Объекты биотехнологии и их биотехнологические функции
Бактерии, цианобактерии, водоросли, L-аланин, глутаминовая кислота. Использование растений в биотехнологии, производство аминокислот, органических кислот, витаминов. Способность бактерий к фиксации атмосферного азота и росту на дешевых питательных средах.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 16.06.2015 |
Размер файла | 287,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Объекты биотехнологии и их биотехнологические функции
L-аланин и глутаминовая кислота. Значительно меньше штаммов и в меньшем количестве выделяют аспарагиновую кислоту, лейцин, валин, изолейцин, лизин. За рубежом 60% мощностей по производству аминокислот занимают глутаминовая кислота, далее идут метионин, лизин и глицин. Биотехнологические объекты находятся на разных ступенях организации:
а) субклеточные структуры (вирусы, плазмиды, ДНК митохондрий и хлоропластов, ядерная ДНК);
б) бактерии и цианобактерии;
в) грибы;
г) водоросли;
д) простейшие;
е) культуры клеток растений и животных;
ж) растения - низшие (анабена-азолла) и высшие - рясковые.
Субклеточные структуры будут подробно изучаться в разделе «Основы генетической инженерии», культуры растительных и животных клеток - в соответствующих разделах.
Бактерии и цианобактерии
Микроорганизмов, синтезирующих продукты или осуществляющих реакции, полезные для человека, несколько сотен видов. Биотехнологические функции бактерий разнообразны. Бактерии используются при производстве: - пищевых продуктов, например, уксуса (Gluconobacter suboxidans), молочнокислых напитков (Lactobacillus, Leuconostoc) и др.; - микробных инсектицидов (Bacillus thuringiensis); - белка (Methylomonas); - витаминов (Clostridium - рибофлавин); - растворителей и органических кислот; - биогаза и фотоводорода.
Полезные бактерии относятся к эубактериям. Уксуснокислые бактерии, представленные родами Gluconobacter и Acetobacter, - это грамотрицательные бактерии, превращающие этанол в уксусную кислоту, а уксусную кислоту в углекислый газ и воду. Род Bacillus относится к грамположительным бактериям, которые способны образовывать эндоспоры и имеют перитрихиальное жгутикование. B.subtilis - строгий аэроб, а B.thuringiensis может жить и в анаэробных условиях. Анаэробные, образующие споры бактерии представлены родом Clostridium. C.acetobutylicum сбраживает сахара в ацетон, этанол, изопропанол и n-бутанол (ацетобутаноловое брожение), другие виды могут также сбраживать крахмал, пектин и различные азотсодержащие соединения.
К молочнокислым бактериям относятся представители родов Lactobacillus, Leuconostoc и Streptococcus, которые не образуют спор, грамположительны и нечувствительны к кислороду. Гетероферментативные молочнокислые бактерии рода Leuconostoc превращают углеводы в молочную кислоту, этанол и углекислый газ. Гомоферментативные молочнокислые бактерии рода Streptococcus продуцируют только молочную кислоту, а брожение, осуществляемое представителями рода Lactobacillus, позволяет получить наряду с молочной кислотой ряд разнообразных продуктов.
К бактериям рода Corynebacterium, неподвижные грамположительные клетки которых не образуют эндоспор, относятся патогенные (C.diphtheriae, C.tuberculosis) и непатогенные почвенные виды, имеющие промышленное значение. С.glutamicum служит источником лизина и улучшающих вкус нуклеотидов. Коринебактерии хотя и считаются факультативными анаэробами, лучше растут аэробно. Бактерии используются для микробного выщелачивания руд и утилизации горнорудных отходов.
Широко используется такое свойство некоторых бактерий, как диазотрофность, то есть способность к фиксации атмосферного азота.
Выделяют 2 большие группы диазотрофов:
- симбионты: без корневых клубеньков (азотобактер - лишайники, азоспириллум - лишайники, анабена - лишайники, азолла), с корневым клубеньками (бобовые - ризобии, ольха, лох, облепиха - актиномицеты);
- свободноживущие: гетеротрофы (азотобактер, клостридиум, метилобактер), автотрофы (хлоробиум, родоспириллум и амебобактер).
Микробные клетки используют для трансформации веществ.
Бактерии также широко используются в генноинженерных манипуляциях при создании геномных клонотек, введении генов в растительные клетки (агробактерии).
Производственные штаммы микроорганизмов должны соответствовать определенным требованиям: способность к росту на дешевых питательных средах, высокая скорость роста и образования целевого продукта, минимальное образование побочных продуктов, стабильность продуцента в отношении производственных свойств, безвредность продуцента и целевого продукта для человека и окружающей среды. В связи с этим все микроорганизмы, используемые в промышленности проходят длительные испытания на безвредность для людей, животных и окружающей среды. Важным свойством продуцента является устойчивость к инфекции, что важно для поддержания стерильности, и фагоустойчивость.
Все цианобактерии обладают способностью к азотфиксации, что делает их весьма перспективными продуцентами белка. Анабена (Anabaena) - нитчатая сине-зеленая водоросль. Нити из более или менее округлых клеток, содержат гетероцисты и иногда крупные споры, по всей длине нить одинаковой толщины. В цитоплазме клеток откладывается близкий к гликогену запасной продукт - анабенин. Такие представители цианобактерий, как носток, спирулина, триходесмиум съедобны и непосредственно употребляются в пищу. Носток образует на бесплодных землях корочки, которые разбухают при увлажнении. В Японии местное население использует в пищу пласты ностока, образующиеся на склонах вулкана и называет их ячменным хлебом Тенгу (Тенгу - добрый горный дух).
Свое шествие спирулина (Spirulina platensis) начала из Африки -- население района озера Чад давно употребляет ее в пищу, называя этот продукт «дихе». Другое место, откуда начала распространяться спирулина, но иного вида (Spirulina maxima) -- воды озера Тескоко в Мексике. Еще ацтеки собирали с поверхности озер и употребляли в пищу слизистую массу сине-зеленой водоросли спирулины. Впервые галеты "текуитлатл" упомянуты испанцем Кастильо в 1521 г. Эти галеты продавались на базаре в Мехико и состояли из высушенных слоев S.maxima. В 1964 году бельгийский ботаник Ж.Леонар обратил внимание на галеты сине-зеленого цвета, которые местное население изготовляло из водорослей, растущих в щелочных прудах вокруг озера Чад. Эти галеты представляли собой высушенную массу спирулины. Анализ образцов Spirulina показал, что в ней содержится 65% белков (больше, чем в соевых бобах), 19% углеводов, 6% пигментов, 4% липидов, 3% волокон и 3% золы. Для белков этой водоросли характерно сбалансированное содержание аминокислот. Клеточная стенка этой водоросли хорошо переваривается. Как озеро Тескоко, так и водоемы района озера Чад имеют в воде очень высокое содержание щелочей. Характерно, что в таких озерах спирулина полностью доминирует и растет почти как монокультура -- составляет в отдельных озерах до 99 % общего количества водорослей. Растет спирулина в щелочной среде при рН вплоть до 11. Ее собирают также из озер около г. Мехико, получая до 2 т сухого веса биомассы водоросли в сутки, и эта продукция рассылается в США, Японию, Канаду. В других странах спирулину культивируют обычно в искусственных водоемах или специальных емкостях. Спирулину можно культивировать в открытых прудах или, как в Италии, в замкнутой системе из полиэтиленовых труб. Урожайность очень высокая: получают до 20 г сухой массы водоросли с 1 м2 в день, а расчеты на год показали, что она превысит выход пшеницы примерно в 10 раз. бактерия аминокислота растение витамин
Преимущества спирулины по сравнению с другими съедобными водорослями не только в простоте культивирования, но и в несложности сбора биомассы, высушивания ее, например, под солнцем. В ряде стран выращивают спирулину вида Spirulina platensis. Недавно было показано, что в клетках спирулины, помимо ценного белка, углеводов, липидов, витаминов, в значительных количествах запасается, например, такое ценное вещество, как поли-b-оксибутират. Отечественная фармацевтическая промышленность выпускает препарат «Сплат» на основе цианобактерии Spirulina platensis. Он содержит комплекс витаминов и микроэлементов и применяется как общеукрепляющее и иммуностимулирующе средство.
Водоросли
Водоросли используются, в основном, для получения белка. Весьма перспективны в этом отношении и культуры одноклеточных водорослей, в частности высокопродуктивных штаммов рода Chlorella и Scenedesmus. Их биомасса после соответствующей обработки используется в качестве добавки в рационы скота, а также в пищевых целях.
Одноклеточные водоросли выращивают в условиях мягкого теплого климата (Средняя Азия, Крым) в открытых бассейнах со специальной питательной средой. К примеру, за теплый период года (6--8 месяцев) можно получить 50--60 т биомассы хлореллы с 1 га, тогда как одна из самых высокопродуктивных трав -- люцерна дает с той же площади только 15-- 20 т урожая.
Хлорелла содержит около 50 % белка, а люцерна -- лишь 18 %. В целом в пересчете на 1 га хлорелла образует 20--30 т чистого белка, а люцерна -- 2--3,5 т. Кроме того, хлорелла содержит 40 % углеводов, 7--10 % жиров, витамины А (в 20 раз больше), B2, К, РР и многие микроэлементы. Варьируя состав питательной среды, можно процессы биосинтеза в клетках хлореллы сдвинуть в сторону накопления либо белков, либо углеводов, а также активировать образование тех или иных витаминов.
При завоевании племен майя миссионерами описывался случай, когда испанцы около полутора лет осаждали крепость на вершине горы. Естественно, что все продукты давно должны были кончиться, однако крепость не сдавалась. Когда же она была наконец взята, то испанцы с удивлением увидели в ней небольшие пруды, где культивировались одноклеточные водоросли, из которых индейцы готовили особый сыр. Испанцы попробовали его и нашли весьма приятным на вкус. Однако это было уже после того, как испанцы уничтожили абсолютно всех защитников и секрет племени был утерян. В наше время делались попытки определить этот вид водорослей, из которых готовился сыр, но они не увенчались успехом.
В пищу употребляют не менее 100 видов макрофитных водорослей как в странах Европы и Америки, так и особенно на Востоке. Из них готовят много разнообразных блюд, в том числе диетических, салатов, приправ. Их подают в виде засахаренных кусочков, своеобразных конфет, из них варят варенье, делают желе, добавки к тесту и многое другое. В магазине можно купить консервы из морской капусты -- ламинарии дальневосточных или северных морей. Ее консервируют с мясом, рыбой, овощами, рисом, употребляют при приготовлении супов и др. Она наряду с микроводорослью хлореллой является самой популярной съедобной и кормовой водорослью.
Известны и другие съедобные макрофитные водоросли -- ульва, из которой делают разные зеленые салаты, а также алария, порфира, родимения, хондрус, ундария и др. В Японии продукты, получаемые из ламинариевых, называют «комбу», и для того, чтобы их вкусно приготовить, существует более десятка способов.
В целом ряде стран водоросли используют как весьма полезную витаминную добавку к кормам для сельскохозяйственных животных. Их прибавляют к сену или дают как самостоятельный корм для коров, лошадей, овец, коз, домашней птицы во Франции, Шотландии, Швеции, Норвегии, Исландии, Японии, Америке, Дании и на нашем Севере. Животным скармливают в виде добавки также биомассу выращиваемых микроводорослей (хлорелла, сценедесмус, дуналиелла и др.).
Гидролизаты белка зеленой водоросли Scenedesmus используются в медицине и косметической промышленности. В Израиле на опытных установках проводятся эксперименты с зеленой одноклеточной водорослью Dunaliella bardawil, которая синтезирует глицерол. Эта водоросль относится к классу равножгутиковых и похожа на хламидомонаду. Dunadiella может расти и размножаться в среде с широким диапазоном содержания соли: и в воде океанов, и в почти насыщенных солевых растворах Мертвого моря. Она накапливает свободный глицерол, чтобы противодействовать неблагоприятному влиянию высоких концентраций солей в среде, где она растет. При оптимальных условиях и высоком содержании соли на долю глицерола приходится до 85% сухой массы клеток. Для роста этим водорослям необходимы: морская вода, углекислый газ и солнечный свет. После переработки эти водоросли можно использовать в качестве корма для животных, так как у них нет неперевариваемой клеточной оболочки, присущей другим водорослям. Они также содержат значительное количество в-каротина. Таким образом, культивируя эту водоросль, можно получать глицерол, пигмент и белок, что весьма перспективно с экономической точки зрения.
Наряду с кормами водоросли давно применяют в сельском хозяйстве в качестве удобрений. Биомасса обогащает почву фосфором, калием, йодом и значительным количеством микроэлементов, пополняет также ее бактериальную, в том числе азотфиксирующую, микрофлору. При этом в почве водоросли разлагаются быстрее, чем навозные удобрения, и не засоряют ее семенами сорняков, личинками вредных насекомых, спорами фитопатогенных грибов.
Одним из самых ценных продуктов, получаемых из красных водорослей, является агар -- полисахарид, присутствующий в их оболочках и состоящий из агарозы и агаропектина. Количество его доходит до 30--40 % от веса водорослей (водоросли лауренция и грацилярия, гелидиум). Водоросли -- единственный источник получения агара, агароидов, каррагинина, альгинатов. В мире в 1980 г. было получено 7 тыс. т агара, 222 тыс. т альгинатов, 10 тыс. т каррагинина. В нашей стране основным источником агара служит красная водоросль анфельция.
Бурые водоросли являются единственным источником получения одних из самых ценных веществ водорослей -- солей альгиновой кислоты, альгинатов. Альгиновая кислота -- линейный гетерополисахарид, построенный из связанных остатков (3 -- Д-маннуроновой и б -- L-гиулуроновой кислот.
Альгинаты исключительно широко применяются в народном хозяйстве. Это изготовление высококачественных смазок для трущихся деталей машин, медицинские и парфюмерные мази и кремы, синтетические волокна и пластики, стойкие к любой погоде лакокрасочные покрытия, не выцветающие со временем ткани, производство шелка, клеящих веществ исключительно сильного действия, строительных материалов, пищевые продукты отличного качества -- фруктовые соки, консервы, мороженое, стабилизаторы растворов, брикетирование топлива, литейное производство и многое другое. Альгинат натрия -- наиболее используемое соединение -- способен поглощать до 300 весовых единиц воды, образуя при этом вязкие растворы.
Бурые водоросли богаты также весьма полезным соединением -- шестиатомным спиртом маннитом, который с успехом применяют в пищевой промышленности, фармацевтике, при производстве бумаги, красок, взрывчатки и др. Бурые водоросли в ближайшее время планируется использовать для получения биогаза. Каллусные культуры макрофитных водорослей могут быть использованы далее в различных направлениях. В случае, если они получены от агарофитов, можно непосредственно получать из них агар..
Каллусные культуры пищевых макрофитных водорослей, например ламинариевых, могут в перспективе использоваться для получения белка, непосредственно идущего в пищу и в пищевые добавки, а также в корма сельскохозяйственным животным. Суспензионные культуры макрофитных водорослей открывают в перспективе возможности использования их в качестве трофического звена в марикультуре. Они могли бы также выступать в качестве партнера в искусственно создаваемых растительных ассоциациях, участники которых обладают полезными свойствами. Выделяемые клетками культуры экзометаболиты, характерные для исходного вида водоросли, будут составлять основу трофического обмена при удачном подборе партнеров в растительной ассоциации или комплексе марикультуры. Необходимо отметить, что при отсутствии токсического и антагонистического действия выделяемых соединений в естественных условиях существуют разнообразные и многочисленные природные ассоциации, например повсеместно встречающиеся комплексы водорослей и бактерий.
Растения в биотехнологии
Водный папоротник азолла ценится как органическое азотное удобрение, так как растет в тесном симбиозе с сине-зеленой водорослью анабена. Крошечные листья азоллы (их длина редко превышает один миллиметр) расположены наподобие черепицы - одни листочки перекрывают другие. Короткие нежные корешки свисают вниз. Строение листа азоллы необычно. Каждый лист состоит из двух лопастей, или сегментов. Верхний сегмент, выступающий над водой, зеленый, из нескольких слоев клеток в толщину, с устьицами на обеих сторонах. Нижний сегмент погружен в воду. Он служит, как предполагают, для всасывания воды. На некоторых нижних сегментах развиваются сорусы. Замечательной особенностью азоллы является симбиоз этого растения с сине-зеленой водорослью анабеной азоллы (Anabaena azollae), из семейства ностоковых (Nostocaceae). Водоросль оккупирует полость, находящуюся на брюшной стороне верхнего, воздушного сегмента, недалеко от его основания. Полость окружена выростами из эпидермальных клеток, которые постепенно обрастают ее, оставляя лишь крошечное центральное отверстие, сообщающееся с внешней средой. Она целиком выстлана эпидермальными клетками, от которых отходят волоски, и наполнена слизью (возможно, продуктом выделения этих волосков). Анабена выполняет функции азотфиксации в этом симбиозе.
Азолла быстро размножается простым делением: часть листьев отделяется от материнского растения и начинает самостоятельную жизнь. При благоприятных условиях малютка способна удваивать свою биомассу каждые трое суток. В сочетании с тем, что симбиоз с анабеной позволяет накапливать много азота в вегетативной массе, такие темпы роста приводят очень быстрому заполнению всей поверхности воды вегетативной массой этого папоротника. Анабену азоллу выращивают на рисовых полях перед посевом риса, что позволяет снижать количество вносимых минеральных удобрений.
Представители семейства рясковых (Lemnaceae) - самые мелкие и простые по строению цветковые растения, величина которых редко превышает 1 см. Цветут крайне редко. Рясковые - свободноживущие водные плавающие растения. Вегетативное тело напоминает лист или слоевище низших растений, поэтому до начала 18 века ряску относили к слоевищным растениям.
В литературе встречается несколько названий тела рясковых. Самое удачное - листец. Тело рясковых - особая структура, не дифференцированная на листья и стебель (листоветвь), представляющая зеленую пластинку, иногда выпуклую с нижней стороны.
Рясковые (Lemna minor, L. trisulca, Wolfia, Spirodela polyrhiza) служат кормом для животных, для уток и других водоплавающих птиц, рыб, ондатры. Их используют и в свежем, и в сухом виде как ценный белковый корм для свиней и домашней птицы. При всей миниатюрности рясок суперкарликами среди этих малышей флоры справедливо считают не их, а представителей рода Вольфия (Wolffia). Они названы в честь немецкого врача и ботаника Дж. Ф. Вольфа (1778-1806), который впервые их описал. Вольфии похожи на уплощённый шарик. В отличие от многих сородичей, у вольфии вообще нет корней. Минеральные соли эти растения поглощают из воды всей поверхностью своего крошечного тельца - как одноклеточные организмы.
Рясковые содержат много протеина (до 45 % от сухой массы). 45% углеводов, 5% жиров и остальное - клетчатка и т.д. Они высоко продуктивны, неприхотливы в культуре, хорошо очищают воду и обогащают её кислородом. Это делает рясковые ценным объектом для морфогенетических, физиологических и биохимических исследований.
Производство аминокислот, органических кислот, витаминов
Производство аминокислот относится к одной из наиболее передовых областей биотехнологии. Аминокислоты получают путем химического синтеза или экстракцией из белковых гидролизатов.
Незаменимые аминокислоты могут получаться микробиологическим путем более эффективно, чем путем химического синтеза, так как при биологическом синтезе форме. Как продуценты лизина изучаются Brevibacterium lactofermentum и бактерии рода Corynebacterium, также предложены способы биотехнологического получения изолейцина, треонина при использовании E. coli. Большинство исследованных штаммов микроорганизмов независимо от их систематического положения преимущественно накапливают Глутаминовая кислота производится при участии в качестве продуцента используемые микроорганизмы образуют аминокислоты в биологически активной L-штамма Corynebacterium.
С помощью микроорганизмов можно получить до 60 органических кислот. Многие из них получаются в промышленном масштабе - итаконовая, молочная, уксусная, лимонная, яблочная, янтарная. Эти пищевые кислоты используются как регуляторы кислотности и консерванты. Лимонную кислоту получают с помощью Yarrowia lipolytica, Aspergillus niger, молочную - Endomycopsis fibuligera, Rhisopus oryzae,
Lactobacillus casei, янтарную - Anaerobiospirillum succiniproducens. Уксусную кислоту получают путем микробиологической конверсии водорода и углекислого газа бактериями Acetobacterium woodi и Clostridium aceticum.
Микроорганизмы содержат много витаминов, которые чаще всего входят в состав ферментов. Состав и количество витаминов в биомассе зависят от биологических свойств данной культуры микроорганизмов и условий культивирования. Некоторые витамины микроорганизмы синтезируют, другие напротив усваивают в готовом виде из окружающей среды. Культура, способная синтезировать какой-либо витамин, называется автотрофной по отношению к нему, если культура не способна синтезировать данный витамин, она является авто-гетеротрофной.
Витамины синтезируют в основном химическим путем или получают из естественных источников. Однако эргостерин, рибофлавин (В2), витамин В12 и аскорбиновую кислоту (микроорганизмы используются как селективные окислители сорбита в сорбозу при производстве витамина С) получают микробиологическим путем. Для синтеза витаминов В1, В2, В6, В12 и аскорбиновой кислоты также используют кефирные грибки, а бифидобактерии - группы В, РР (никотиновая кислота) и Н, однако пока эти микроорганизмы не используются как продуценты витаминов в промышленных масштабах.
Изменяя условия среды, содержание отдельных витаминов можно увеличить. Так, количество рибофлавина зависит от интенсивности аэрации и содержания железа в среде. Количество витаминов в клетках, а также их выделение из последних можно изменить при помощи микроэлементов. Существует производство рибофлавина на основе использования дрожжеподобных грибов Eremothecium ashbyii и Ashbia gossypii. Рибофлавин продуцируется также видами Clostridium и Ascomycetes. Микроводоросль Dunalieiia viridis культивируется с целью получения в-каротина.
Микроорганизмы являются источником получения липидов специального назначения с заранее определенными свойствами. Микробные жиры заменяют растительные (а в ряде случаев и превосходят)и могут использоваться в разных отраслях промышленности, с.-х., медицине.
Получение пищевых ароматизаторов микробиологическим путем может быть более выгодным и продуктивным, чем их химический синтез или другие традиционные способы. Так, в США был разработан экологически безопасный биокаталитический способ синтеза ванилина из глюкозы с
использованием генетически модифицированного штамма E. coli и грибного фермента дегидрогеназы. Аромат ванилина при биотехнологическом его получении оказался в несколько раз интенсивнее обычного.
Весьма перспективно использование грибных культур в качестве продуцентов сырных, грибных, рыбных ароматизаторов. Освоены биотехнологические способы получения веществ, имитирующих ароматы земляники, малины, банана, кокоса, яблока, персика, миндаля.
Микроорганизмы являются важным источником получения полимерных материалов на основе полисахаридов. Ценным микробным полисахаридом является декстран, образуемый бактериями рода Leucomonstoс. Декстран служит основой получения медицинских препаратов (кровезаменителей) и препаратов для биохимических исследований - сефадексов и др. молекулярных сит. Нуклеозиды, нуклеотиды и их производные также можно получать с помощью микроорганизмов.
Большинство пищевых красителей синтезируют химическим путем, но некоторые натуральные пигменты микроорганизмов могут быть с успехом использованы в качестве красителей для пищевых продуктов. Так, из гриба Monascus получен натуральный красный пищевой краситель. Из бактерий с Канарских островов получен розовый краситель для мороженого, крема, мыла. Такие красители безвредны и придают стойкий цвет продуктам, что позволяет предположить, что в будущем микробиологическому производству красителей будет уделяться больше внимания, чем в настоящее время.
Литература
Данные из интернета (zhurnal.lib).
Размещено на Allbest.ru
...Подобные документы
Производство продуктов микробного синтеза первой и второй фазы, аминокислот, органических кислот, витаминов. Крупномасштабное производство антибиотиков. Производство спиртов и полиолов. Основные типы биопроцессов. Метаболическая инженерия растений.
курсовая работа [233,2 K], добавлен 22.12.2013Особенности биотехнологии на службе пищевой промышленности. Жиры и углеводы как источники энергии, и проблема питания при их дефиците. Лизин, метионин - питательные добавки. Типы окислительных процессов бактерий. Биотехнологические процессы в пивоварении.
контрольная работа [27,3 K], добавлен 25.11.2010Водоросли как компоненты бактериальных удобрений и как биологические индикаторы. Витамины, содержащиеся в них. Использование водорослей для биологической очистки сточных вод. Их применение в качестве пищевых добавок. Изготовление биотоплива из водорослей.
презентация [2,8 M], добавлен 02.02.2017Понятие и сущность биотехнологии, история ее возникновения. Основные направления и методы биотехнологии. Генная и клеточная инженерия. "Три волны" в создании генно-модифицированных растений. Трансгенные животные. Методы иммобилизации ферментов и клеток.
реферат [25,0 K], добавлен 11.01.2013Основные задачи, разделы и направления современной биотехнологии. Производство необходимых человеку продуктов и биологически активных соединений с помощью живых организмов. Изучение генетической, клеточной и биологической инженерии. Объекты биотехнологии.
презентация [2,1 M], добавлен 06.03.2014Основные разделы биотехнологии и их характеристика. Клетка как объект биотехнологических исследований. Механизмы синтеза и распада веществ в живой клетке. Биополимеры и их производные. Классификация направлений пищевой биотехнологии по целевым продуктам.
курсовая работа [72,0 K], добавлен 15.12.2014Общая характеристика пищевых кислот. Биолого-химическая характеристика растений. Подготовка растительного материала. Определение содержания органических кислот в сахарной свекле, картофеле, репчатом луке и моркови. Рекомендуемые регионы возделывания.
курсовая работа [45,9 K], добавлен 21.04.2015Представлены данные по биосинтезу дейтерий-меченных аминокислот L-фенилаланин-продуцирующим штаммом факультативных метилотрофных бактерий B. methylicum. В культуральной жидкости накапливаются и аланин, валин и лейцин (изолейцин).
статья [2,3 M], добавлен 23.10.2006Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.
реферат [32,4 K], добавлен 23.07.2008- Биотехнологии: понятие, сущность, история возникновения. Основные направления и методы биотехнологии
Промышленное использование биологических процессов на основе микроорганизмов, культуры клеток, тканей и их частей. История возникновения и этапы становления биотехнологии. Основные направления, задачи и методы: клонирование, генная и клеточная инженерия.
презентация [1,5 M], добавлен 22.10.2016 Формы азота, используемые растением. Восстановление нитратов растениями. Стерильные культуры покрытосеменных растений. Представители насекомоядных растений. Симбиоз и паразитизм у растений. Усвоение молекулярного азота микроорганизмами, бактерии в почве.
реферат [887,9 K], добавлен 20.07.2010Изучение специфических свойств мембран термофильных бактерий. Разноцветные термофильные водоросли в горячих Крымских источниках. Получение микробной биомассы и физиологически активных веществ (антибиотиков, витаминов, ферментов). Очистка сточных вод.
презентация [769,7 K], добавлен 16.12.2014Прокариоты - доядерные организмы, не обладающие типичным клеточным ядром и хромосомным аппаратом. История открытия и строение бактерий. Экологические функции бактерий. Бактерии как возбудители многих опасных заболеваний. Значение бактерий в природе.
презентация [5,4 M], добавлен 04.09.2011Цианобактерии, их способность к оксигенному фотосинтезу. Строение клеточной стенки стрептококков. Распространение грибов, их виды, особенности и хозяйственное значение. Водоросли, плауновидные, папоротники, лилейные, бобовые и злаковые растения.
контрольная работа [2,5 M], добавлен 07.09.2011Роль бактерий в природе. Clostridium Botulinum как спорообразующая палочка, продуцирующая ботулизм. Негативное влияние сапротрофных бактерий на пищевые продукты. Болезнетворные бактерии растений. Вклад Коха в развитие микробиологии и лечение туберкулеза.
презентация [7,6 M], добавлен 07.01.2014История открытия витаминов. Влияние на организм, признаки и последствия недостатка, основные источники витаминов А, С, D, Е. Характеристика витаминов группы В: тиамина, рибофлавина, никотиновой и пантотеновой кислот, пиридоксина, биотина, холина.
презентация [3,4 M], добавлен 24.10.2012Систематика. Строение прокариот. Размножение. Образ жизни. Основніе группы прокариот: бактерии – фототрофы, бактерии – хемоавтотрофы, бактерии – органотрофы, бактерии – паразиты. Сине-зеленые водоросли.
реферат [18,1 K], добавлен 22.10.2003Бактерии (микробы) – одноклеточные прокариоты. Питание, дыхание, размножение и классификация бактерий. Бациллы, устройство жгутиков. Роль бактерий в природе, их экологические функции. Вирусы – внутриклеточные паразиты, возбудители опасных болезней.
презентация [4,8 M], добавлен 17.03.2015Светящиеся бактерии - мелкие живые излучатели, их классификация и физиологические свойства. Спектр и интенсивность эмиссии света. Люминесцентная система бактерий, контроль за ее синтезом и активностью. Культивирование и использование светящихся бактерий.
реферат [983,8 K], добавлен 22.12.2013История развития и сферы использования молекулярной биотехнологии; генная инженерия. Мутации и рекомбинации вирусов. Строение генетического аппарата клетки. Внехромосомные элементы наследственности. Действие мутагенов на генетический материал бактерий.
презентация [2,0 M], добавлен 24.03.2015