Витамины в продуктах питания и их значение для организма человека
История открытия и классификация витаминов. Причины возникновения авитаминоза, гиповитаминоза и гипервитаминоза. Содержание витаминов в пищевых продуктах. Промышленное производство витаминов, их устойчивость и стабильность при кулинарной обработке.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 17.06.2015 |
Размер файла | 69,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Рост хлебопекарных дрожжей (Saccharomyces cerevisiae) находится в зависимости от биотина. Поэтому биотин, в качестве стимулятора роста, добавляется в питательную среду, используемую для ферментирования дрожжей. От биотина также зависят многие из микроорганизмов, применяемых в современной промышленной биотехнологии. Поэтому, в этом качестве, он добавляется в среду роста
В косметике биотин употребляется как компонент составов для ухода за волосами.
Синтез аскорбиновой кислоты был осуществлен Райхштейном в 1933 году, а спустя пять лет было осуществлено его промышленное производство. В настоящее время синтетический витамин С, идентичный натуральному, производится на промышленной основе из глюкозы путем химического и биотехнологического синтеза.
В пищевой промышленности аскорбиновая кислота используется в качестве натурального антиоксиданта. Это означает, что добавление аскорбиновой кислоты в пищевые продукты в процессе переработки или перед их упаковкой позволяет сохранить цвет, запах и питательную ценность продуктов. Такое применение аскорбиновой кислоты не имеет ничего общего с ее витаминной активностью. В процессе переработки мяса применение аскорбиновой кислоты позволяет снизить количество добавляемых нитритов и нитритный остаток в готовом продукте. (В желудке нитриты трансформируются в потенциально канцерогенные нитрозомины).
Добавление аскорбиновой кислоты в свежую муку улучшает ее пекарские качества, тем самым экономя 4-8 недель, необходимые для созревания муки после помола. Скурихин И.М. Как правильно питаться М., 1985, стр. 133
Холекальциферол производится промышленным способом путем воздействия ультрафиолетового света на 7-дегидрохолестерин, получаемый из холестерина различными методами. Эргокальциферол производят подобным образом из эргостерина, экстрагируемого из дрожжей. Исходным материалом для производства кальцитриола является производное холестерина прегненолон.
Во многих странах молоко и молочные продукты, маргарин и растительные масла, обогащенные витамином D, служат основным пищевым источником витамина D.
Витамин Е, выделяемый из природных источников, получают путем молекулярной возгонки и в большинстве случае путем последующего метилирования и этерификации пищевых овощных масляных продуктов. Синтетический витамин Е производят из природного растительного материала путем конденсации триметилгидрохинона с изофитолом.
Витамин Е в форме dl-a-токоферола находит широкое применение в качестве противоокислительного средства (антиоксиданта) для стабилизации пищевых масел и жиров и жиросодержащих продуктов питания.
Исследования показали, что витамин Е в комбинации с витамином С снижает образование нитрозоминов (которые, как показали опыты на животных, являются канцерогенами) в беконе более эффективно, чем один витамин С.
Витамин Е используется для местного применения в качестве противовоспалительного средства для увлажнения кожи и предохранения ее от повреждающего воздействия ультрафиолетовых лучей.
Фолиевая кислота производится в больших масштабах с использованием химического синтеза. Известны различные процессы ее производства. Большая часть синтетической фолиевой кислоты используется в качестве добавки к корму животных.
Фолиевая кислота добавляется к различным пищевым продуктам, наиболее важными из которых являются зерновые для завтрака, питье, безалкогольные напитки и детское питание.
Процесс включает в себя использование моноэфира в качестве менадиола и кислотный катализатор. Очистка желаемого продукта с целью удаления не прореагировавших реагентов и побочных продуктов происходит либо на стадии хинола, либо после окисления.
За исключением специальных продуктов для новорожденных витамин К не добавляют в пищу. Витамин К синтезируется промышленным образом и используется в прописях для новорожденных (100 мг/литр) и лекарственных препаратах для человека.
В большинстве случаев ниацин вырабатывается из 3-метилпиридина, хотя известны и другие способы. Это вещество является производным двух углеродных соединений -ацетальдегида и формальдегида или из смеси акролеина с аммиаком. Никотинамид синтезируется посредством окисления аммиаком и частичным гидролизом 3-метилпиридина. При дальнейшем продолжении гидролиза образуется никотиновая кислота.
Пантотеновая кислота химически синтезируется в результате реакции конденсации D-пантолактона с бета-аланином. Добавка солей кальция приводит к образованию бесцветных кристаллов пантотената кальция. Пантотенол производится в виде прозрачной, почти бесцветной, вязкой гигроскопической жидкости.
Пантотенат добавляется к различным пищевым продуктам, наиболее важным из которых являются зерновые для завтрака, напитки, диетические продукты и детское питание.
Пантенол часто используется в качестве косметического продукта. В составе средств по уходу за кожей пантенол способствует поддержанию кожи увлажненной и способствует ее питанию, а также - стимулирует рост клеток и восстановление ткани, кроме того он устраняет воспалительные процессы и покраснение кожи. Как увлажнитель и кондиционер в продуктах ухода за волосами, он защищает их и способствует восстановлению повреждений, вызываемых химическими или механическими воздействиями (расчесывание волос, мытье шампунями, завивка, окрашивание и так далее) и способствует блеску волос.
Устойчивость и стабильность при кулинарной обработке
Витамин А чувствителен к окислению на воздухе. Тепло и световое воздействие ускоряют потерю активности. Окисление жиров и масел (например, сливочного масла, маргарина, кулинарных жиров) может разрушить жирорастворимые витамины, включая витамин А. Присутствие антиоксидантов типа витамина Е способствует защите витамина А.
Бета-каротин - один из наиболее устойчивых витаминов в овощах. Его потери в процессе приготовления пищи составляют 25 % , но только если процесс кипения был довольно-таки продолжительным.
Каротиноиды могут терять часть своей активности в продуктах при хранении из-за действия ферментов и под воздействием света и кислорода. Обезвоживание овощей и фруктов может значительно снизить биологическую активность каротиноидов. С другой стороны, каротиноиды сохраняют свою стабильность в замороженных продуктах.
Витамин В1 нестабилен при нагревании и в щелочных средах, тиамин чувствителен к воздействию кислорода и радиации. Водорастворимость тиамина также приводит к уменьшению его содержания в пище. Около 25% тиамина, содержащегося в пище, теряется в процессе обычного приготовления. Значительная часть тиамина теряется вместе с жидкостью, образующейся при разморозке мяса или с водой, используемой для приготовления мяса и овощей. Для сохранения тиамина продукты следует готовить в закрытой посуде в течение как можно более короткого времени, их также не следует вымачивать или слишком долго подвергать нагреванию. Выделяемые соки и вода, используемая при приготовлении, должны быть повторно использованы в качестве подливки или соусов.Смолянский Б.Л. Справочник по лечебному питанию М., 1996, стр. 432
Витамин В12 медленно теряет свою активность под воздействием света, кислорода и в кислых или щелочных средах. Он, однако термостабилен, и его потери в процессе обычного приготовления пищи (приблизительно 70% витамина) связаны в большей степени с удалением его вместе с мясными соками и водой, нежели с его деградацией.
Витамин В2 термостабилен, так что он практически не разрушается в процессе обычного приготовления пищи, если только не подвергать продукты длительному воздействию света, что может привести к потере до 50% витамина. Некоторая часть рибофлавина может также теряться вместе с водой, используемой для приготовления. Вследствие высокой чувствительности рибофлавина к воздействию света, он быстро разрушается в молоке, хранимом в стеклянных бутылках при ярком солнечном свете (85 % в течение 2 часов). Стерилизация продуктов облучением или обработкой оксидом этилена может также привести к разрушению рибофлавина.
Витамин В6 относительно стабилен при нагревании, но чувствителен к окислению кислородом и разлагается под воздействием ультрафиолетового света, а также в щелочных средах. Замораживание овощей приводит к потере до 25% пиридоксина, а при перемоле зерновых теряется до 90 % имеющего витамина. В процессе приготовления пищи потери данного витамина могут достигать 40%.
Витамин С чувствителен к теплу, свету и кислороду. Он может частично или полностью разрушаться в продуктах в результате длительного хранения или приготовления пищи. Например, при хранении картофеля при комнатной температуре потери содержащегося в нем витамина С составляют до 15 % каждый месяц, а при варке очищенного картофеля разрушаются дополнительные 30 - 50 % витамина С.
Витамин D относительно устойчив в продуктах; хранение, обработка и процесс приготовления пищи оказывают незначительное влияние на его активность, хотя в витаминизированном молоке порядка 40 % добавленного витамина D может быть утрачено в результате светового воздействия.
Свет, кислород и тепло являются разрушающими факторами при длительном хранении и в процессе приготовления пищи и снижают содержание витамина Е в продуктах питания. В некоторых продуктах содержание витамина Е может уменьшиться вполовину всего лишь после двух недель хранения их при комнатной температуре. Количество витамина Е в растительных маслах значительно снижается в результате жарки.
Соединения витамина К относительно устойчивы к теплу и факторам восстановления, однако чувствительны к кислоте, щелочи, свету и факторам окисления.
Как никотинамид, так и никотиновая кислота, стабильны по отношению к нагреву, свету, воздуху и щелочам. Некоторое их количество может теряться в процессе кулинарной обработки и при хранении пищевых продуктов.
Биотин относительно стабилен. В большинстве пищевых продуктов он связан в белках, из которых он выделяется в кишечнике в результате гидролиза протеина и действия особого фермента, биотинидазы. В процессе приготовления блюд потери биотина незначительны, в большинстве своём они происходят в результате выщелачивания воды в процессе варки. Обработка пищевых продуктов, как например, консервирование вызывает умеренное снижение содержания биотина.
Большинство форм фолатов нестабильно. Свежие лиственные овощи, хранимые при комнатной температуре, могут терять до 70% фолатов за три дня. Значительные потери могут также происходить в результате экстракции в воду в процессе приготовления пищи (до 95%) и тепловой обработки.
Пантотеновая кислота стабильна при нейтральных рН, но легко разлагается при нагревании в щелочных или кислых растворах. Во время приготовления пищи может быть потеряно до 50% пантотеновой кислоты (вследствие выщелачивания) и до 80% в результате обработки и рафинирования пищи (консервирование, замораживание, измельчение и так далее). Пастеризация молока вызывает лишь незначительные потери.
Заключение
Витамины, группа незаменимых для организма человека и животных органических соединений, обладающих очень высокой биологической активностью, присутствующих в ничтожных количествах в продуктах питания, но имеющих огромное значение для нормального обмена веществ и жизнедеятельности. Основное их количество поступает в организм с пищей, и только некоторые синтезируются в кишечнике обитающими в нём полезными микроорганизмами, однако и в этом случае их бывает не всегда достаточно. Современная научная информация свидетельствует об исключительно многообразном участии витаминов в процессе обеспечения жизнедеятельности человеческого организма. Одни из них являются обязательными компонентами ферментных систем и гормонов, регулирующих многочисленные этапы обмена веществ в организме, другие являются исходным материалом для синтеза тканевых гормонов. Витамины в большой степени обеспечивают нормальное функционирование нервной системы, мышц и других органов и многих физиологических систем. От уровня витаминной обеспеченности питания зависит уровень умственной и физической работоспособности, выносливости и устойчивости организма к влиянию неблагоприятных факторов внешней среды, включая инфекции и действия токсинов.
Маленьким детям витамины абсолютно необходимы: недостаточное их поступление может замедлить рост ребенка и его умственное развитие. У малышей, не получающих витамины в должных количествах, нарушается обмен веществ, снижается иммунитет. Именно поэтому производители детского питания обязательно обогащают свои продукты (молочные смеси, овощные и фруктовые соки, пюре, каши) всеми необходимыми витаминами.
Литература
1. http://www.roche.ru
2. http://www.sol.ru
3. Павлоцкая Л.Ф. Физиология питания. М., “Высшая школа”., 1991, стр. 110
4. Петровский К.С. Гигиена питания М., 1984, стр. 412
5. Припутина Л.С. Пищевые продукты в питании человека. Киев, 1991, стр. 241
6. Скурихин И.М. Как правильно питаться М., 1985, стр. 240
7. Смолянский Б.Л. Справочник по лечебному питанию М., 1996, стр. 503
Размещено на Allbest.ru
...Подобные документы
История витаминов, их основные химические свойства и структура, жизненная необходимость для нормальной жизнедеятельности организма. Понятие недостатка витаминов, сущность гипоавитаминоза и его лечение. Содержание витаминов в различных пищевых продуктах.
реферат [96,3 K], добавлен 15.11.2010Анализ участия витаминов в обеспечении процессов жизнедеятельности организма. Изучение особенностей жирорастворимых и водорастворимых витаминов. Клинико-фармакологическая классификация. Содержание витаминов в продуктах. Описания причин гиповитаминоза.
презентация [1,8 M], добавлен 21.10.2013Пищевая ценность продуктов. История открытия витаминов. Их деление на жирорастворимые и водорастворимые. Виды витаминов и их значение для организма. Нарушения при их недостатке и избытке. Симптомы гипо-, гипер- и авитаминоза. Причины их возникновения.
реферат [21,7 K], добавлен 25.11.2014Витамины как один из факторов питания человека. Биологическая роль витаминов. Номенклатура и классификация витаминов. Понятие рекомендуемой суточной нормы. Понятие гипо-, гипер- и авитаминоза. Характеристика жирорастворимых и водорастворимых витаминов.
реферат [56,9 K], добавлен 27.05.2015История открытия и изучения витаминов. Понятие о витаминах, и их значении в организме, понятие об авитаминозах, гипо- и гипервитаминозах. Классификация витаминов; жирорастворимые и водорастворимые витамины. Определение содержания витаминов в веществах.
курсовая работа [63,4 K], добавлен 19.02.2010Классификация витаминов, их содержание в продуктах. Необходимость низкомолекулярных органических соединений с высокой биологической активностью для нормальной жизнедеятельности. Особенности витаминов различных групп, их применение и действие на организм.
презентация [1,5 M], добавлен 16.11.2013Открытие русским учёным Н.И. Луниным необходимых в пище небольших доз дополнительных факторов - витаминов. Их влияние на рост, развитие, обмен веществ организма, повышение сопротивляемости к различным заболеваниям. Содержание витаминов в продуктах.
реферат [19,4 K], добавлен 11.11.2010Строение и свойства витаминов группы А, их взаимодействие с другими веществами и нахождение в природе. Причины и признаки гипервитаминоза. Физиологическое действие ретинола на организм, нормы его потребления. Сохранение витаминов при обработке продуктов.
курсовая работа [101,0 K], добавлен 21.12.2013Физиологическое значение витаминов, их классификация, пути поступления в организм человека. Ассимиляция и диссимиляция витаминов, их способность регулировать течение химических реакций в организме. Особенности жирорастворимых и водорастворимых витаминов.
реферат [744,1 K], добавлен 24.07.2010История открытия витаминов. Влияние на организм, признаки и последствия недостатка, основные источники витаминов А, С, D, Е. Характеристика витаминов группы В: тиамина, рибофлавина, никотиновой и пантотеновой кислот, пиридоксина, биотина, холина.
презентация [3,4 M], добавлен 24.10.2012Витамины — группа низкомолекулярных органических соединений, их природа и роль в процессе метаболизма, в биохимических реакциях организма. Содержание витаминов в продуктах, микронутриенты. Физиологические расстройства: авитаминозы и гиповитаминозы.
презентация [1,2 M], добавлен 29.03.2014Ферменты: история их открытия, свойства, классификация. Сущность витаминов, их роль в жизни человека. Физиологическое значение витаминов в процессе обмена веществ. Гормоны - специфические вещества, которые регулируют развитие и функционирование организма.
реферат [44,4 K], добавлен 11.01.2013Значение белков в организме человека. Характеристика углеводов как природных органических соединений, их виды. Пищевая ценность жиров. Классификация витаминов, их содержание в продуктах. Роль минеральных веществ в питании человека. Значение воды.
реферат [26,6 K], добавлен 29.03.2010Понятия о витаминах, история открытия витамина С. Растительные источники богатые витамином, содержание витамина С в пищевых продуктах. Суточная потребность в зависимости от возраста, симтомы гиповитаминоза. Сохранность витамина при кулинарной обработке.
курсовая работа [28,5 K], добавлен 12.11.2010Открытие витаминов. Голландский врач Христиан Эйкман. Биохимик Карл Петер Хенрик Дам. Установление структуры и синтеза каждого витамина. Исследование роли витаминов в организме. Артур Харден. Применение синтетических витаминов. Сбалансированное питание.
реферат [53,9 K], добавлен 07.06.2008История открытия витаминов. Их классификация, содержание в организме и основные источники поступления. Своцства и функции витаминоподобных веществ. Минеральные элементы и вещества, их биологическое действие роль в процессах жизнедеятельности организма.
дипломная работа [1,8 M], добавлен 11.07.2011Витамины как низкомолекулярные органические соединения различной химической природы, которые необходимы человеку для нормальной жизнедеятельности. Характеристика и источники некоторых витаминов, их значение в поддержании здоровья организма человека.
реферат [197,3 K], добавлен 19.05.2011Низкомолекулярные органические соединения различной химической природы, витамины и их значение. Витаминоподобные соединения и провитамины. Биологическая активность витаминов и их значение для физиологического состояния организма женщин при беременности.
презентация [154,4 K], добавлен 08.03.2012Хотя Витамины не являются источником энергии, они необходимы для живого организма. Недостаток витаминов в пище неблагоприятно отражается на общем состоянии организма и ведёт к заболеванию отдельных органов.
реферат [17,7 K], добавлен 17.09.2005Роль витаминов в продлении здоровой жизни. Болезни, причина которых – авитаминоз: цинга, рахит, пеллагра. Низкомолекулярные органические соединения. Функция витаминов в регулировании обмена веществ через систему ферментов и гормонов, биокатализаторы.
реферат [20,9 K], добавлен 26.02.2009