Ветеринарная генетика

Сущность дигибридного и полигибридного скрещивания. Изучение строения генетического материала у бактерий и вирусов. Классификация генных мутаций. Анализ неспецифических факторов иммунитета. Анализ основных болезней животных с пороговым явлением.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 23.06.2015
Размер файла 30,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Контрольная работа

По дисциплине: «Ветеринарная генетика»

Выполнил:

студент 1 курса 1 группы

Зубаткина Светлана Сергеевна

Москва 2015

1. Дигибридное или полигибридное скрещивание

Дигибридным или полигибридным скрещиванием называют скрещивание родительских форм организмов, различающихся по двум или более парам признаков. иммунитет дигибридный генетический мутация

Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, различающиеся по двум парам признаков: цветом (желтый и зеленый) и формой (гладкие и морщинистые) семян. Желтый цвет (А) и гладкая форма (В) семян гороха доминантны, а зеленый цвет (а) и морщинистая форма (b) рецессивны. Каждое растение образует один тип гамет по изучаемым аллелям. Потомство, полученное при слиянии этих гамет, будет единообразным, т. е. желто-гладким.

В гибридах первого поколения из каждой пары аллельных генов в гамету попадает только один. При этом в результате первого деления мейоза ген А может попасть в одну гамету с геном В или с геном b. Точно так же, как и ген а может попасть в одну гамету с геном В или с геном b. В каждом организме образуется много половых клеток и в силу статистических закономерностей у каждого гибрида образуются четыре типа гамет в одинаковом количестве (по 25%): АВ, Ab, аВ, ab.

2. Строение генетического материала у бактерий и вирусов

Молекулярная биология, изучающая фундаментальные основы жизни, является в значительной степени детищем микробиологии. В качестве основных объектов изучения в ней используют вирусы и бактерии, а основное направление- молекулярная генетика основана на генетике бактерий и фагов.

Бактерии- удобный материал для генетики. Их отличает:

- относительная простота генома (совокупности нуклеотидов хромосом);

- гаплоидность (один набор генов), исключающая доминантность признаков;

- различные интегрированные в хромосомы и обособленные фрагменты ДНК;

- половая дифференциация в виде донорских и реципиентных клеток;

- легкость культивирования, быстрота накопления биомасс.

Общие представления о генетике.

Ген- уникальная структурная единица наследственности, носитель и хранитель жизни. Он имеет три фундаментальные функции.

1.Непрерывность наследственности- обеспечивается механизмом репликации ДНК.

2.Управление структурами и функциями организма - обеспечивается с помощью единого генетического кода из четырех оснований (А- аденин, Т- тимин, Г- гуанин, Ц- цитозин). Код триплетный, поскольку кодон- функциональная единица, кодирующая аминокислоту, состоит из трех оснований (букв).

3.Эволюция организмов- благодаря мутациям и генетическим рекомбинациям.

В узкоспециальном плане ген чаще всего представляет структурную единицу ДНК, расположение кодонов в которой детерминирует первичную структуру соответствующей полипептидной цепи (белка). Хромосома состоит из особых функциональных единиц-оперонов.

Основные этапы развития (усложнения) генетической системы можно представить в виде следующей схемы:

кодон а ген а оперон а геном вирусов и плазмид а хромосома прокариот (нуклеоид) а хромосомы эукариот (ядро).

Генетический материал бактерий.

1.Ядерные структуры бактерий- хроматиновые тельца или нуклеоиды (хромосомная ДНК). У бактерий одна замкнутая кольцевидная хромосома (до 4 тысяч отдельных генов). Бактериальная клетка гаплоидна, а удвоение хромосомы (репликация ДНК) сопровождается делением клетки. Вегетативная репликация хромосомной (и плазмидной) ДНК обусловливает передачу генетической информации по вертикали- от родительской клетки- к дочерней. Передача генетической информации по горизонтали осуществляется различными механизмами- в результате конъюгации, трансдукции, трансформации, сексдукции.

2.Внехромосомные молекулы ДНК представлены плазмидами, мигрирующими генетическими элементами- транспозонами и инсервационными (вставочными) или IS- последовательностями.

Плазмиды- экстрахромосомный генетический материал (ДНК), более просто устроенные по сравнению с вирусами организмы, наделяющие бактерии дополнительными полезными свойствами. По молекулярной массе плазмиды значительно меньше хромосомной ДНК, содержат от 40 до 50 генов.

Их объединение в одно царство жизни с вирусами связано с наличием ряда общих свойств- отсутствием собственных систем мобилизации энергии и синтеза белка, саморепликацией генома, абсолютным внутриклеточным паразитизмом.

Их выделение в отдельный класс определяется существенными отличиями от вирусов.

1.Среда их обитания- только бактерии (среди вирусов , кроме вирусов бактерий- бактериофагов имеются вирусы растений и животных).

2.Плазмиды сосуществуют с бактериями, наделяя их дополнительными свойствами. У вирусов эти свойства могут быть только у умеренных фагов при лизогении бактерий, чаще же всего вирусы вызывают отрицательный последствия, лизис клеток.

3.Геном представлен двунитевой ДНК.

4.Плазмиды представляют собой “голые” геномы, не имеющие никакой оболочки, их репликация не требует синтеза структурных белков и процессов самосборки.

Плазмиды могут распространяться по вертикали (при клеточном делении) и по горизонтали, прежде всего путем конъюгационного переноса. В зависимости от наличия или отсутствия механизма самопереноса (его контролируют гены tra- оперона) выделяютконъюгативные и неконъюгативные плазмиды. Плазмиды могут встраиваться в хромосому бактерий- интегративные плазмиды или находиться в виде отдельной структуры- автономные плазмиды ( эписомы).

Классификация и биологическая роль плазмид.

Функциональная классификация плазмид основана на свойствах, которыми они наделяют бактерии. Среди них- способность продуцировать экзотоксины и ферменты, устойчивость к лекарственным препаратам, синтез бактериоцинов.

Основные категории плазмид.

1.F- плазмиды - донорские функции, индуцируют деление (от fertility - плодовитость). Интегрированные F - плазмиды- Hfr- плазмиды (высокой частоты рекомбинаций).

2.R- плазмиды (resistance) - устойчивость к лекарственным препаратам.

3.Col- плазмиды- синтез колицинов (бактериоцинов)- факторов конкуренции близкородственных бактерий (антогонизм). На этом свойстве основано колицинотипирование штаммов.

4.Hly- плазмиды- синтез гемолизинов.

5.Ent- плазмиды- синтез энтеротоксинов.

6.Tox- плазмиды- токсинообразование.

Близкородственные плазмиды не способны стабильно сосуществовать, что позволило объединить их по степени родства в Inc- группы (incompatibility- несовместимость).

Биологическая роль плазмид многообразна, в том числе:

- контроль генетического обмена бактерий;

- контроль синтеза факторов патогенности;

- совершенствование защиты бактерий.

Бактерии для плазмид- среда обитания, плазмиды для них- переносимые между ними дополнительные геномы с наборами генов, благоприятствующих сохранению бактерий в природе.

Мигрирующие генетические элементы - отдельные участки ДНК, способные определять свой перенос между хромосомами или хромосомой и плазмидой с помощью фермента рекомбинации транспозазы. Простейшим их типом являются инсерционные последовательности (IS- элементы) или вставочные элементы, несущие только один ген транспозазы, с помощью которой IS- элементы могут встраиваться в различные участки хромосомы. Их функции- координация взаимодействия плазмид, умеренных фагов, транспозонов и генофора для обеспечения репродукции, регуляция активности генов, индукция мутаций. Величина IS- элементов не превышает 1500 пар оснований.

Транспозоны (Tn- элементы) включают до 25 тысяч пар нуклеотидов, содержат фрагмент ДНК, несущий специфические гены, и два Is- элемента. Каждый транспозон содержит гены, привносящие важные для бактерии характеристики, как и плазмиды (множественная устойчивость к антибиотикам, токсинообразование и т.д.). Транспозоны- самоинтегрирующиеся фрагменты ДНК, могут встраиваться и перемещаться среди хромосом, плазмид, умеренных фагов, т.е. обладают потенциальной способностью распространяться среди различных видов бактерий.

Понятие о генотипе и фенотипе.

Генотип- вся совокупность имеющихся у организма генов.

Фенотип- совокупность реализованных (т.е. внешних) генетически детерминированных признаков, т.е. индивидуальное (в определенных условиях внешней среды) проявление генотипа. При изменении условий существования фенотип бактерий изменяется при сохранении генотипа.

Изменчивость у бактерий может быть ненаследуемой (модификационной) и генотипической (мутации, рекомбинации).

Временные, наследственно не закрепленные изменения, возникающие как адаптивные реакции бактерий на изменения окружающей среды, называются модификациями (чаще - морфологические и биохимические модификации). После устранения причины бактерии реверсируют к исходному фенотипу.

Стандартное проявление модификации- распределение однородной популяции на две или более двух типов- диссоциация. Пример- характер роста на питательных средах: S- (гладкие) колонии, R- (шероховатые) колонии, M- (мукоидные, слизистые) колонии, D- (карликовые) колонии. Диссоциация протекает обычно в направлении Sа R. Диссоциация сопровождается изменениями биохимических, морфологических, антигенных и вирулентных свойств возбудителей.

Мутации- скачкообразные изменения наследственного признака. Могут быть спонтанные и индуцированные, генные (изменения одного гена) и хромосомные (изменения двух или более двух участков хромосомы).

Одновременно у бактерий имеются различные механизмы репарации мутаций, в том числе с использованием ферментов- эндонуклеаз, лигаз, ДНК- полимеразы.

Генетические рекомбинации- изменчивость, связанная с обменом генетической информации. Генетические рекомбинации могут осуществляться путем трансформации, трансдукции, конъюгации, слияния протопластов.

1.Трансформация- захват и поглощение фрагментов чужой ДНК и образование на этой основе рекомбинанта.

2.Трансдукция- перенос генетического материала фагами (умеренными фагами- специфическая трансдукция).

3.Конъюгация- при непосредственном контакте клеток. Контролируется tra (transfer) опероном. Главную роль играют конъюгативные F- плазмиды.

Генетика вирусов.

Геном вирусов содержит или РНК, или ДНК (РНК- и ДНК- вирусы соответственно). Выделяют позитивную (+) РНК, обладающую матричной активностью и соответственно- инфекционными свойствами, и негативную ( - ) РНК, не проявляющую инфекционные свойства, которая для воспроизводства толжна транскрибироваться (превращаться) в +РНК. Механизмы репродукции различных вирусов очень сложные и существенно отличаются. Основные их схематические варианты представлены ниже.

1. вирионная (матричная) +РНК а комплементарная -РНК (в рибосомах) а вирионная +РНК.

2. - РНК а вирусная (информационная) +РНК а - РНК (формируется на геноме зараженной клетки).

3. однонитевая ДНК: +ДНК а +ДНК -ДНК а +ДНК -ДНК +ДНК а +ДНК.

4. ретровирусная однонитевая РНК: РНК а ДНК (провирус) а РНК.

5. двунитевая ДНК: разделение нитей ДНК и формирование на каждой комплементарной нити ДНК.

Генофонд вирусов создается и пополняется из четырех основных источников:

двух внутренних (мутации, рекомбинации) и двух внешних (включение в геном генетического материала клетки хозяина, поток генов из других вирусных популяций).

Комплементация- функциональное взаимодействие двух дефектных вирусов, способствующее их репликации и горизонтальной передаче.

Фенотипическое смешивание- при заражении клетки близкородственными вирусами с образованием вирионов с гибридными капсидами, кодируемыми геномами двух вирусов.

Популяционная изменчивость вирусов связана с двумя разнонаправленными процессами - мутациями и селекцией, связанными с внешней средой как индуктором мутаций и фактором стабилизирующего отбора. Гетерогенность вирусных популяций- адаптационный генетический механизм, способствующий пластичности (устойчивости, приспособляемости) популяций, фактор эволюции и сохранения видов во внешней среде.

Генофонд вирусных популяций сохраняется за счет нескольких механизмов:

- восстановления изменчивости за счет мутаций;

- резервирующих механизмов (возможность перехода любых, даже негативных мутаций в следующую генерацию)- комплементация, рекомбинация;

- буферных механизмов (образование дефектных вирусных частиц, иммунных комплексов и др.), способствующие сохранению вируса в изменяющихся внешних условиях.

3. Классификация генных мутаций

Мутационная изменчивость возникает в случае появления мутаций - стойких изменений генотипа (т.е. молекул днк), которые могут затрагивать целые хромосомы, их части или отдельные гены. Мутации могут быть полезными, вредными или нейтральными. Согласно современной классификации мутации принято делить на следующие группы. 1. Геномные мутации - связанные с изменением числа хромосом. Особый интерес представляет ПОЛИПЛОИДИЯ - кратное увеличение числа хромосом, т.е. вместо 2n хромосомного набора возникает набор 3n,4n,5n и более. Возникновение полиплоидии связанно с нарушением механизма деления клеток. В частности, нерасхождение гомологичных хромосом во время первого деления мейоза приводит к появлению гамет с 2n набором хромосом. Полиплоидия широко распространена у растений и значительно реже у животных (аскарид, шелкопряда, некоторых земноводных). Полиплоидные организмы, как правило, характеризуются более крупными размерами, усиленным синтезом органических веществ, что делает их особенно ценными для селекционных работ. Изменение числа хромосом, связанное с добавлением или потерей отдельных хромосом, называется анеуплоидией. Мутацию анеуплоидии можно записать как 2n-1, 2n+1, 2n-2 и т.д. Анеуплоидия свойственна всем животным и растениям. У человека ряд заболеваний связан именно с анеуплоидией. Например, болезнь Дауна связана с наличием лишней хромосомы в 21-й паре. 2. Хромосомные мутации - это перестройки хромосом, изменение их строения. Отдельные участки хромосом могут теряться, удваиваться, менять свое положение. Схематично это можно показать следующим образом: ABCDE нормальный порядок генов ABBCDE удвоение участка хромосомы ABDE потеря одного участка ABEDC поворот участка на 180 градусов ABCFG обмен участками с негомологичной хромосомой Как и геномные мутации, хромосомные мутации играют огромную роль в эволюционных процессах. 3. Генные мутации связаны с изменением состава или последовательности нуклеотидов ДНК в пределах гена. Генные мутации наиболее важны среди всех категорий мутаций. Синтез белка основан на соответствии расположения нуклеотидов в гене и порядком аминокислот в молекуле белка. Возникновение генных мутаций (изменение состава и последовательности нуклеотидов) изменяет состав соответствующих белков-ферментов и в итоге к фенотипическим изменениям. Мутации могут затрагивать все особенности морфологии, физиологии и биохимии организмов. Многие наследственные болезни человека также обусловлены мутациями генов. Мутации в естественных условиях случаются редко - одна мутация определенного гена на 1000-100000 клеток. Но мутационный процесс идет постоянно, идет постоянное накопление мутаций в генотипах. А если учесть, что число генов в организме велико, то можно сказать, что в генотипах всех живых организмов имеется значительное число генных мутаций. Мутации - это крупнейший биологический фактор, обуславливающий огромную наследственную изменчивость организмов, что дает материал для эволюции. Причинами мутаций могут быть естественные нарушения в метаболизме клеток (спонтанные мутации), так и действие различных факторов внешней среды (индуцированные мутации). Факторы, вызывающие мутации называют мутагенами. Мутагенами могут быть физические факторы - радиация, температура .... К биологическим мутагена относят вирусы, способные осуществлять перенос генов между организмами не только близких, но далеких систематических групп. Хозяйственная деятельность человека принесла в биосферу огромное количество мутагенов. Большинство мутаций неблагоприятны для жизни особи, но иногда возникают такие мутации, которые могут представлять интерес для ученых-селекционеров. В настоящее время созданы методы направленного мутагенеза.

1. По характеру изменения фенотипа мутации могут быть биохимическими, физиологическими, анатомо-морфологическими.

2. По степени приспособительности мутации делятся на полезные и вредные. Вредные -- могут быть летальными и вызывать гибель организма еще в эмбриональном развитии.

Чаще мутации вредны, так как признаки в норме являются результатом отбора и адаптируют организм к среде обитания. Мутация всегда изменяет адаптацию. Степень ее полезности или бесполезности определяется временем. Если мутация дает возможность организму лучше приспособиться, дает новый шанс выжить, то она "подхватывается" отбором и закрепляется в популяции.

3. Мутации бывают прямые и обратные. Последние встречаются гораздо реже. Обычно прямая мутация связана с дефектом функции гена. Вероятность вторичной мутации в обратную сторону в той же точке очень мала, чаще мутируют другие гены.

Мутации чаще рецессивные, так как доминантные проявляются сразу же и легко "отбрасываются" отбором.

4. По характеру изменения генотипа мутации делятся на генные, хромосомные и геномные.

Генные, или точковые, мутации -- изменение нуклеотида в одном гене в молекуле ДНК, приводящее к образованию аномального гена, а следовательно, аномальной структуры белка и развитию аномального признака. Генная мутация -- это результат "ошибки" при репликации ДНК.

Результатом генной мутации у человека являются такие заболевания, как серповиднокле-точная анемия, фенилкетонурия, дальтонизм, гемофилия. Вследствие генной мутации возникают новые аллели генов, что имеет значение для эволюционного процесса.

Хромосомные мутации -- изменения структуры хромосом, хромосомные перестройки. Можно выделить основные типы хромосомных мутаций:

а) делеция -- потеря участка хромосомы;

б) транслокация -- перенос части хромосом на другую негомологичную хромосому, как результат -- изменение группы сцепления генов;

в) инверсия -- поворот участка хромосомы на 180°;

г) дупликация -- удвоение генов в определенном участке хромосомы.

Хромосомные мутации приводят к изменению функционирования генов и имеют значение в эволюции вида.

Геномные мутации -- изменения числа хромосом в клетке, появление лишней или потеря хромосомы как результат нарушения в мейозе. Кратное увеличение числа хромосом называется полиплоидией (Зп, 4/г и т. д.). Этот вид мутации часто встречается у растений. Многие культурные растения полиплоидны по отношению к диким предкам. Увеличение хромосом на одну-две у животных приводит к аномалиям развития или гибели организма. Пример: синдром Дауна у человека -- трисомия по 21-й паре, всего в клетке 47 хромосом. Мутации могут быть получены искусственно с помощью радиации, рентгеновских лучей, ультрафиолета, химическими агентами, тепловым воздействием.

Закон гомологических рядов Н.И. Вавилова. Русский ученый-биолог Н.И. Вавилов установил характер возникновения мутаций у близкородственных видов: "Роды и виды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов".

Открытие закона облегчило поиски наследственных отклонений. Зная изменчивость и мутации у одного вида, можно предвидеть возможность их появления и у родственных видов, что имеет значение в селекции.

4. Неспецифические факторы иммунитета

Они защищают организм человека от всех заболеваний и обусловлены врожденными свойствами организма, которые способствуют уничтожению самых различных микроорганизмов на поверхности тела и его полостях. К неспецифическим факторам иммунитета относят:

1. Тканевые (клеточные) факторы. Среди тканевых факторов важную роль выполняют:

a) Иммунологические барьеры, к которым относят защитные свойства кожи, слизистых и лимфоузлов. Кожа и слизистые являются механическим барьером, секрет потовых, сальных желез и секрет слизистых угнетают многие виды патогенных микроорганизмов. Лимфоузлы препятствуют распространению микроорганизмов в макроорганизме, являясь мощным естественным барьером

b) Видовая реактивность клеток - отсутствие рецепторов на поверхности клеток делает невозможным адсорбцию и проникновение инфекционного агента или яда в клетку

c) Фагоцитоз - процесс активного поглощения клетками макроорганизма попавших в него чужеродных веществ (в т.ч. микроорганизмов) с последующим их перевариваем с помощью внутриклеточных ферментов. Стадии фагоцитоза: 1) приближение фагоцита к объекту - положительный хемотаксис; 2) прилипание микроорганизма к фагоцитам - адгезия; 3) поглощение (инвагинация) микроорганизмов фагоцитами и образование фагосомы; 4) образование фаголизосомы, переваривание и гибель микроорганизма - киллинг -инактивация. Различают завершенный фагоцитоз - заканчивается полным разрушением и гибелью микроорганизма - и незавершенный - микроорганизмы внутри фагоцита не только не гибнут, но даже размножаются. Фагоцитарной активностью обладают микрофаги - это нейтрофилы, эозинофилы, базофилы - гранулярные лейкоциты, макрофаги - моноциты крови, гистиоциты, эндотелиальные и ретикулярные клетки внутренних органов и костного мозга.

d) Нормальные киллеры (клетки убийцы) - это цитотоксические лимфоциты, разрушающие клетки-мишени, инфицированные вирусами, и онкогенные клетки под действием лимфотоксинов.

2. Гуморальные факторы неспецифической защиты. Многочисленны, вырабатываются Т-лимфоцитами и макрофагами. К ним относят:

a) Комплемент - неспецифическая ферментная система крови, состоящая из 9 различных протеиновых фракций, адсорбирующихся в процессе каскадного присоединения на комплексе антиген + антитело и оказывающих лизирующее действие на связанные антителами клеточные антигены

b) Лизоцим - белок, содержащийся в слюне, крови, слезной и тканевой жидкости, активен в отношении грамположительных бактерий, т.к. нарушает синтез муреина в клеточной стенке.

c) в-лизины - освобождаются из лейкоцитов и более активны по отношению к грамотрицательным бактериям

d) лейкины - протеолитические ферменты, освобождающиеся при разрушении лейкоцитов и нарушающие целостность поверхностных белков микробных клеток

e) интерферон - б и в, продуцируются соответственно мононуклеарными фагоцитами и фибробластами и обладают противовирусной активностью

f) пропердин - комплекс белков, обладающих противовирусной, антибактериальной активностью в присутствии солей магния, вызывая лизис микроорганизмов и усиливая фагоцитарную реакцию и воспалительный процесс

g) эритрин - обладает ингибирующим действием на коринебактерии дифтерии и высвобождается при разрушении эритроцитов

h) нормальные антитела - обнаруживаются в крови новорожденных в очень низких титрах, обладают цитофильным действием, уровень их возрастает под действием микроорганизма как пускового сигнала. Образование нормальных антител генетически запрограммировано, они экспрессируются на поверхностных мембранах незрелых В-лимфоцитов в виде рецепторов

3. Факторы саморегуляции: проявляются повышением температуры тела, изменение рН и rН2 пораженных тканей, усилением выделительных функций организма, выведение микроорганизмов и их токсинов с мочой, испражнениями, мокротой и другими экскретами.

Приобретенный постинфекционный иммунитет обусловлен гуморальными и тканевыми факторами высокой специфичности - иммуноглобулинами и иммунокомпетентными клетками. Его образование индуцируется антигенами.

Антигены - (в дословном переводе термин «антиген» означает «анти» - против, «генос» - порождающий) - генетически чужеродные для организма вещества, на введение которых организм отвечает развитием специфических иммунологических реакций (образованием антител).

Свойства антигенов:

1. Иммуногенность - способность антигенов вызывать выработку антител

2. Способность взаимодействовать с антителами

3. Специфичность - определяется эпитопом (детерминантной группой) антигена - небольшой участок антигена, с помощью которого происходит его соединение со строго определенным антителом.

Виды антигенов:

1. Иммуногены - высокомолекулярные соединения, индуцирующие антителообразование и взаимодействующие с иммуноглобулинами

2. Неполноценные антигены (гаптены) - не способные вызывать выработку антител, но способные реагировать с готовыми антителами. Гаптены при соединении с белками организма человека способны превращаться в иммуногены. Антигенная структура микроорганизмов очень разнообразна. Различают: 1) соматические О-антигены, 2) оболочечные, капсульные К-антигены, 3) жгутиковые Н-антигены, 4) протективные (защитные) антигены - появляются у микроорганизмов только при попадании в организм человека, 5) рибосомальные, 6) Vi-антигены - антигены вирулентности. Условия, при которых вещества превращаются в антигены: чужеродность, макромалекулярность, коллоидное состояние, растворимость. Отдельно взятые виды микроорганизмов содержат видо- и типоспецифические антигены, но могут содержать и групповые, общие с родственными или отдаленными видами. Групповая общность антигенной структуры у различных видов клеток называется антигенной мимикрией, при которой иммунная система человека утрачивает способность быстро распознавать чужую метку и вырабатывать иммунитет (этим объясняется персистенция, устойчивое микробоносительство и поствакцинальное осложнение).

Антитела - это иммуноглобулины сыворотки крови, образующиеся в ответ на введение антигена и способные реагировать с ними.

Строение иммуноглобулинов:

По внешнему виду иммуноглобулин напоминает букву игрек и состоит из 4 полипептидных цепей, соединенных друг с другом дисульфидной связью: две длинные, тяжелые Н-цепи, напоминающие по форме клюшку и две короткие, легкие L-цепи. Структура верхних участков Н и L цепей сильно варьирует и называется V-участками или Fab-фрагментами - представляющими собой антигенсвязывающий центр или паратоп. Нижний конец Н-цепей обозначается C-областью или Fс-фрагментом, с помощью которых иммуноглобулины адсорбируются на рецепторах иммунокомпетентных клеток (комплементсвязывающий фрагмент).

По характеру действия антител на микроорганизмы различают антитоксины, лизины, агглютинины, преципитины, гемолизины, цитотоксины, бактериоцины, гемагглютинины.

Различают 5 основных классов иммуноглобулинов:

1. Ig G - мономеры, высоко специфичные, составляют 75% всех иммуноглобулинов человека, наиболее активны в развитии иммунитета человека, единственные из иммуноглобулинов проникают через плаценту, обеспечивают пассивный иммунитет плода, остаются долго после перенесенного заболевания

2. Ig М - состоят из 5 мономеров, образуют большие решетки (агглютинины, преципитины, комплементсвязывающие антитела), вырабатываются при первичной встрече с антигеном, поэтому появляются первыми после заражения, образуются первыми у ребенка на 5 месяце жизни, низкоспецифичны, не имеют диагностического значения, указывают на первичность и свежесть процессов, после перенесенного заболевания и при хроническом течении их нет

3. Ig А - обладают способностью проникать в секреты слизистых (молозиво, слюна, содержимое бронхов и др.), обеспечивают защиту слизистых оболочек дыхательного и пищеварительного трактов от действия микроорганизмов

4. Ig Е - мономеры с заблокированным Fab-концом, являются аллергическими, кожносенсебилизирующими веществами. Fс-конец присоединен к шоковым клеткам (базофилы, тучные клетки, эндотелий сосудов, эпителий кожи и слизистых), которые выбрасывают медиаторы воспаления, вызывая спазм сосудов, бронхов, отечность слизистых. С наличием этих иммуноглобулинов связана ГНТ и полинозы (анафилактический шок, бронхиальная астма, отеки, мигрени)

5. Ig D - плохо изучены, один Fab-конец у них заблокирован и встречаются они при коллагенозах (ревматизм, красная волчанка)

Образование антител как иммунная реакция на антигены происходит в лимфоидной ткани периферических органов иммунитета, главным образом, в лимфатических узлах и белой пульпе селезенки. Продуцентами антител являются плазмоциты. В динамике образования антител различают 2 фазы:

1) индуктивную (латентную) - отрезок времени между введением антигена и появлением первых плазмоцитов или следов иммуноглобулинов. В этой фазе антигены фагоцитируются макрофагами, накапливаются в них, подвергаются обработке и презентуются (представляются) макрофагами для распознавания Т-хелперам. Под действием Т-хелперов В-лимфоциты превращаются в плазмоциты, которые в дальнейшем и осуществляют синтез антител;

2) продуктивную (репродуктивную) - в эту стадию происходит интенсивный синтез антител.

Реакции иммунитета - это реакции, в основе которых лежит взаимодействие антигена с антителами. К ним относят: реакцию агглютинации, преципитации, РСК, РИФ, ИФА, РТГА, РНГА и др. Применяют реакции иммунитета для диагностики инфекционных заболеваний в двух направлениях:

1. Серодиагностика - определение неизвестных антител в сыворотке больного с помощью известных антигенов - диагностикумов, представляющих собой взвесь убитых микроорганизмов и выпускаемых микробиологической промышленностью.

2. Идентификация выделенной от больного чистой культуры микроорганизма - определение неизвестного антигена чистой культуры микроорганизмов, выделенной от больного, с помощью известных антител иммунной сыворотки, выпускаемой микробиологической промышленностью.

5. Учет Врожденных аномалий и болезней

В первую очередь ветеринарный врач должен обследовать весь приплод на на личие аномалий и зарегистрировать их в журнале с подробным описанием характера аномалии, пола индивидуума, даты его рождения, особенностей эмбрионального развития. Так же следует проверить происхождение этого животного: правильно ли записана мать, соответствует ли записям отец. Аномальные особи и их родители должны быть подвергнуты анализу на предмет зараженности вирусами и бак териями и по другим параметрам внешней среды, которые могут быть потенциальной причиной аномалии.

Учет аномального приплода и регистрация его в племенных карточках родителей служат предпосылкой для проведения гене тического анализа с целью выявления роли наследственности в этиологии аномалий.

Генетический анализ при этом осуществляют в следующей последовательности:

1) определить происхождение аномальных животных по пле менным карточкам;.

2) определить достоверность происхождения по группам крови и полиморфным системам белков и ферментов;

3) составить родословные на аномальных особей для опреде ления типа спаривания родителей (инбридинг, аутбридинг) и родства между аномальными особями (поиск общих предков);

4) определить тип наследования аномалий (моногенный, полигенный, аутосомный, сцепленный с полом, доминантный, рецессивный);

5) изучить кариотип у аномальных особей и их родителей с целью обнаружения хромосомных и геномных мутаций как при чины аномалий;

6) сделать анализ генотипов по аллелям групп крови, моно- морфным системам ферментов и белков для поиска маркеров мутации;

7) изучить уровень ферментов и их структуры у аномальных и нормальных животных для обнаружения фенотипического про явления мутантного гена.

В перспективе для выявления носителей мутаций у животных широко могут использоваться современные методы молекуляр ной генетики, генной инженерии и биотехнологии.

На практике наиболее простой и достаточно точный метод изучения роли наследственности в этиологии аномалий -- анализ родословных, или генеалогии, животных. Наличие общего пред ка с одной (доминантность) или с обеих сторон родословной (рецессивность) указывает на наследственный характер анома лии.

Болезни наносят животноводству огромный ущерб. В разных странах и районах удельный вес тех или иных болезней различен. Так, из 267 тыс. больных коров в Норвегии маститом заболело 33,5 %, кетозом -- 21, молочной лихорадкой -- 11,6, задержка последа отмечена у 4,5 % животных, тихая течка -- у 3, киста яичников -- у 2,5, метриты -- у 2,2, расстройство пищеварения -- у 1,8, ламиниты -- у 1 % коров и т. д. Из всех коров ежегодно выявляется: больных маститом -- 18 %, кетозом -- 11,2 и молоч ной лихорадкой -- 6,5 %.

Данные о заболеваемости коров голштинской породы в 32 стадах США свидетельствуют о большом удельном весе мастита и болезней, влияющих на воспроизводительную способность жи вотных. Кроме прямого ущерба, наносимого животноводству вследствие снижения продуктивности, увеличения затрат на ле чение, обслуживание животных и т. д., болезни значительно снижают темпы генетического прогресса при селекции. Поэтому наряду с ветеринарными мерами борьбы с болезнями необходи мо разрабатывать и внедрять генетические методы повышения устойчивости животных разных видов к заболеваниям. В связи с этим верна мысль Н. И. Вавилова о том, что среди мер защиты растений от разнообразных заболеваний, вызываемых паразити ческими грибами, бактериями, вирусами, а также различными насекомыми, наиболее радикальным средством борьбы являются введение в культуру иммунных сортов или создание таковых путем скрещивания.

Однако селекция животных на резистентность к болезням затрудняется рядом факторов:

1) сложной генетической обусловленностью устойчивости;

2) сложной генетической природой самих макро- и в меньшей степени микроорганизмов и сложными взаимоотношениями между ними;

3) невозможностью широкого использования заражения (как у растений) для выявления резистентных и восприимчивых ин дивидуумов;

4) отсутствием надежных косвенных критериев (генетических и биохимических маркеров) устойчивости или восприимчивости;

5) быстрой изменчивостью патогенов и возникновением новых резистентных штаммов, преодолевающих устойчивость животных;

6) часто большим интервалом между поколениями и необхо димостью длительной селекции;

7) невозможностью использования индуцированного мутаге неза;

8) наличием в некоторых случаях отрицательной корреляции между устойчивостью и признаками продуктивности.

Установлено, что генетическая устойчивость к одному виду патогенов не сопровождается резистентностью к другим видам. Однако не выяснено существование отрицательной связи между устойчивостью к разным болезням. Остается открытым вопрос: может ли селекция на резистентность к одному заболеванию привести к увеличению восприимчивости к другому?

Изменчивость паразитов усложняет выполнение селекцион ных программ, направленных на повышение устойчивости. В растениеводстве известно много примеров, когда сорта с хоро шей устойчивостью, например к стеблевой ржавчине, впоследст вии сильно поражались новой расой гриба-возбудителя. Это вы зывает необходимость снова проводить селекцию на резистент ность. Тем не менее известны примеры длительной устойчивости. Так, сорт яблони Северный разведчик оставался устойчивым против кровяной тли более 100 лет и только недавно был поражен новым биотипом кровяной тли в Австралии.

Подобная длительная устойчивость возможна и у животных. В исходной популяции мышей-альбиносов внутрибрюшинное вве дение 1 * 107 клеток сальмонелл приводило к гибели почти всех животных через 7--8 дней. Отбор мышей в течение 11 поколений резко повысил устойчивость к сальмонеллам. Прежняя летальная доза вызывала гибель только 40 % животных к 20-му дню. После прекращения отбора достигнутая устойчивость сохранялась в те чение 63 поколений. Эти эксперименты указывают на возмож ность создания и поддержания длительной устойчивости к болез ням и у сельскохозяйственных животных.

Размещено на Allbest.ru

...

Подобные документы

  • История развития и сферы использования молекулярной биотехнологии; генная инженерия. Мутации и рекомбинации вирусов. Строение генетического аппарата клетки. Внехромосомные элементы наследственности. Действие мутагенов на генетический материал бактерий.

    презентация [2,0 M], добавлен 24.03.2015

  • История возникновения генетики и ее основные функции. Исследование наследования и скрещивания. Изменчивость и проблема генных мутаций. Современные возможности науки: трансгенные организмы, клонирование, лечение и предупреждение наследственных болезней.

    реферат [55,6 K], добавлен 20.11.2012

  • Задачи генетики микроорганизмов, которая составляет основу молекулярной биологии. Плазмиды. Мигрирующие генетические элементы. Генетический материал бактерий. Сущность генетики вирусов. Закономерности геномной организации патогенных бактерий и вирусов.

    презентация [285,5 K], добавлен 09.11.2014

  • ДНК - материальная основа наследственности бактерий. Изменчивость бактерий (модификации, мутации, генетические рекомбинации). Генетика вирусов. Механизмы образования лекарственной устойчивости бактерий. Получение и использование вакцины и сыворотки.

    реферат [509,3 K], добавлен 28.01.2010

  • Типы наследования признаков. Законы Менделя и условия их проявления. Сущность гибридизации и скрещивания. Анализ результатов полигибридного скрещивания. Основные положения гипотезы "Чистоты гамет" У. Бэтсона. Пример решения типовых задач о скрещивании.

    презентация [22,0 K], добавлен 06.11.2013

  • Мутация - устойчивые и явные изменения генетического материала, выведенные в наследственные признаки. Морфологические, физиологические, биохимические свойства мутантных организмов. Факторы среды, вызывающие появление генных, хромосомных, геномных мутаций.

    курсовая работа [129,5 K], добавлен 07.02.2015

  • Генетическая система бактерий. Полимеразная цепная реакция. Применение генетических методов в диагностике инфекционных заболеваний. Метод молекулярной гибридизации. Особенности генетики вирусов. Системы репарации бактерий. Взаимодействие вирусных геномов.

    презентация [2,6 M], добавлен 13.09.2015

  • Описания изменений в ДНК клетки, возникающих под действием ультрафиолета и рентгеновских лучей. Характеристика особенностей генных и хромосомных мутаций. Причины и передача цитоплазматических мутаций. Исследование мутаций в соматических клетках растений.

    презентация [62,2 K], добавлен 17.09.2015

  • Микроорганизмы, имеющие более простое строение по сравнению с клетками животных и растений. Размеры, внутренние и поверхностные структуры бактерий и вирусов. Соединения белка и нуклеиновой кислоты, способные размножаться только в пораженной клетке.

    презентация [2,0 M], добавлен 26.09.2011

  • Изучение истории, разнообразия, особенностей строения, свойств и значения вирусов. Отличия дезоксивирусов и рибовирусов. Вирусные заболевания человека (корь, СПИД, ВИЧ), заболевания животных, насекомых, растений. Бактериофаги - "пожиратели бактерий".

    презентация [976,8 K], добавлен 20.10.2013

  • Понятие, история открытия, происхождение, культивация, формы существования и свойства вирусов. Общая характеристика и сравнение вирусов животных, растений и бактерий. Механизмы инфицирующего и летального воздействия ВИЧ на клетки организма человека.

    реферат [25,5 K], добавлен 23.01.2010

  • Понятие мутации как любого наследственного изменения, не связанного с расщеплением или с обычной рекомбинацией неизмененного генетического материала. Типы хромосомных мутаций. Активность муосомальных ферментов при разных патологических состояниях.

    контрольная работа [84,6 K], добавлен 15.08.2013

  • Классификация актиномицетов по Красильникову и Ваксману-Генрици. Морфология и физиология. Сущность постинфекционного иммунитета. Генетическое картирование актиномицетов. Перенос генетического материала с помощью плазмид. Патогенность и патогенез.

    презентация [858,2 K], добавлен 04.11.2013

  • Изучение предмета, основных задач и истории развития медицинской микробиологии. Систематика и классификация микроорганизмов. Основы морфологии бактерий. Исследование особенностей строения бактериальной клетки. Значение микроорганизмов в жизни человека.

    лекция [1,3 M], добавлен 12.10.2013

  • Обусловленность наследственной изменчивости типов мутаций и их комбинаций в последующих скрещиваниях. Генные, геномные, хромосомные мутации. Снижение жизнеспособности особей как последствие мутаций. Причины возникновения мутаций, безуспешность их лечения.

    презентация [5,5 M], добавлен 11.02.2010

  • Понятие мутации вирусов и мутагенов. Частота мутаций вирусов и механизмы их возникновения. Модификации, вызываемые хозяином. Изменчивость вирусов при пассажах. Изменчивость вирусов, возникающая в процессе пассажей при пониженных и повышенных температурах.

    реферат [32,0 K], добавлен 10.11.2010

  • Свойства вирусов, особенности их строения и классификация. Взаимодействие вируса с клеткой. Процессы, связанные с размножением вируса. Описание основных вирусных заболеваний. Эволюция вирусов на современном этапе. Влияние загрязнения внешней среды.

    реферат [466,4 K], добавлен 24.03.2011

  • Исследование морфологических признаков бактерий, микроскопических грибов и дрожжей. Изучение внешнего вида, формы, особенностей строения, способности к движению, спорообразованию, способов размножения микроорганизмов. Форма и строение дрожжевой клетки.

    реферат [28,8 K], добавлен 05.03.2016

  • Особенности использования антител иммунной системой для идентификации и нейтрализации чужеродных объектов. Анализ антигенсвязывающей и эффекторной функций антител. Обзор строения и структуры генов иммуноглобулинов. Процесс возникновения точечных мутаций.

    реферат [829,2 K], добавлен 24.02.2013

  • Исследование механизмов передачи генетического материала и создание новых способов генетического картирования. Перенос генетического материала с помощью плазмид, с помощью рекомбинации и посредством трансдукции. Генетическое картирование актиномицетов.

    реферат [25,9 K], добавлен 15.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.