входят 34 молекулы белка и две молекулы рибосомных РНК (23S и 5S).

В цитоплазме эукариотических клеток находятся рибосомы с коэффициентом седиментации 80S; Они состоят из двух субчастиц -

Большая 60S и малая 40S субчастицы рибосом эукариотических клеток содержат большее количество разных белков, чем соответствующие субчастицы бактериальных рибосом. В митохондриях и хлоропластах тоже содержатся рибосомы. Они больше похожи на 70S бактериальные рибосомы, чем на 80S цитоплазматические рибосомы эукариот. Между синтезом белка в бактериях, митохондриях и хлоропластах имеется много общего.

Генетическая информация, находящаяся в клетке в виде ДНК и воспроизводящаяся в клеточных поколениях путем репликации ДНК, реализуется через биосинтез белка. Для этого отдельные участки ДНК - гены - сначала транскрибируются (переписываются) в виде многочисленных копий РНК (информационной РНК, или мРНК ), а затем эти копии транслируются (прочитываются) белоксинтезирующими частицами клетки - рибосомами, результатом чего является продукция белков, определяющих всю совокупность свойств и признаков организма.

Таким образом, биосинтез белка - это центральный процесс живой клетки: именно через него "мертвые" молекулы нуклеиновых кислот обретают жизнь, химия превращается в биологию. Процесс биосинтеза белка проходит в несколько этапов, в большинстве из которых рибосома принимает активное участие.

1. Транскрипция. Отдельные участки (гены) двунитевой ДНК являются матрицами для синтеза на них однонитевых цепей РНК. Синтезированные цепи РНК комплементарны одной из цепей ДНК и, соответственно, точно воспроизводят дезоксирибонуклеотидную последовательность другой цепи ДНК в своей рибонуклеотидной последовательности.

2. Процессинг и транспорт РНК. РНК в течение синтеза и после него, особенно в эукариотических клетках, может подвергаться ряду дополнительных изменений (добавлению концевых групп, модификации нуклеотидов, вырезанию определенных кусков нуклеотидной последовательности и др.). Получающаяся информационная, или мессенджер РНК (мРНК) поступает далее к рибосомам (у эукариот транспортируется из ядра в цитоплазму) в качестве программы, определяющей аминокислотную последовательность в синтезируемом белке. Далее происходят активация и акцептирование аминокислот. Исходным материалом, из которого строится белок, являются аминокислоты, однако свободные аминокислоты клетки не могут быть непосредственно использованы рибосомой. Каждая аминокислота сначала активируется с помощью АТФ, а затем присоединяется к специальной молекуле РНК, называемой транспортной РНК (тРНК), вне рибосомы. Получающаяся аминоацил-тРНК поступает в рибосому в качестве субстрата для синтеза белка.

3. Трансляция. Поток информации в виде мРНК и поток материала в виде аминоацил-тРНК поступают в рибосомы, которые являются молекулярными машинами, осуществляющими перевод, или трансляцию, генетической информации с языка нуклеотидной последовательности мРНК на язык аминокислотной последовательности синтезируемой полипептидной цепи белка. Каждая рибосома последовательно сканирует цепь мРНК (движется вдоль нее от одного конца к другому) и соответственно выбирает из среды те аминоацил-тРНК, которые соответствуют (комплементарны) триплетным комбинациям нуклеотидов, находящимся в данный момент в рибосоме. Таким образом, движение рибосомы вдоль мРНК задает строгий временной порядок вхождения в рибосому разных аминоацил-тРНК в соответствии с порядком расположения кодирующих нуклеотидных комбинаций (кодонов) вдоль мРНК. Аминокислотный остаток выбранной аминоацил-тРНК каждый раз ковалентно присоединяется рибосомой к растущей полипептидной цепи, а деацилированная тРНК освобождается из рибосомы в раствор. Так последовательно остаток за остатком строится полипептидная цепь.

4. Формирование функционального белка по мере синтеза полипептидная цепь частично высовывается из рибосомы и начинает сворачиваться в глобулу (котрансляционный фолдинг), а по завершении синтеза, то есть по прочтении всей мРНК, она освобождается из рибосомы и окончательно сворачивается (посттрансляционный фолдинг). Синтезируемый белок может транспортироваться через клеточные мембраны, что характерно для белков, производимых клеткой для общих нужд организма или клеточной популяции (секретируемые белки). Сворачивание белка и транспорт белка через мембраны может сопровождаться различными ковалентными модификациями с помощью ферментов (процессинг белка) Итак, процесс создания химической структуры белка (синтез полипептидной цепи) и в значительной мере ее физическое сворачивание в функционально активную белковую глобулу осуществляются рибосомой. Количество рибосом в клетке сильно варьирует - от тысяч до десятков тысяч на клетку - в зависимости от интенсивности белкового синтеза в данном типе клеток. Каждая рибосома полностью прочитывает одну молекулу мРНК и в соответствии с ее программой синтезирует одну молекулу белка, после чего может быть запрограммирована другой молекулой мРНК, и произвести другую молекулу белка и т.д. Обычно одна молекула мРНК читается сразу несколькими рибосомами, двигающимися вдоль мРНК друг за другом и, таким образом, независимо синтезирующими идентичные молекулы белка, но с соответствующим отставанием. Такой динамический комплекс одной мРНК с несколькими рибосомами называется полирибосомой. Химически рибосома есть рибонуклеопротеид: она состоит из специальной рибосомной РНК и специальных рибосомных белков, находящихся в комплексе друг с другом. Физически рибосома представляет собой компактную частицу специфической формы, лишенную внутренней и внешней симметрии, грубо аппроксимируемую сферой с диаметром около 30 нм. Функционально это молекулярная машина, протягивающая вдоль себя цепь мРНК, считывающая закодированную в мРНК генетическую информацию и параллельно, в соответствии с кодом, синтезирующая полипептидную цепь белка из поступающих в нее аминокислотных остатков. В процессе работы рибосома потребляет энергию гидролиза гуанозинтрифосфата ( ГТФ ). Очевидно, что детальное знание структуры рибосомы является необходимой базой для понимания механизмов работы этой молекулярной машины. В настоящее время полная структура рибосомы на молекулярном уровне еще неизвестна, хотя известно много деталей ее строения. В этой статье делается попытка обобщить многочисленные разрозненные сведения о структуре рибосом и сформулировать основные принципы, лежащие в основе ее молекулярной организации.

2. Особенности эмбриогенеза птиц

Особенности строения яйцеклеток и эмбриогенеза птиц определяются наземными условиями их обитания и развития.

Полилецитальные овоциты I порядка, попав при овуляции в яйцевод, быстро проходят стадию созревания и сразу оплодотворяются присутствующими в нем сперматозоидами (период сохранения их оплодотворяющей способности длится до 40 дней). Таким образом, по яйцеводу продвигается уже зародыш на этапе дробления зиготы. В этот отрезок времени он одевается третичными оболочками.

Яйцо может находиться в яйцеводе от 4 до 27 часов. Поэтому в снесенных яйцах степень развития зародышей бывает разной. Чаще всего они пребывают в стадии бластулы или ранней гаструлы. Вследствие попадания снесенных яиц во внешнюю среду процессы эмбрионального развития в них временно, до начала инкубации или насиживания, приостанавливаются.

У полилецитальных и резко телолецитальных яйцеклеток птиц анимальный полюс тонкий, занимает крайнее верхнее положение и имеет форму диска. Борозды дробления в начальном периоде проходят и сменяются так же, как у ланцетника или амфибий, т.е. сначала идут две меридианные, потом широтная, затем опять меридианные и широтные. Но эти борозды дробят только анимальную часть зиготы. Желток, упакованный в ее вегетативном полюсе в виде плотно наслоенных светлых и темных пластов, в дробление не вовлекается. Следовательно, дробление зиготы у птиц частичное дискоидальное (меробластическое). Меридианные борозды в этом дробящемся диске выглядят как радиальные линии, широтные - как окружности. На конечных стадиях дробления появляются еще тангенциальные борозды, проходящие в касательной плоскости. Естественно, что описываемое дробление является неравномерным.

В результате частичного дискоидального дробления зиготы птиц формируется дискобластула, которая лишенная бластоцеля. Лишь позднее, вследствие использования некоторого количества желтка, под зародышем появляется небольшая щелевидная полость.

Центральная часть такой дискобластулы многослойная. В ее периферических зонах продолжающиеся делиться бластомеры образуют однослойную пластинку (lamina).

Чтобы сформировать у эмбриона два зародышевых листка, бластомеры из срединной области дискобластулы должны переселиться (мигрировать) , преимущественно, в верхний клеточный ряд (более обширная выпуклая часть диска), в меньшей степени - в нижний, а в периферической однослойной пластинке каждой ее клетке надо разделиться во фронтальной плоскости. Вследствие сочетания обозначенных процессов и возникает двухслойная гаструла, в центральной зоне которой имело место явление миграции клеток, а в краевой - самоликвидации пластинки с трансформацией ее в экто- и энтодерму, что принято обозначать термином деламинация, понимая как расщепление одинарного пласта бластомеров на два листка.

Между появившимися двумя зародышевыми листками образуется и полость - своеобразный гастроцель, но не связанный с внешней средой и лишенный поэтому бластопора.

Внутренний зародышевый листок у гаструлы птиц представлен уплощенными клетками, плотно прилегающими к расположенному под ними желтку. Поэтому они используются в качестве трофического аппарата и в дальнейшем, вместе с присоединяющимся к ним висцеральным листком мезодермы, будут служить основой для формирования первичной кишки и временного внезародышевого органа - желточного мешка.

Таким образом, основные процессы дифференцировки для обеспечения органо- и гистогенеза у зародыша птиц переносятся в эктодерму, в ее центральную часть, имеющую форму древней защиты воина - боевого щита. Это и послужило основанием для присвоения этой части эктодермы наименования зародышевого щитка. Его передний (головной) конец расширен, задний сужен, что в целом придает щитку грушевидную форму.

Чтобы обеспечить последующие процессы дифференцировки зачатков хорды, нервной трубки и мезодермы, а главное, перемещение их клеточного материала под эктодерму на постоянное местоположение, у зародыша птиц образуются вспомогательные провизорные структуры, заменяющие губы бластопора, в форме первичной полоски и первичного (гензеновского) узелка.

Образуются они за счет усиленного размножения клеток в области широкого головного конца зародышевого щитка и активного их перемещения в виде двух мощных потоков в узкую заднюю его часть. Там они сталкиваются, меняют свое движение в обратном направлении и, подворачиваясь под эктодерму, продолжают двигаться вперед как хорошо выраженный многослойный клеточный тяж, который соединяет теперь в срединной плоскости экто- и энтодерму. Это и есть первичная полоска.

Вследствие постепенного замедления энергии и скорости перемещения клеток на переднем конце полоски формируется утолщение под названием первичного узелка.

После полной остановки миграционных потоков впереди гензеновского узелка остается еще достаточно выраженное (около трети всей длины) свободное пространство между наружным и внутренним зародышевыми листками. Сюда и будет перемещаться зачатковый материал для образования хордальной и нервной пластинок. Боковые же промежутки между эктодермальным и энтодермальным листками будут заполняться выселяющимися клетками будущей мезодермы.

Так как хорда занимает вентральное по отношению к нервной трубке положение, ее зачатковый материал дифференцируется первым и занимает область эктодермы, размещенную непосредственно над первичным узелком и в прилегающих к нему близлежащих зонах.

Следующая круговая зона представлена дифференцирующимися зачатковыми клетками будущей нервной трубки. По обеим сторонам центральной эктодермы, лежащей над первичной полоской, появляются зачатковые мезодермальные клетки.

Зачатковые хордальные клетки первыми начинают перемещаться под эктодерму, проходя через центральную часть гензеновского узелка на его дно и, двигаясь вперед над эктодермой, формируют хордальный вырост (пластинку). В узелке теперь появляется первичная ямка.

В последующем, через освободившийся первичный узелок, таким же путем перемещаются под наружный зародышевый листок зачатковые клетки нервной трубки. Выйдя из узелка, они занимают верхнее над хордальным выростом положение, образуя вначале нервную пластинку.

Зачатковые мезодермальные клетки, используя длину первичной полоски, уходят в боковые пространства между зародышевыми листками, формируя многослойные, рыхлые вначале пласты клеток, расположенных слева и справа от осевых органов зародыша. Как результат эмиграции части клеток посредине самой первичной полоски появляется первичная бороздка.

Для дальнейшего успешного развития зародыш нуждается в формировании первичной кишки и обособлении центральных зародышевых частей листков, от периферических внезародышевых их зон, которые используются для построения временных (провизорных) органов - плодных оболочек.

Плодные оболочки появляются в связи с наземными условиями эмбрионального развития птиц и обеспечивают надежную защиту зародыша от неблагоприятного воздействия факторов внешней среды, предупреждают обезвоживание организма и выполняют трофические функции (расщепление и всасывание в кровь питательных веществ, обеспечение развивающихся тканей кислородом, удаление продуктов обмена).

В процессе обособления зародышевых и внезародышевых частей у эмбриона птиц оформляется его тело (туловище), которое приобретает окончательную трубкообразную форму.

Туловище у зародыша формируется вследствие активного размножения клеток всех трех зародышевых листков в зонах, окаймляющих зародышевый щиток. Бурный прирост клеток вынуждает их смещаться внутрь и изгибать листки, что обеспечивает формирование все более углубляющейся в направлении центра туловищной складки. Начинается описываемый процесс в головной части зародышевого щитка, постепенно распространяясь каудально. По мере углубления туловищной складки ее диаметр уменьшается, она все больше обособляет и округляет зародыш, который, скручиваясь в трубку, начинает возвышаться над желтком.

К этому времени дифференцируется мезодерма, в ней появляется целомическая полость, ограниченная париетальным и висцеральным листками.

Висцеральный листок мезодермы срастается с энтодермой, продолжающей обрастать желток. Париетальный же ее листок присоединяется к эктодерме, лежащей за пределами зародышевого щитка достаточно свободно.

Туловищная складка, углубляя энтодерму с висцеральной мезодермой, обособляет в дорсальной их части первичную кишку, сообщающуюся через узкий пупочный канал с желтком, окруженным периферическими зонами этих листков. В совокупности желток и охватывающие его листки энто- и мезодермы образуют временный трофический аппарат зародыша - желточный мешок, расположенный под его туловищем.

В стенках желточного мешка появляются стволовые клетки крови, первичные половые клетки и первая сосудистая система зародыша.

Свободно лежащие периферические зоны эктодермы и париетальной мезодермы вследствие формирования туловищной складки образуют круговую амниотическую складку, каковая по мере углубления туловищной надвигается на обособляющееся в центре тело зародыша. В результате эмбрион оказывается сидящим на дне своеобразной чаши, боковые стенки которой и составляет упомянутая складка, от подобия на чашу получающая свое название (amnion - чаша).

При завершении процесса обособления туловища амниотическая складка полностью смыкается над ним и срастается. В результате сращения внутренних листков (скатов) складки образуется самая внутренняя амниотическая плодная оболочка, или амнион. Сращение внешних листков складки обеспечивает формирование наружной плодной оболочки - серозы.

Амнион замыкает вокруг зародыша амниотическую полость, заполненную амниотической жидкостью, продуцируемой его клетками. Таким образом, зародыш с этой поры развивается в водной среде, как и его филогенетические предки. Амнион поэтому получает название водной оболочки плода, а в совокупности с произведенной жидкостью формирует вокруг последнего первый плодный пузырь, который защищает развивающийся организм от травматических повреждений, от обезвоживания и участвует в его питании путем периодического заглатывания амниотической жидкости.

Сероза прилегает к подскорлупным оболочкам и скорлупе. Она тоже выполняет защитную функцию и активно участвует в ферментативном расщеплении белка и передаче продуктов его распада в кровь сосудов аллантоиса вместе с поступающим через нее атмосферным кислородом.

Только что упомянутая третья оболочка - аллантоис формируется из энтодермы и висцерального листка мезодермы путем слепого выпячивания через пупочный канал вентральной стенки первичной кишки. Сильно разрастаясь, это выпячивание внедряется между амнионом, желточным мешком и серозной оболочкой. Получает эта средняя по положению оболочка свое название от первоначального подобия ее на полукольца домашней колбасы (allantoides - колбасовидный).

В аллантоисе, имеющем прямую связь с телом зародыша, быстро развиваются кровеносные сосуды, которые и обеспечивают доставку к его органам питательных веществ и кислорода. Это и послужило основанием для присвоения аллантоису по функциональному признаку названия сосудистой оболочки.

Имеет место и другое название - мочевой мешок в силу того, что в полости средней оболочки накапливаются избытки воды с продуктами обмена веществ (формируется второй плодный пузырь).

Однако, эта функция является вторичной, обусловленной как раз активным функционированием сосудистой системы, отчего и необходимо в обозначении жизненной роли аллантоиса отдавать приоритет первому наименованию.

Плодные оболочки функционируют у плодов птиц почти до полного истечения сроков эмбрионального развития. Лишь в последние два - три дня они подвергаются процессу усыхания и отмирают.

Желточный же мешок вторично обеспечивает плод питанием в дни, предшествующие вылуплению.

В течение первого адаптационного периода постнатальной жизни животных (1-10 дней) оставшийся желток активно расходуется организмом путем внутрикишечного его усвоения. Зародышевые листки в результате постепенно сокращаются, укорачиваются и включаются в общую стенку кишечника.

Глубокий анализ особенностей эмбрионального развития птиц позволяет установить определенную стадийность в течении морфогенетических преобразований в организме зародыша, напрямую связанных с разными типами его питания и дыхания. Время перехода эмбриона от одного типа питания и дыхания на другой являются всегда в его развитии наиболее ответственными и критическими для жизни. Поэтому знание стадийной периодизации эмбрионального развития зародышей птиц имеет не только теоретическое, но и важное практическое значение для контроля процессов этого развития и создания наиболее оптимальных условий в течение всего инкубационного периода.

Учитывая изложенные особенности, Н.П. Третьяков и М.Д. Попов предложили строгую, наиболее раскрывающую сущность проблемы классификацию стадий развития куриного зародыша:

1. Стадия латерального питания - от начала до 30-36 часа инкубации;

2. Стадия питания желтком при посредстве сосудов желточного мешка - с 36 часа до 7-8 дня инкубации;

3. Стадия питания белком и дыхания атмосферным кислородом при посредстве сосудов аллантоиса - 8 - 18-19 день инкубации;

4. Стадия дыхания кислородом воздушной камеры и питания желтком путем его внутрикишечного усвоения - с 19 дня до вылупления;

5. Стадия вылупления - 20-21 день инкубации.

В первую стадию продолжаются процессы раннего эмбриогенеза (гаструляция, формирование осевых органов, дифференциация мезодермы, обособление зародышевых и внезародышевых частей). Они еще не требуют значительных затрат кислорода. В зародыше отсутствуют кровеносные сосуды. Источником энергии ему служат углеводы и простые белки, сосредоточенные в столбикообразной или колбовидной внутренней части желтка - латебре.

На следующей стадии развития усиливаются процессы дифференциации клеток зародышевых листков для появления тканей и первых зачатков дефинитивных органных систем. Полным ходом уже используются сложные органические компоненты желтка, усваиваемые эндотелиальными клетками в только что образовавшихся стенках желточного мешка кровеносных сосудов. В кровь сосудов поступает также, хотя и в ограниченном объеме, атмосферный кислород.

В течение следующего периода развития у зародыша осуществляются основные процессы становления всех органных систем, требующие усиленного притока питательных веществ и кислорода. Зародыш поэтому, еще не израсходовав до конца запасы желтка, переходит на питание белком, продукты расщепления которого всасываются в кровь, циркулирующую по системе хорошо развившихся к этому времени сосудов в средней плодной оболочке - аллантоисе. Аллантоис достаточно плотно прилегает к серозной и подскорлупным оболочкам. Через поры в скорлупе и названных плодных оболочках кровь сосудов аллантоиса в большом количестве обогащается атмосферным кислородом, что стимулирует органо- и гистогенез. Отсюда и возникает у наседок инстинктивная потребность в периодических сошествиях с гнезда и ворошении яиц. В инкубаторах лотки имеют приспособления для изменения плоскости их положения, следовательно, и перекатывания яиц. Естественным является и требование строгого поддержания определенного температурного и влажностного режима инкубации, также искусственной аэрации яиц.

К концу эмбрионального развития несколько затормаживаются в клетках зародыша дифференцируемые процессы и ускоренно набирают темпы ростовые, вследствие чего быстро нарастает масса его тела. Плодные оболочки растущим телом прижимаются к скорлупе, кровеносные сосуды сдавливаются. Уже практически сформированный птенец начинает испытывать недостаток в кислороде, от чего он вводит клюв в воздушную камеру и переходит на легочный тип.

3. Нервные волокна. Классификация и строение

Различают миелиновые и безмиелиновые волокна. Отросток - осевой цилиндр (аксон). В ЦНС оболочки отростков образуют олигодендроциты, в ПНС - нейролеммоциты.

Безмиелиновые нервные волокна. В составе вегетативной нервной системы. Волокна, содержащие несколько осевых цилиндров (10-20 в НВ внутренних органов) - волокна кабельного типа. Оболочка нейролеммоцита прогибается, его края над осевым цилиндром сближаются и образуют сдвоенную мембрану - мезоаксон. Передача импульса со скоростью 1-2 м/с.

Миелиновые нервные волокна. В ЦНС и ПНС, диаметр 2-20 мкм. Состоят из осевого цилиндра, одетого оболочкой из шванновских клеток. Различают 2 слоя: миелиновый внутренний и наружный, состоящий из цитоплазмы, ядер нейроллеммоцитов и нейролеммы.

Миелиновый слой содержит много липидов, встречаются насечки миелина (Шмидта-Лантермана), через определенные интервалы встречаются безмиелиновые участки - перехваты Ранвье.

Периферическая нервная система: в процессе развития аксон погружается в оболочку нейролеммоцита, края смыкаются - образуется мезоаксон, который формирует миелиновый слой, ветвление аксонов происходит в области перехватов. Межузловой сегмент - участок между перехватами.

Миелиновые волокна ЦНС - миелиновый слой формируется одним из отростков олигодендроглиоцита. Не имеют насечек миелина, нервные волокна не окружены БМ. Миелин содержит миелиновый щелочной белок и протеолипидный белок. Передача импульса 5-120 м/с.

При травме распадается миелиновый слой и осевой цилиндр, продукты распада нейтрализуются макрофагами за 1 неделю. В ЦНС не регенерируют, в ПНС - хорошая регенерация. ближайшие нейролеммоциты пролиферируют, осевые цилиндры пускают множество отростков в нейролеммоциты, не достигшие цели - погибают, иногда эти отростки сплетаются и образуют ампутационную неврому.

Нервные окончания.

Нервные волокна заканчиваются нервными окончаниями. Их 3 группы: концевые аппараты, образуют межнейронные синапсы и осуществляющие связь между нейронами, эффекторные - передают нервный импульс на ткани рабочего органа и рецепторные (чувствительные).

Синапсы - предназначены для передачи импульса с одного нейрона на другой или на мышечные и железистые структуры, обеспечивают поляризацию импульса, те определяют его направление. Только импульс, достигающий терминалей аксона с помощью синапсов, может передать возбуждение на другой нейрон, мышечную или железистую клетку.

Межнейрональные синапсы.

Химические синапсы передают импульс на другую клетку с помощью нейромедиаторов, находящихся в синаптических пузырьках (пресинаптические пузырьки). Ацетилхолин (холинергические синапсы), норадреналин, дофамин, глицин - медиаторы тормозящих синапсов, эндорфины и энкефалины - медиаторы восприятия боли.

Пресинаптическая мембрана - мембрана клетки, передающей импульс, в этой области локализованы кальциевые каналы, способствующие слипанию пузырьков с пре-мембраной и выделению медиатора в синаптическую щель (20-30нм). Постсинампическая мембрана - в клетке, воспринимающей импульс.

Процессы в синапсе при передаче сигнала:

1. Волна деполяризации отходит от пре-мембраны

2. Открытие кальциевых каналов, выход Са в терминаль

3. Вхождене Са в терминаль вызывает экзоцитоз нейромедиатора, мембрана синаптических пузырьков входит в пре-мембрану, медиатор попадает в синаптическую щель. Дальше мембраны синаптических пузырьков, пре-мембрана и часть медиатора подвергаются эндоцитозу и происходит рециркуляция синаптических пузырьков, часть мембран и медиатора поступает в прокарион и разрушается лизосомами.

4. Нейромедиатор диффундирует и связывается с пост-мембраной

5. Молекулярные изменение в пост-мембране, открытие ионных каналов - реакция возбуждения или торможения.

Электрические синапсы связаны щелевидными контактами.

Эффекторные нервные окончания.

Двигательные - импульс передается на ткани рабочих органов. Нервно-мышечные окончания - в поперечно-полосатых мышцах, состоят из концевого ветвления осевого цилиндра НВ и спецецилизированного участка мышечного волокна. Миелиновое нервное волокно подходит к мышечному - теряет миелиновый слой, погружается в мышечное волокно. Плазмолеммы НВ и МВ разделены синаптической щелью. Саркоплазма с митохондриями и ядрами - постсинаптическая часть синапса терминальные ветви содержат много митохондрий и пре-пузырьков с ацетилхолином.

В гладкой мышечной ткани - представляют утолщения, нейролеммоциты часто отсутствуют. Сходное строение имеют нейрожелезистые окончания.

Рецепторные. Экстерорецепторы: слуховые, зрительные, обонятельные, вкусовые, осязательные.

Интерорецепторы: висцеро- (состояние внутренних органов), вестибуло-проприорецепторы (опорно-двигательный аппарат). Различают:

1. Свободные нервные окончания, состоящие только из конечных ветвлений осевого цилиндра. Воспринимают холод, тепло и боль, характерны для эпителия, подходят к нему - теряют миелиновый слой - сливаются.

2. Несвободные - содержат ветвления цилиндра и клетки глии, могут быть инкапсулированы.

1) Пластинчатые тельца Фаттера-Пачинни (воспринимают давление, в глубоких слоях дермы, брыжейке и внутренних органах): в центре луковица, состоящая из видоизмененных леммоцитов, снаружи тельце покрыто капсулой (из фибробластов). Давление на капсулу передается через заполненные жидкостью пространства между пластинками на внутреннюю луковицу и воспринимается безмиелиновыми волокнами на внутренней луковице.

2) Осязательные тельца Мейснера - в верхушках сосочков кожи, состоят из измененных нейролеммоцитов - тактильных клеток, тельце окруженных капсулой. Коллагеновые фибриллы и волокна связывают тельце с капсулой, а капсула с базальным слоем эпидермиса, так что любое смещение эпидермиса передается на тельце.

3) Нервно-мышечные веретена - рецептор на растяжение, состоят из нескольких исчерченных НВ, заключенных в соединительнотканную капсулу - интрафузальных волокон: рецепторная часть - центральная, несокращающаяся. Различают веретена с ядерной сумкой или ядерной цепочкой. К интрафузальным волокнам подходят афферентные: первичные - образуют кольце-спиральные окончания, как с ядерной сумкой, так и с ядерной цепочкой. Вторичные - только с ядерной цепочкой. При растяжении или натяжении увеличивается их длина, регистрируемая рецепторами - кольце-спиральные окончания реагируют на изменение длины и ширины, гроздевидные - только длины - поступление динамического сигнала о растяжении в спинной мозг. Остальные волокна за пределами капсулы - экстрафузальные .

В месте соединения мышцы с сухожилием - нервно-сухожильные веретена.

* Рефлекторная дуга - цепь нейронов, связанных синапсами и обеспечивающая проведение нервного импульса от рецептора чувствительного нейрона до эффекторного окончания в рабочем органе. Простая - из чувствительного и двигательного нейронов, сложная - между чувствительным и двигательным нейронами, есть еще вставочные нейроны.

Список использованных источников

1.Гистология - Юрина Н. А., Радостина А. И. -Учебник -1995г.

2. Александровская О.В., Радостина Т.Н., Козлов Н.А. Цитология, гистология и эм бриология.-М:Агропромиздат, 1987.- 448 с.

3. Афанасьев Ю.И., Юрина Н.А. Гистология.- М: Медицина, 1991.- 744 с.

4. Вракин В.Ф., Сидорова М.В. Морфология сельскохозяйственных животных. - М: Агропромиздат, 1991.- 528 с.

5. Глаголев П.А., Ипполитова В.И. Анатомия сельскохозяйственных животных с основами гистологии и эмбриологии.- М: Колос, 1977.- 480 с.

Размещено на Allbest.ru

...

Подобные документы

  • Трансляция клетки как процесс биосинтеза белка, определяемый матричной РНК. Понятие генетического кода, его свойства. Отклонения от универсального генетического кода. Строение рибосом, механизм элонгации и терминации. Белки в эволюции и онтогенезе.

    презентация [2,2 M], добавлен 21.02.2014

  • Характеристика биосинтеза как процесса образования органических веществ, происходящего в клетках с помощью ферментов и внутриклеточных структур. Участники биосинтеза белка. Синтез РНК с использованием ДНК в качестве матрицы. Роль и значение рибосом.

    презентация [2,3 M], добавлен 21.12.2013

  • Рассмотрение характеристик клетки как элементарной целостной системы живого организма. Типы клеток животных и растений. Строение и функции мембраны, цитоплазмы, митохондрии, аппарата Гольджи, лизосом, вакуоль, рибосом. Описание органоидов движения.

    презентация [3,1 M], добавлен 16.02.2015

  • Клеточная теория Шлейдена и Шванна. Состав вирусов. Методы изучения клетки. Строение и функции ее поверхностного аппарата, мембраны, надмембранного комплекса, хромопластов, лейкопластов, рибосом, органелл, ядра, ядерной оболочки, кариоплазмы, хромосом.

    презентация [3,6 M], добавлен 13.11.2014

  • Химический состав и значение оболочки растительной клетки. Физические свойства цитоплазмы. Структура мембраны клетки, ее мембранные органоиды. Особенности нуклеинового и белкового обмена двумембранных органоидов. Одномембранные и немембранные органоиды.

    презентация [2,2 M], добавлен 08.11.2012

  • Сущность органоидов, классификация включений цитоплазмы по функциональному назначению. Отличительные особенности растительной и животной клеток, роль ядра в их функционировании. Основные органоиды клетки: комплекс Гольджи, митохондрии, лизосомы, пластиды.

    презентация [6,8 M], добавлен 27.12.2011

  • Определение понятия и описание общих особенностей трансляции как процесса синтеза белка по матрице РНК, осуществляемого в рибосомах. Схематическое представление синтеза рибосом у эукариот. Определение сопряженности транскрипции и трансляции у прокариот.

    презентация [2,8 M], добавлен 14.04.2014

  • Виды и формы клеток. Структурные компоненты клетки. Особенности биологической мембраны. Характеристика цитоплазмы и ее основных органоидов. Функции митохондрий, эндоплазматической сети и аппарата Гольджи. Роль лизосом, центриолей и микротрубочек.

    презентация [7,2 M], добавлен 06.06.2012

  • Строение животной клетки. Основные положения клеточной теории, понятие про прокариоты и эукариоты. Структура цитоплазмы и эндоплазматический ретикулум. Хромосомный набор человека. Способы деления клетки (амитоз, митоз и мейоз) и ее химический состав.

    презентация [3,1 M], добавлен 09.10.2013

  • Состав нервной ткани. Возбуждение нервных клеток, передача электрических импульсов. Особенности строения нейронов, сенсорного и моторного нервов. Пучки нервных волокон. Химический состав нервной ткани. Белки нервной ткани, их виды. Ферменты нервной ткани.

    презентация [4,1 M], добавлен 09.12.2013

  • Клеточные структуры, строение, состав и свойства основных компонентов растительной клетки. Поглощение и выделение веществ и энергии клеткой. Хлоропласты, их строение, химический состав и функции. Строение молекулы хлорофилла, флавоноидные пигменты.

    контрольная работа [1,0 M], добавлен 05.09.2011

  • Основные черты нейрона; нейрофибрилы и секторные нейроны. Значения нервной ткани, нервные волокна. Регенерация нервных волокон, рецептор нервных окончаний, классификация нейронов по функциям. Анатомическое строение нейрона, вегетативная нервная система.

    реферат [25,4 K], добавлен 11.06.2010

  • Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.

    лекция [44,4 K], добавлен 27.07.2013

  • Углеводы – группа органических соединений. Строение и функции углеводов. Химический состав клетки. Примеры углеводов, их содержание в клетках. Получение углеводов из двуокиси углерода и воды в процессе реакции фотосинтеза, особенности классификации.

    презентация [890,0 K], добавлен 04.04.2012

  • Клетка как основная единица живого. Химический состав клетки, ее элементарные частицы и характер протекающих внутри процессов. Роль и значение воды в жизнедеятельности клетки. Этапы энергетического обмена клетки, реакций расщепления (диссимиляции).

    реферат [28,2 K], добавлен 11.07.2010

  • История микроскопа и изучение морфологии микроорганизмов как собирательной группы живых организмов: бактерии, археи, грибы, протисты. Формы, размер, морфология и строение бактерий, их классификация и химический состав. Строение и классификация грибов.

    реферат [130,0 K], добавлен 05.12.2010

  • Механизм передачи нервных импульсов от одной клетки организма другой, значение синапса в данном процессе. Природа синапсов и их разновидности. Метод Гольджи и его роль в изучении строения нервных клеток. Выделение медиатора при химическом синапсе.

    реферат [65,0 K], добавлен 08.08.2009

  • Строение и функции оболочки клетки. Химический состав клетки. Содержание химических элементов. Биология опухолевой клетки. Клонирование клеток животных. А была ли Долли? Клонирование - ключ к вечной молодости? Культивирование клеток растений.

    реферат [27,3 K], добавлен 16.01.2005

  • История открытия и изучения белков. Строение молекулы белка, ее пространственная организация и свойства, роль в строении и жизнеобеспечении клетки. Совокупность реакций биологического синтеза. Всасывание аминокислот. Влияние кортизола на обмен белка.

    контрольная работа [471,6 K], добавлен 28.04.2014

  • Характеристика афферентных, ассоциативных и эфферентных нейронов. Особенности структуры миелиновых нервных волокон. Анализ групп нервных окончаний: межнейрональные синапсы, эффекторные окончания, рецепторные окончания. Понятие лимбической системы.

    контрольная работа [1,2 M], добавлен 11.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.