Биотехнология и её роль в деятельности человека

Биотехнология обработки стоков, контроль загрязнения воды тяжелыми металлами. Особенности биоэнергетики и биоэлектроники. Введение клеток в культуру, их происхождение. Биотехнологии в пищевой промышленности. Культивирование клеток и тканей беспозвоночных.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 09.06.2015
Размер файла 40,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

Размещено на http://www.allbest.ru/

Министерство образования и науки РФ

ФГБОУ ВПО «Российский химико-технологический университет им. Д.И. Менделеева

Новомосковский институт (филиал)

Кафедра ХТОВ и ПМ

Реферат

По предмету: «Биотехнология»

На тему: «Биотехнология и её роль в деятельности человека»

Выполнил(а): студент(ка) группы М-13-1

Серёгина Е.В.

Преподаватель Родионова Р.В.

Новомосковск 2015

Содержание

Введение

1. Промышленная биотехнология

1.1 Биоэнергетика

1.2 Биотехнология обработки стоков и контроль загрязнения воды тяжелыми металлами

1.3 Сельскохозяйственная биотехнология

1.4 Биогеотехнология

1.5 Биоэлектроника

1.6 Биотехнологии в медицине

1.7 Биотехнологии в пищевой промышленности

1.8 Биотехнология молочных продуктов

2. Культуры животных клеток и тканей

2.1 Культивирование клеток

2.2 Введение клеток в культуру, их происхождение

2.3 Характеристика клеток, культивируемых in vitro

2.4 Питательные среды и условия культивирования

2.5 Системы культивирования клеток

2.6 Использование культуры клеток человека

2.7 Культивирование клеток и тканей беспозвоночных

3. Культуры растительных клеток

Заключение

Список литературы

Введение

С древних времен известны отдельные биотехнологические процессы, используемые в различных сферах практической деятельности человека. К ним относятся хлебопечение, виноделие, приготовление кисло-молочных продуктов и т. д. Однако биологическая сущность этих процессов была выяснена лишь в XIX в., благодаря работам Л. Пастера. В первой половине XX в. сфера приложения биотехнологии пополнилась микробиологическим производством ацетона и бутанола, антибиотиков, органических кислот, витаминов, кормового белка.

Немаловажный вклад в биотехнологические разработки внесли советские исследователи: в СССР в 30-е годы были построены первые заводы по получению кормовых дрожжей на гидролизатах древесины, сельскохозяйственных отходах и сульфитных щелоках, под руководством В. Н. Шапошникова успешно внедрена технология микробиологического производства ацетона и бутанола. Большую роль в создание основ отечественной биотехнологии внесло учение Шапошникова о двухфазном характере брожения. В 1926 г. в СССР были исследованы биоэнергетические закономерности окисления углеводородов микроорганизмами. В последующие годы биотехнологические разработки широко использовались в нашей стране для расширения «ассортимента» антибиотиков для медицины и животноводства, ферментов, витаминов, ростовых веществ, пестицидов.

С момента создания в 1963 г. Всесоюзного научно-исследовательского института биосинтеза белковых веществ в нашей стране налаживается крупнотоннажное производство богатой белками биомассы микроорганизмов как корма. В 1966 г. микробиологическая промышленность была выделена в отдельную отрасль (Главное управление микробиологической промышленности при Совете Министров СССР -- Главмикробиопром). Имеются ценные разработки по получению новых источников энергии биотехнологическим путем (технологическая биоэнергетика), отметим большое значение биогаза - заменителя топлива, получаемого из недр земли.

Значительные успехи, достигнутые во второй половине XX в. в фундаментальных исследованиях в области биохимии, биоорганической химии и молекулярной биологии, создали предпосылки для управления элементарными механизмами жизнедеятельности клетки, что явилось мощным импульсом для развития биотехнологии. Выяснение роли нуклеиновых кислот в передаче наследственной информации, расшифровка генетического кода, раскрытие механизма индукции и репрессии генов, совершенствование технологии культивирования микроорганизмов, клеток и тканей растений и животных позволили разработать методыгенетической и клеточной инженерии, с помощью которых можно искусственно создавать новые формы высокопродуктивных организмов. Генетическая и клеточная инженерия рассматривается как принципиально новое направление биологической науки, которое сегодня ставят в один ряд с расщеплением атома, преодолением земного притяжения и созданием средств электроники (Ю. А. Овчинников, 1985).

В разработку генноинженерных методов советские исследователи включились в 1972 г. Следует указать на успешное осуществление проекта «Ревертаза» -- получение в промышленных масштабах обратной транскриптазы в СССР.С 1970 г. в нашей стране ведутся интенсивные исследования по селекции культур для непрерывного культивирования в промышленных целях.

Развитие методов для изучения структуры белков, выяснение механизмов функционирования и регуляции активности ферментов открыли путь к направленной модификации белков и привели к рождению инженерной энзимологии. Иммобилизованные ферменты, обладающие высокой стабильностью, становятся мощным инструментом для осуществления каталитических реакций в различных отраслях промышленности.Все эти достижения поставили биотехнологию на новый уровень, качественно отличающийся от прежнего возможностью сознательно управлять клеточными процессами. В современном звучании биотехнология -- это промышленное использование биологических процессов и агентов на основе получения высокоэффективных форм микроорганизмов, культур клеток и тканей растений и животных с заданными свойствами.

По оценкам специалистов, мировой рынок биотехнологической продукции уже к середине 90-х годов достигнет уровня 130--150 млрд. руб. (Ю. А. Овчинников, 1985).

На пути решения поставленных задач биотехнологию подстерегают немалые трудности, связанные с исключительной сложностью организации живого. Любой биообъект -- это целостная система, в которой нельзя изменить ни один из элементов, не меняя остальных, нельзя произвольно перекомбинировать их, придавая организму то или иное желаемое свойство, например бактерии -- способность к сверхсинтезу требуемой аминокислоты, сельскохозяйственному растению -- устойчивость к фитопатогенным грибкам. Любое воздействие на объект вызывает не только желаемые, но и побочные эффекты; перестройка генома сказывается сразу на многих признаках организма. У человека существуют гены, отвечающие за злокачественное перерождение клеток. Высказывалось немало идей о необходимости превентивных генетических операций, пока не было установлено, что эти гены необходимы и для нормального роста. Помимо этого, экосистема также представляет собой целостную систему и изменения каждого из ее компонентов сказываются на остальных компонентах. Не исключено, что плазмида, с помощью которой трансплантирован желаемый ген культурному растению, будет далее передаваться сорнякам. Не будет ли в результате генных манипуляций превращаться в сорняк само культурное растение?

Успехи, достигнутые в области генетической и клеточной инженерии на простейших биологических системах, прокариотных организмах, вселяют уверенность в преодолимость рассмотренных трудностей. Что касается более сложных систем, а именно эукариотных организмов, то здесь делаются лишь первые шаги, идет накопление фундаментальных знаний.[1]

1. Промышленная биотехнология

1.1 Биоэнергетика

Растительный покров Земли составляет более 1800 млрд. т сухого вещества, что энергетически эквивалентно известным запасам энергии полезных ископаемых. Леса составляют около 68% биомассы суши, травяные экосистемы - примерно 16%, а возделываемые земли - только 8%.Для сухого вещества простейший способ превращения биомассы в энергию заключается в сгорании - оно обеспечивает тепло, которое в свою очередь превращается в механическую или электрическую энергию. Что же касается сырого вещества, то в этом случае древнейшим и наиболее эффективным методом превращения биомассы в энергию является получение биогаза (метана).

Метановое «брожение», или биометаногенез, - давно известный процесс превращения биомассы в энергию. Он был открыт в 1776 г. Вольтой, который установил наличие метана в болотном газе. Биогаз, получающийся в ходе этого процесса, представляет собой смесь из 65% метана, 30% углекислого газа, 1% сероводорода Н2S и незначительных количеств азота, кислорода, водорода и закиси углерода. Болотный газ дает пламя синего цвета и не имеет запаха. Его бездымное горение причиняет гораздо меньше неудобств людям по сравнению со сгоранием дров, навоза жвачных животных или кухонных отбросов. Энергия, заключенная в 28 м3 биогаза, эквивалентна энергии 16,8 м3 природного газа, 20,8 л нефти или 18,4 л дизельного топлива.Для всех метанобактерий характерна способность к росту в присутствии водорода и углекислого газа, а также высокая чувствительность к кислороду и ингибиторам производства метана.

Отходы пищевой промышленности и сельскохозяйственного производства характеризуются высоким содержанием углерода (в случае перегонки свеклы на 1 литр отходов приходится до 50 граммов углерода), поэтому они лучше всего подходят для метанового «брожения», тем более, что некоторые из них получаются при температуре, наиболее благоприятной для этого процесса.

Еще в 1979 году конференция ООН по науке и технике для развивающихся стран и эксперты "Экономической и социальной комиссии по странам Азии и Тихого океана" подчеркивали достоинства интегрированных сельскохозяйственных программ, использующих биогаз. Такие программы направлены на разработку пищевых культур, а также на производство белка культурами водорослей, создание рыбных ферм, переработку отходов и превращение различных отбросов в удобрения и энергию в виде метана. Надо отметить, что 38% от 95-миллионного поголовья крупного рогатого скота в мире, 72% остатков сахарного тростника и 95% отходов бананов, кофе и цитрусовых приходятся на долю стран Африки, Латинской Америки, Азии и Ближнего Востока. Не удивительно, что в этих регионах сосредоточены огромные количества сырья для метанового «брожения». Следствием этого явился поворот некоторых стран с сельскохозяйственно ориентированной экономикой на биоэнергетику.

В России сейчас производством и внедрением установок для получения биогаза занимается НТЦ «Агроферммашпроект», который предлагает запатентованные в России современные энергосберегающие технологии и оборудование для переработки органических отходов животноводства, полеводства в эффективное экологически чистое удобрение и энергию

Биогаз состоит из 62% метана и 38% углекислого газа; последний предполагают использовать в теплицах для ускорения фотосинтеза культивируемых растений. Отходы переработки, содержащие только 12% твердого вещества, скармливают рыбам. Это помогло сэкономить половину гранулированных кормов из злаков, которые обычно употребляют при разведении рыб.

Производство биогаза путем метанового «брожения» отходов -- одно из возможных решений энергетической проблемы в большинстве сельских районов развивающихся стран. И хотя при использовании коровьего навоза только четверть органического материала превращается в биогаз, последний выделяет тепла на 20% больше, чем его можно получить при полном сгорании навоза.

Производство биогаза имеет следующие достоинства: это источник энергии; отходы процесса служат высококачественными удобрениями и в довершение сам процесс способствует поддержанию чистоты окружающей среды. Биотехнология в состоянии внести крупный вклад в решение проблем энергетики посредством производства достаточно дешевого биосинтетического этанола, который кроме того является и важным сырьем для микробиологической промышленности при получении пищевых и кормовых белков, а также белково-липидных кормовых препаратов. [2]

1.2 Биотехнология обработки стоков и контроль загрязнения воды тяжелыми металлами

Развитие промышленности ведет к образованию большого количества отходов, в том числе отходов, содержащих новые антропогенные компоненты. Методами биотехнологии эти отходы могут быть переработаны в полезные или безвредны продукты.Бытовые отходы делятся на 2 группы: твердые отходы и сточные воды.Твердые бытовые отходы состоят из целлюлозосодержащих материалов (до 40 % бумаги, 2.5% дерева, 8% текстиля) и пищевых отходов (40%). Наиболее экономична и радикальна переработка их метановым брожением, в результате образуется легко транспортируемое топливо - метан.

Сточные воды обычно содержат сложную смесь нерастворимых и растворимых компонентов различной природы и концентрации. Бытовые отходы, как правило, содержат почвенную и кишечную микрофлору, включая патогенные микроорганизмы.Сточные воды сахарных, крахмальных, пивных и дрожжевых заводов, мясокомбинатов содержат в больших количествах углеводы, белки и жиры, являющиеся источниками питательных веществ и энергии.

Стоки химических и металлургических производств могут содержать значительное количество токсических и даже взрывчатых веществ. Серьезное загрязнение возникает при попадании в окружающую среду соединений тяжелых металлов, таких как железо, медь, олово и др.Цель очистки сточных вод - удаление растворимых и нерастворимых компонентов, чтобы стоки не вредили человеку, не загрязняли водоемы.

Генетически сконструированные штаммы микроорганизмов в будущем смогут решить проблему очистки сточных вод и почв, загрязненных пестицидами и другими антропогенными веществами. [3]

1.3 Сельскохозяйственная биотехнология

В мировых и отечественных биотехнологических и генно-инженерных центрах была развернута большая работа по созданию новых и новейших сортов и гибридов растений, пород и линий различных видов животных, сочетающих высокую продуктивность и комплексную устойчивость к вредным организмам и стрессовым факторам среды.На рынках появились экономически эффективные сорта и гибриды картофеля, устойчивые к колорадскому жуку и фитофторе; многие сорта и гибриды различных сельскохозяйственных культур, устойчивые к современным гербицидам: пшеницы - к фузариозу и септориозу.В настоящее время в животноводческих центрах и лабораториях мира создаются организмы и линии крупного рогатого скота, устойчивые к лейкозу, бруцеллезу, туберкулезу; овец, свиней, кроликов и птицы - устойчивых к опасным вирусным и другим инфекциям.

Принципиально новым биотехнологическим направлением в животноводстве является получение трансгенных особей свиней - доноров органов и тканей, используемых для их трансплантации в организм больного человека. Созданы и совершенствуются генные конструкции для интеграции их в геном сельскохозяйственных животных: гены эритропоэтина, инсулиноподобного фактора, инсулина человека и др. Разработана технология клонирования особо ценных генотипов для создания продуктивных и устойчивых к вредным организмам различных видов скота.

Наибольших результатов в области сельскохозяйственной биотехнологии в СССР и России достигли научные учреждения и учебные заведения селекционного, ветеринарного и микробиологического профилей, разработавшие и широко внедрившие биотехнологические методы и технологии получения новых форм и линий растений, медицинских препаратов, штаммов микроорганизмов, вакцин и других лечебных и профилактических препаратов на генно-инженерной основе. Были организованы новые лаборатории по трансплантации эмбрионов и зигот в животноводстве в целях создания высокопродуктивных стад различных видов скота и птицы.[4]

1.4 Биогеотехнология

Микроорганизмы, обитающие в недрах Земли, широко используются в биогеотехнологии - добыче, превращении и переработке природных ископаемых, нефти и газа. Биогеотехнология получения металлов эксплуатирует способности отдельных микроорганизмов переводить металлы в растворимые соединения (выщелачивание металлов из руды) Thiobacillus ferrooxydans выщелачивает железо, медь и другие металлы с помощью окисления серной кислоты, которую образуют эти микроорганизмы из сульфида. Chromobacterium violaceum способна растворять золото, реализуя процесс Au->-Au (CN)4. Получены высокоэффективные штаммы Pseudomonas и термофильной бактерии Sulfolobus для удаления серы из угля - одной из важнейших экологических проблем. Ведь, сгорая, уголь сильно загрязняет окружающую среду серой.

Для извлечения металлов из сточных вод перспективны штаммы Cilrobacter sp. и Zoogloea, способные накапливать уран, медь, кобальт. Получены мутанты Cilrobacter sp. с высоким уровнем фермента фосфатазы. Такие сверхпродуценты в 2,5 раза быстрее накапливают уран, чем родительский штамм. Это связано с осаждением металла на поверхности клеток в результате энзиматического освобождения неорганического фосфата.

Бактерии родов Rliodococcus и Nocardia sp. используют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Обещают стать ценными очистителями среды галобактерии. Некоторые из штаммов этих бактерий уже с успехом применяют для удаления мазута с песчаных пляжей. Наряду с природными бактериями перспективна деятельность генно-инженерных штаммов. Уже удалось перенести плазмиды с генами ферментов, расщепляющих октан, камфару, нафталин и ксилол, в Pseudomonas sp. Получен штамм, способный эффективно утилизировать сырую нефть. В ближайшее время он будет включен в арсенал средств биотехнологической очистки от загрязнений.[5]

1.5 Биоэлектроника

В области электроники биотехнология может быть использована для создания улучшенных типов биосенсоров и новых приводящих устройств, называемых биочипы.

Биотехнология делает возможным создание устройств, в которых белки являются основой молекул, действующих как полупроводники. Для индикации загрязнений различного происхождения в последнее время стали использовать не химические реагенты, а биосенсоры - ферментные электроды, а также иммобилизованные клетки микроорганизмов. Ферменты обладают высочайшей чувствительностью.

Биоселективные датчики создают также путем нанесения на поверхность ионоселективных электродов целых клеток микроорганизмов или тканей. В качестве сенсоров используют также моноклональные антитела, обладающие исключительно высокой избирательностью. Лидерами в производстве биодатчиков и биочипов являются японские компании, такие как Hitachi. Например, компания Hitachi в начале 90-х годов создает проектную групп численностью в 200 человек исключительно для работ в области биоэлектроники. Появляется новый тип полупроводников, проводящую функцию в которых осуществляют молекулы белков. Такие ферментные системы работают с большей скоростью, чем кремниевые полупроводники. Биочипы имеют небольшие размеры, надежны и способны к самосборке. Еще одна японская компания, Sony, запатентовала способ производства высококачественных акустических систем из целлюлозы, образуемой бактериями. Гелеобразная целлюлоза высушивается. Полученный материал имеет структуру сот и используется в качестве плоской диафрагмы акустических систем.[6]

1.6 Биотехнологии в медицине

На основе генной инженерии возникла целая отрасль фармацевтической промышленности, называемая “индустрией ДНК” и представляющая собой одну из современных ветвей биотехнологии. Более четверти всех лекарств, используемых сейчас в мире, содержат ингредиенты из растений. Генно-модифицированные растения являются дешевым и безопасным источником для получения полностью функциональных лекарственных белков (антител, вакцин, ферментов и др.) как для человека, так и для животных.

Разработка методов генной инженерии, основанных на создании рекомбинантных ДНК, привела к тому "биотехнологическому буму", свидетелями которого мы являемся. Благодаря достижениям науки в этой области стало возможным не только создание «биологических реакторов», трансгенных животных, генно-модифицированных растений, но и проведение генетической паспортизации (полного исследования и анализа генотипа человека, проводимого, как правило, сразу после рождения, для определения предрасположенности к различным заболеваниям, возможную неадекватную (аллергическую) реакцию на те или иные лекарства, а также склонность к определенным видам деятельности). Генетическая паспортизация позволяет прогнозировать и уменьшать риски сердечно-сосудистых и онкологических заболеваний, исследовать и предотвращать нейродегенеративные заболевания и процессы старения, анализировать нейро-физиологические особенности личности на молекулярном уровне), диагностирование генетических заболеваний, создание ДНК-вакцин, генотерапия различных заболеваний и т.д.В XX веке в большинстве стран мира основные усилия медицины были направлены на борьбу с инфекционными заболеваниями, снижение младенческой смертности и увеличение средней продолжительности жизни. Страны с более развитой системой здравоохранения настолько преуспели на этом пути, что сочли возможным сместить акцент на лечение хронических заболеваний, болезней сердечно-сосудистой системы и онкологических заболеваний, поскольку именно эти группы болезней давали наибольший процент прироста смертности.

Одновременно шли поиски новых методов и подходов. Существенным явилось то, что наукой была доказана значительная роль наследственной предрасположенности .Актуальность проведения достоверных генетических исследований, основанных на биотехнологических подходах, очевидна еще и потому, что к настоящему времени известно уже более 4000 наследственных болезней. Около 5-5,5% детей рождаются с наследственными или врождёнными заболеваниями. Не менее 30% детской смертности во время беременности и в послеродовом периоде обусловлено врождёнными пороками развития и наследственными болезнями. После 20-30 лет начинают проявляться многие заболевания, к которым у человека была только наследственная предрасположенность. Это происходит под воздействием различных средовых факторов: условия жизни, вредные привычки, осложнения после перенесенных болезней и т.д.

В настоящее время уже появились практические возможности значительно снизить или скорректировать негативное воздействие наследственных факторов. Медицинская генетика объяснила, что причиной многих генных мутаций является взаимодействие с неблагоприятными условиями среды, а, следовательно, решая экологические проблемы можно добиться снижения заболеваемости раком, аллергией, сердечно-сосудистыми заболеваниями, сахарным диабетом, психическими болезнями и даже некоторыми инфекционными заболеваниями.

Таким образом, значительные достижения генетики позволили не только выйти на молекулярный уровень изучения генетических структур организма, но и вскрыть сущность многих серьезных болезней человека, вплотную подойти к генной терапии.

Важнейшим направлением медицинской генетики в настоящее время является разработка новых методов диагностики наследственных заболеваний, в том числе и болезней с наследственной предрасположенностью. Сегодня уже никого не удивляет предимплантационная диагностика - метод диагностики эмбриона на ранней стадии внутриутробного развития, когда врач-генетик, извлекая лишь одну клетку будущего ребенка с минимальной угрозой для его жизни, ставит точный диагноз или предупреждает о наследственной предрасположенности к той или иной болезни.

Благодаря все более широкому применению биотехнологических методов в фармацевтике и медицине появилось новое понятие «персонализированной медицины», когда лечение пациента осуществляется на основе его индивидуальных, в том числе генетических особенностей, и даже препараты, используемые в процессе лечения, изготавливаются индивидуально для каждого конкретного пациента с учетом его состояния. Появление таких препаратов стало возможным, в частности, благодаря применению такого биотехнологического метода, как гибридизация (искусственное слияние) клеток. Процессы гибридизации клеток и получения гибридов еще до конца не изучены и не отработаны, но важно, что с их помощью стало возможным нарабатывать моноклональные антитела. Моноклональные антитела - это специальные «защитные» белки, которые продуцируются клетками иммунной системы человека в ответ на появление в крови любых чужеродных агентов (называемых антигенами): бактерий, вирусов, ядов и т.д. Моноклональные антитела обладают необыкновенной, уникальной специфичностью, и каждое антитело узнает только свой антиген, связывается с ним и делает его безопасным для человека.[7]

1.7 Биотехнологии в пищевой промышленности

Статистические данные ООН по вопросам продовольствия и сельского хозяйства свидетельствуют о том, что проблема обеспечения населения нашей планеты продуктами питания внушает серьезные опасения. По этим данным, более половины населения Земли не обеспечено достаточным количеством продуктов питания, примерно 500 млн. людей голодают, а около 2 млрд. питаются недостаточно или неправильно. Пища должна быть разнообразной и содержать белки, жиры, углеводы и витамины. Источники энергии -- жиры и углеводы в определенных пределах взаимозаменяемы, причем их можно заменить и белками, но белки нельзя заменить ничем. Проблема питания людей в конечном счете заключается в дефиците белка. Там, где сегодня люди голодают, не хватает прежде всего белка. Наибольшую популярность как источники белка приобрели семена масличных культур -- сои, семян подсолнечника, арахиса и других, которые содержат до 30 процентов высококачественного белка. По содержанию некоторых незаменимых аминокислот он приближается к белку рыбы и куриных яиц и перекрывает белок пшеницы. Микроорганизмы чрезвычайно богаты белком -- он составляет 70--80 процентов их веса. Скорость его синтеза огромна. Микроорганизмы примерно в 10--100 тысяч раз быстрее синтезируют белок, чем животные. Применяя обычные технологические линии по производству синтетических волокон, можно получать из искусственных белков длинные нити, которые после пропитки их формообразующими веществами, придания им соответствующего вкуса, цвета и запаха могут имитировать любой белковый продукт. Таким способом уже получены искусственное мясо (говядина, свинина, различные виды птиц), молоко, сыры и другие продукты. Такое мясо можно резать, замораживать, консервировать, сушить или прямо использовать для приготовления различных блюд. Из 20 аминокислот, входящих в состав белков, 8 аминокислот люди не могут синтезировать, и их относят к незаменимым. Аминокислоты -- это не только питательные вещества, но также ароматические и вкусовые агенты, и потому они широко используются в пищевой промышленности. Как питательную добавку в пищу чаще всего вносят лизин и метионин. Глутамат натрия и глицин употребляют как ароматические вещества для усиления и улучшения вкуса пищи. У глицина освежающий, сладкий вкус. Его вводят в сладкие напитки, и кроме того, он проявляет там бактериостатическое действие. Цистеин предотвращает подгорание пищи, улучшает пекарские процессы и качество хлеба.[8]

1.8 Биотехнология молочных продуктов

Наиболее развитой является биотехнология молочных продуктов. С использованием микроорганизмов выпускают кефир, сметану, творог, простокваши, казеин, сыры, биофруктолакт, биолакт. С применением ферментов выпускают пищевой гидролизат казеина, сухую молочную смесь для коктейлей и др.

Для процесса ферментации молока используются чистые культуры микроорганизмов, называемых заквасками. Исключение составляют закваски для кефиров, представляющие естественный симбиоз нескольких видов молочнокислых грибков и молочнокислых бактерий. Этот симбиоз в лабораторных условиях воспроизвести не удалось, поэтому поддерживается культура, выделенная из природных источников.

Молочная закваска

При подборе культур для заквасок придерживаются следующих требований: биотехнология культивирование клетка беспозвоночный

1. Состав заквасок зависит от конечного продукта (например, для получения ацидофилина используется ацидофильная палочка, для производства простокваши - молочнокислые стрептококки);

2. Соответствие штаммов определенным вкусовым требованиям (продукты должны иметь соответствующую консистенцию от ломкой крупитчатой до вязкой, сметанообразной);

3. Определенная активность кислотообразования;

4. Фагорезистентность штаммов (устойчивость к бактериофагам);

5. Способность к синерезису (свойству сгустка отдавать влагу);

6. Образование ароматических веществ;

7. Сочетаемость штаммов (без антагонизма между культурами);

8. Наличие антибиотических свойств, т.е. Бактериостатиче- ское действие по отношению к патогенным микроорганизмам;

9. Устойчивость к высушиванию.

Культуры для заквасок выделяются из природных источников, после чего проводится направленный мутагенез и отбор штаммов, отвечающих перечисленным выше требованиям.

Биотехнологии на основе молока, производство сыров включают, как правило, все основные стадии биотехнологического производства.[9]

2. Культуры животных клеток и тканей

2.1 Культивирование клеток

Культивирование клеток представляет собой процесс, посредством которого in vitro отдельные клетки (или единственная клетка) прокариот и эукариот искусственно выращиваются в контролируемых условиях. На практике термин «культура клеток» относится в основном к выращиванию клеток, относящихся к одной ткани, полученных от многоклеточных эукариот, чаще всего животных. Историческое развитие технологии и методик выращивания культур клеток неразрывно связаны с выращиванием тканевых культур и целых органов.[10]

2.2 Введение клеток в культуру, их происхождение

В соответствии с целями и задачами экспериментальной работы можно выделить два направления культивирования животных клеток:

- культуры клеток;

- культуры органов и тканей (органные культуры).

Культуры клеток лишены структурной организации, теряют характерную гистиотипическую архитектуру и связанные с ней биохимические признаки и обычно не достигают равновесного состояния при отсутствии специальных условий. Клетки в культурах размножаются, что обеспечивает получение большой массы клеток, затем их идентифицируют (по фенотипическим признакам, путем выращивания в селективной среде, генотипически), разделяют на идентичные параллели и, если это необходимо, сохраняют. Динамические свойства культивируемых клеток часто трудно контролировать, также трудно реконструировать in vitro некоторые клеточные взаимодействия, наблюдаемые in vivo. В связи с этим некоторые исследователи предпочитают использовать клеточные системы, сохраняющие структурную целостность исходной ткани.

Список типов клеток, которые уже введены в культуру, достаточно велик. Это элементы соединительной ткани человека (фибробласты), скелетные ткани (кость и хрящи), скелетные, сердечные и гладкие мышцы, эпителиальные ткани (печень, легкие, почки и др.), клетки нервной системы, эндокринные клетки (надпочечники, гипофиз, клетки островков Лангерганса), меланоциты и различные опухолевые клетки.[11]

2.3 Характеристика клеток, культивируемых in vitro

Клетки одного и того же типа в ткани взаимодействуют друг с другом и согласовывают скорость деления, чтобы поддерживать надлежащую плотность популяции. «Социальный» контроль такого рода четко проявляется при реакциях на повреждение. Например, когда поврежден эпителий, клетки по краям раны стимулируются к делению и наползанию на обнаженную поверхность до тех пор, пока она вновь не будет закрыта; в этот момент быстрая пролиферация и движение клеток прекращаются. Сходное явление можно наблюдать на диссоциированных клетках в культуре. Эпителиальные клетки или фибробласты, помещенные в чашку, в присутствии сыворотки будут «приклеиваться» к поверхности, распластываться и делиться до тех пор, пока не образуется сплошной монослой, в котором соседние клетки соприкасаются.[12]

2.4 Питательные среды и условия культивирования

После извлечения клеток из ткани или организма и помещения их в культуру культуральная среда должна обеспечивать все внешние условия, которые клетки имели in vivo. Это обеспечивает выживание клеток, их пролиферацию и дифференцировку. Внеклеточная среда должна обеспечивать клетки питательными и гормональными факторами, т.е. обладать всем необходимым для роста и выживания клеток.

Культуры клеток животных и человека предъявляют определенные требования к жидкой (питательная среда), газообразной (концентрация газов) и твердой (поверхность субстрата) фазе. Питательная среда представляет собой раствор определенного состава, к которому добавляются компоненты невыясненного биологического происхождения (добавки плазмы, сыворотки крови, тканевые экстракты и т.д.). Основу питательных сред составляют солевые растворы. Минеральные компоненты в этих растворах подобраны так, что раствор выполняет буферные функции, поддерживая постоянный кислотно-щелочной баланс среды в процессе культивирования. Постоянство рН среды является одним из главных требований условий культивирования.[13]

2.5 Системы культивирования клеток

Существует 2 основных системы культивирования клеток.

1. Непроточные культуры - тип культур, в котором клетки вводят в фиксированный объем среды. По мере роста клеток происходит использование питательных веществ и накопление метаболитов, поэтому среда должна периодически меняться, что приводит к изменению клеточного метаболизма, называемого еще и физиологической дифференцировкой. Со временем, в результате истощения среды происходит прекращение пролиферации клеток.

Увеличить продолжительность жизни непроточных культур можно несколькими способами:

-прерывистый (часть культуры заменяется равным объемом свежей среды);

-постоянный (объем культуры увеличивается с постоянной низкой скоростью, а небольшие порции клеток периодически удаляются);

-перфузионный (осуществляется постоянное поступление свежей среды в культуру и одновременное удаление равного объема использованной (бесклеточной) среды).

Перфузия может быть открытой, когда из системы удаляется вся среда, и закрытой, когда удаляемая среда проходит через дополнительный сосуд, где восстанавливается ее рН и осуществляется аэрирование, и возвращается в культуральный сосуд.

Все системы непроточных культур характеризуются накоплением отходов в той или иной форме и непостоянством внешних условий.

2. Проточные культуры обеспечивают истинные гомеостатические условия без изменения концентрации питательных веществ и метаболитов, а также числа клеток. Гомеостаз обусловлен постоянным вхождением среды в культуру и одновременным удалением равного объема среды с клетками. Такие системы пригодны для суспензионных культур и монослойных культур на микроносителях.

Существует 2 крупных направления в культивировании животных клеток:монослойные культуры и суспензионные культуры.

-Суспензионные культуры предпочтительнее с точки зрения увеличения выхода клеток.

-Монослойные культуры также обладают рядом преимуществ:

1. Легко провести полную замену среды и промыть клетки перед добавлением свежей питательной среды. Это важно в тех случаях, когда рост клеток идет в одних условиях, а наработка продукта в других условиях, например при переносе клеток из среды с сывороткой в бессывороточную среду. Можно также полностью удалять нежелательные компоненты.

2. Позволяют обеспечить высокую плотность клеток.

3. У многих клеток экспрессия требуемого продукта идет эффективнее, если клетки прикреплены к субстрату.

4. Монослойные культуры могут быть использованы для любого типа клеток, что обеспечивает наибольшую гибкость исследований.

5. В некоторых случаях, например для распространения вирусов, требуются тесные межклеточные контакты.

Недостатками монослойных культур являются:

-требования большого пространства;

-возрастание стоимости и трудоемкости при увеличении масштаба;

-недостаточно эффективный контроль, обусловленный трудностями отбора пробы;

-сложности в определении и контролировании рН, концентрации кислорода.[14]

2.6 Использование культуры клеток человека

Практически любые клетки человека могут быть введены в культуру и служить средством и объектом во многих медико-биологических исследованиях. Одно из важнейших преимуществ клеток в культуре - возможность прижизненного наблюдения за ними с помощью микроскопа. Немаловажно и то, что культуры клеток к ряде случаем могут быть равноценной заменой клинических экспериментов, для которых потребовалось бы участие добровольцев. Эксперименты, требующие для выяснения того или иного вопроса использования 1000 человек, могут быть с равной статистической достоверностью поставлены на 100 культурах на покровных стёклах.

Благодаря культивированию клеток возможности исследования и диагностики расширяются почти беспредельно, так как имеется возможность оценки не только морфологических и биохимических изменений, но и изменений в поведении клеток, их реакции на различные агенты, в том числе и на лекарственные воздействия. Поскольку клетки в культуре легко доступны для различных биохимических манипуляций, то при работе с ними радиоактивные предшественники, яды, гормоны и другие агенты могут быть введены в заданной концентрации и в течение заданного периода. Исчезает опасность того, что исследуемое соединение метаболизируется печенью, запасается мышцами или экскретируется почками. При использовании клеточных культур, как правило, легко установить время контакта исследуемого вещества с клетками, изменение его концентрации в течение данного периода времени. Это обеспечивает получение реальных значений скорости включения или метаболизма исследуемых соединений.

Клеточные линии применяют для тестирования и изучения механизма действия различных веществ, которые могут быть использованы в качестве лекарственных препаратов, детергентов, косметических средств, инсектицидов, консервантов. Результаты, полученные на клеточных культурах, нельзя экстраполировать на целый организм, но если изучаемое вещество оказывает повреждающее действие в нескольких линиях культивируемых клеток, то следует ожидать от неблагоприятного эффекта и на организм человека.

Кроме того, если в ряду поколений воспроизводится дефект, свойственный клеткам in vivo, значит это дефект наследственный. Благодаря возможностям генной инженерии изменение генотипа клеток стало реальностью. Мы можем выделить из организма мутантые клетки, заменить in vitro дефектные гены, получить линию здоровых генно-модифицированных клеток и ввести их опять в организм.

Наибольшее распространение получили культуры фибробластов. Широкое использование фибробластов для изучения патогенеза и диагностики наследственных болезней обусловлено не только легкостью их культивирования, но и тем, что соединительная ткань, главным клеточным элементом которой являются фибробласты, составляет значительную часть массы тела. Кроме того, фибробласты составляют строму многих органов, являются важными участниками их морфогенеза и создают условия микроокружения, необходимого для дифференцировки и функционирования специализированных клеток. В фибробластах имеется фермент моноаминоксидаза, изменения активности которого характерны для некоторых нервных и психических заболеваний. Фибробласты содержат рецепторы к глюкокортикоидным гормонам, инсулину, некоторым нейромедиаторам.[15]

2.7 Культивирование клеток и тканей беспозвоночных

Интерес к клеточным культурам беспозвоночных связан с разнообразием и оригинальностью роста и метаморфоза, которые могут быть объектом для изучения основных процессов клеточной дифференцировки и регуляции активности генов. С другой стороны, при рассмотрении способов получения энтомопатогенных препаратов отмечалось, что вирусы могут размножаться только при использовании живых клеток насекомых, в связи с чем для получения вирусных препаратов необходимым условием являлось предварительное разведение насекомых-хозяев. Использование клеточных культур беспозвоночных позволяет решить эту проблему.

Для получения культуры клеток и тканей беспозвоночных используют эмбрионы, имагинальные диски и органы насекомых, гомоциты, яичники, жировые тела:

имагинальные диски (зачатки взрослых органов насекомых) используют для изучения процессов дифференцировки in vitro;

эмбрионы с удаленной оболочкой используют для изучения начальных стадий развития насекомых;

отдельные органы для различных целей, например, слюнные железы Diptera (мух) - для изучения процессов пуффирования в политенных хромосомах (пуф вздутие хромосом при "включении" ДНК на транскрипцию, когда определенные участки ее раскручиваются и РНК-синтезирующие ферменты начинают синтез РНК; при линьке насекомых пуфы появляются в определенной последовательности)

Лучшие источники для получения культивируемых клеток - личинки и куколки насекомых.

Методика получения первичных культур клеток насекомых достаточно отработана. Она включает следующие этапы: стерилизация поверхности насекомых и подлежащих культивированию тканей; диссоциация клеток; пересадка их на питательную среду.[16]

3. Культуры растительных клеток

Культуры клеток высших растений имеют две сферы применения:

1.Изучение биологии клетки, существующей вне организма, обуславливает ведущую роль клеточных культур в фундаментальных исследованиях по генетике и физиологии, молекулярной биологии и цитологии растений. Популяциям растительных клеток присущи специфические особенности: генетические, эпигенетические (зависящие от дифференцированной активности генов) и физиологические. При длительном культивировании гетерогенной по этим признакам популяции идет размножение клеток, фенотип и генотип которых соответствуют данным условиям выращивания, следовательно, популяция эволюционирует. Все это позволяет считать, что культуры клеток являются новой экспериментально созданной биологической системой, особенности которой пока мало изучены. Культуры клеток и тканей могут служить адекватной моделью при изучении метаболизма и его регуляции в клетках и тканях целого растения.

2. Культивируемые клетки высших растений могут рассматриваться как типичные микрообъекты, достаточно простые в культуре, что позволяет применять к ним не только аппаратуру и технологию, но и логику экспериментов, принятых в микробиологии. Вместе с тем, культивируемые клетки способны перейти к программе развития, при которой из культивируемой соматической клетки возникает целое растение, способное к росту и размножению.

Можно назвать несколько направлений создания новых технологий на основе культивируемых тканей и клеток растений:

1. Получение биологически активных веществ растительного происхождения:

-традиционных продуктов вторичного метаболизма (токсинов, гербицидов, регуляторов роста, алкалоидов, стероидов, терпеноидов, имеющих медицинское применение);

-синтез новых необычных соединений, что возможно благодаря исходной неоднородности клеточной популяции, генетической изменчивости культивируемых клеток и селективному отбору клеточных линий со стойкими модификациями, а в некоторых случаях и направленному мутагенезу;

-культивируемые в суспензии клетки могут применятся как мультиферментные системы, способные к широкому спектру биотрансформаций химических веществ (реакции окисления, восстановления, гидроксилирования, метилирования, деметилирования, гликолизирования, изомеризации). В результате биотрансформации получают уникальные биологически активные продукты на основе синтетических соединений или веществ промежуточного обмена растений других видов.

2. Ускоренное клональное микроразмножение растений, позволяющее из одного экпланта получать от 10000 до 1000000 растений в год, причем все они будут генетически идентичны.

3. Получение безвирусных растений.

4. Эмбриокультура и оплодотворение in vitro часто применяются для преодоления постгамной несовместимости или щуплости зародыша, для получения растений после отдаленной гибридизации. При этом оплодотворенная яйцеклетка вырезается из завязи с небольшой частью ткани перикарпа и помещается на питательную среду. В таких культурах можно также наблюдать стадии развития зародыша.

5. Антерные культуры - культуры пыльников и пыльцы используются для получения гаплоидов и дигаплоидов.

6. Клеточный мутагенез и селекция. Тканевые культуры могут производить регенеранты, фенотипически и генотипически отличающиеся от исходного материала в результате сомаклонального варьирования. При этом в некоторых случаях можно обойтись без мутагенной обработки.

7. Криоконсервация и другие методы сохранения генофонда.

8. Иммобилизация растительных клеток.

9. Соматическая гибридизация на основе слияния растительных протопластов.

10.Конструирование клеток путем введения различных клеточных оганелл.

11.Генетическая трансформация на хромосомном и генном уровнях.

12. Изучение системы «хозяин - паразит» с использованием вирусов, бактерий, грибов и насекомых).[17]

Заключение

Биотехнология -- междисциплинарная область научно-технического прогресса, возникшая на стыке биологических, химических и технических наук.

Биотехнологический процесс включает ряд этапов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование продуктов. Многоэтапность процесса обусловливает необходимость привлечения к его осуществлению самых различных специалистов: генетиков и молекулярных биологов, биохимиков и биооргаников, вирусологов, микробиологов и клеточных физиологов, инженеров-технологов, конструкторов биотехнологического оборудования и др.

Первоочередными задачами в биотехнологии стали разработка и создание :

-- новых биологически активных веществ и лекарственных препаратов для медицины (интерферонов, инсулина, гормонов роста человека, моноклональных антител и т.д.), позволяющих осуществить в здравоохранении раннюю диагностику и лечение тяжелых заболеваний -- сердечно-сосудистых, злокачественных, наследственных, инфекционных, в том числе вирусных;

-- микробиологических средств защиты растений от болезней и вредителей, бактериальных удобрений и регуляторов роста растений; новых высокопродуктивных и устойчивых к неблагоприятным факторам внешней среды сортов и гибридов сельскохозяйственных растений, полученных методами генетической и клеточной инженерии;

-- ценных кормовых добавок и биологически активных веществ (кормового белка, аминокислот, ферментов, витаминов, ветеринарных препаратов и др.) для повышения продуктивности животноводства; новых методов биоинженерии для эффективной профилактики, диагностики и терапии основных болезней сельскохозяйственных животных;

-- новых технологий получения хозяйственно ценных продуктов для использования в пищевой, химической, микробиологической и других отраслях промышленности;

-- технологий глубокой и эффективной переработки сельскохозяйственных, промышленных и бытовых отходов, использования сточных вод и газовоздушных выбросов для получения биогаза и высококачественных удобрений.

Список литературы

1. Вакула В.Л. 'Биотехнология: что это такое?'- М: Молодая гвардия, 1989. - 301с. http://nplit.ru/books/item/f00/s00/z0000029/index.shtml

2. Шлейкин А.Г., Жилинская Н.Т. Введение в биотехнологию:Учеб.пособие.- СПб.: НИУ ИТМО; ИХиБТ, 2013.- 95с. http://books.ifmo.ru/file/pdf/1406.pdf

3. Голубовская Э.К. Биологические основы очистки воды:Учеб.пособие.-М.: Высшая школа,1978.-270с. http://nashaucheba.ru/v20728/голубовская_э.к.

4. Шевелуха В. С.Биотехнология в сельском хозяйстве.Ак а д е м и к Р АС Х Н. М.:Высшая школа,2008.-710с. http://federalbook.ru/files/FS/Soderjanie/FS-21/XI/Sheveluha.pdf

5.Каравайко Г.И. Биогеотехнология металлов // Биотехнология. М.: Наука, 1984.-79с. .http://beregrusskij.narod.ru/index-10.html

6.Иваницкий.Г.Р.Биоэлектроника.-М.:Энергия,1968.-74с.

http://www.biotechnolog.ru/prombt/prombt1_5.htm

7. Гаева Т. А.Биотехнология в медицине.2009. Общество биотехнологов России им. Ю.А. Овчинникова. http://www.biorosinfo.ru/press/chto-takoe-biotekhnologija/

8. Грачева И.М., Гаврилова Н.М., Иванова Л.А. Технология микробных белковых препаратов, аминокислот и жиров-М.: Пищевая промышленность, 1980- 448.c.

http://www.novostioede.ru/article/biotehnologii_v_pishhevoj_promyshlennosti/

9. Реннеберг Р., Реннеберг И. От пекарни до биофабрики. перевод с немецкого Г. И. Лойдиной . - Москва : Мир , 1991. - 110. http : / / proiz-teh.ru/bl-biotehnologija-moloka.html.

10. Блажевич О.В. Культивирование клеток. Минск .2004 .http://bio-x.ru/books/kultivirovanie-kletok

11. Цыренов В.Ж. Улан-Удэ.Основы биотехнологии: культивирование клеток человека и животных. Учебно-методическое пособие. Изд-во:ВСГТУ, 2005. - 48 с.

12. Вечканов Е. М., Сорокина И. А. Основы клеточной инженерии: Учебное

пособие. Ростов-на-Дону, 2012. -136с. http://dommedika.com/virusologia/30.html

13. Шлегель Г. ФРГ.1987. Общая микробиология. М.: Мир. 1987. - 567 с. http://biofile.ru/bio/16201.html

14. Аблакимова Р.И. Использование культуры клеток человека. Алматинский Технологический Университет . 2012

http://www.biotechnolog.ru/acell/acell1_6.htm

15,16,17. Кузьмина Н.А. Культуры клеток, Омский государственный педагогический университет. 2013.http://www.biotechrynolog.ru/acytell/acсell1_56.htm

Размещено на Allbest.ru

...

Подобные документы

  • Биотехнология, её направления: генная инженерия, клонирование. Роль клеточной теории в становлении биотехнологии. Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты.

    презентация [2,7 M], добавлен 02.10.2011

  • Основные методы биотехнологии. Размножение организмов с интересующими человека свойствами с помощью метода культуры клеток. Особенности применения методов генной инженерии. Перспективы метода клонирования. Технические трудности применения методов.

    презентация [616,1 K], добавлен 04.12.2013

  • Общие понятия, основные вехи и задачи биотехнологии. Рассмотрение применения методов генной инженерии в животноводстве, их практическое значение и перспективы. Клонирование животных с помощью переноса ядер из дифференцированных тотипотентных клеток.

    реферат [35,7 K], добавлен 13.07.2014

  • История развития Биотехнологии. Генетическая инженерия как важная составная часть биотехнологии. Осуществление манипуляций с генами и введение их в другие организмы. Основные задачи генной инженерии. Генная инженерия человека. Искусственная экспрессия.

    презентация [604,9 K], добавлен 19.04.2011

  • Биотехнология и её роль в практической деятельности человека, перспективы развития. Метод культуры тканей. Новые открытия в области медицины. Биотехнологии в животноводстве: клонирование. Генно-модифицированные продукты. Трансгенные продукты: за и против.

    презентация [214,5 K], добавлен 28.01.2014

  • Биотехнология как совокупность методов использования живых организмов и биологических продуктов в производственной сфере. Клонирование как бесполое размножение клеток растений и животных. Использование микроорганизмов для получения энергии из биомассы.

    реферат [15,2 K], добавлен 30.11.2009

  • Особенности биотехнологии на службе пищевой промышленности. Жиры и углеводы как источники энергии, и проблема питания при их дефиците. Лизин, метионин - питательные добавки. Типы окислительных процессов бактерий. Биотехнологические процессы в пивоварении.

    контрольная работа [27,3 K], добавлен 25.11.2010

  • Понятие и сущность биотехнологии, история ее возникновения. Основные направления и методы биотехнологии. Генная и клеточная инженерия. "Три волны" в создании генно-модифицированных растений. Трансгенные животные. Методы иммобилизации ферментов и клеток.

    реферат [25,0 K], добавлен 11.01.2013

  • Биотехнология как наука о методах и технологиях производства. Понятие генной и клеточной инженерии. Биотехнология сельскохозяйственных растений. Повышение урожайности и естественная защита растений. Устойчивость к гербицидам и неблагоприятным факторам.

    реферат [34,6 K], добавлен 14.11.2010

  • Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.

    реферат [32,4 K], добавлен 23.07.2008

  • Изучение биотехнологии - науки об использовании живых организмов, биологических процессов и систем в производстве, включая превращение различных видов сырья в продукты. Клонирование и биотехнология в животноводстве, перспективы генетической инженерии.

    реферат [39,2 K], добавлен 04.03.2010

  • Генетика и история ее развития, наследственность и изменчивость. Структурно-функциональная организация клеток эукариотического и прокариотического типов, нуклеиновые кислоты и молекулярные носители наследственности, биотехнология и генная инженерия.

    дипломная работа [101,6 K], добавлен 15.05.2012

  • Биотехнология как область человеческой деятельности, которая характеризуется широким использованием биологических систем всех уровней в самых разнообразных отраслях. Принципы интенсификации биопроцессов. Характеристика фармацевтической индустрии ДНК.

    реферат [31,9 K], добавлен 25.03.2015

  • Основные задачи, разделы и направления современной биотехнологии. Производство необходимых человеку продуктов и биологически активных соединений с помощью живых организмов. Изучение генетической, клеточной и биологической инженерии. Объекты биотехнологии.

    презентация [2,1 M], добавлен 06.03.2014

  • Основные функции бокаловидных клеток как клеток эпителия слизистой оболочки кишечника и других органов позвоночных животных и человека. Форма клеток и особенности их локализации. Секрет бокаловидных клеток. Участие бокаловидных клеток в секреции слизи.

    реферат [2,9 M], добавлен 23.12.2013

  • Биотехнология, поднявшая фармакологическую промышленность. Полемика о вреде или полезности генетически модифицированных продуктов. Проблема трансгенных организмов в Украине. Участие общественных организаций в вопросах, связанных с применением ГМО.

    реферат [23,4 K], добавлен 22.02.2008

  • Основные группы ферментов генетической инженерии: рестриктазы и лигазы. Регуляция экспрессии гена у прокариот. Способы прямого введения гена в клетку. Генетическая трансформация соматических клеток млекопитающих. Получение трансгенных животных.

    курсовая работа [337,4 K], добавлен 24.11.2010

  • Характеристика передовых инновационных биомедицинских технологий. Биотехнология и лекарственные средства. Существенные особенности биотехнологических лекарственных средств. Биотехнология с точки зрения экономики. Специфические черты рынка продукции.

    реферат [24,0 K], добавлен 23.01.2010

  • Основные разделы биотехнологии и их характеристика. Клетка как объект биотехнологических исследований. Механизмы синтеза и распада веществ в живой клетке. Биополимеры и их производные. Классификация направлений пищевой биотехнологии по целевым продуктам.

    курсовая работа [72,0 K], добавлен 15.12.2014

  • Основные разновидности живых клеток и особенности их строения. Общий план строения эукариотических и прокариотических клеток. Особенности строения растительной и грибной клеток. Сравнительная таблица строения клеток растений, животных, грибов и бактерий.

    реферат [5,5 M], добавлен 01.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.