Активность кальцийзависимых протеиназ в мозге крыс с экспериментальной нейропатологией

Биохимические механизмы развития нейродегенеративных заболеваний. Индуцирование нейродегенерации у лабораторных крыс путём введения кальцийзависимых протеиназ (кальпаинов), её коррекция потенциальными нейропротекторами; проведение поведенческих тестов.

Рубрика Биология и естествознание
Вид дипломная работа
Язык русский
Дата добавления 22.08.2015
Размер файла 578,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В эксперименте по моделированию болезни Альцгеймера у лабораторных животных (крыс) обнаружены изменения кальпаин/кальпастатиновой системы, направленные на повышение каталитической активности Са2+-зависимых протеиназ и тесно связанные с дисбалансом внутриклеточного Са2+. В связи с этим, результаты изучения предложенной модели нейродегенерации можно экстраполировать на широкий круг родственных нарушений.

Показано, что в тканях мозга (коре больших полушарий, гиппокампе) крыс присутствуют основные, типичные для большинства тканей млекопитающих внутриклеточные протеиназы кальпаины, при этом можно выделить особенности в профиле их экспрессии, энзиматической активности и соотношении молекулярных форм, характерные для различных тканей (тканеспецифичность), а также для здоровых и патологически измененных тканей. Наиболее подробные данные получены для кальций-активируемых протеиназ (кальпаинов), поскольку их роль в развитии нейродегенерации, как возрастной, так и патологической, несомненна, но детально к настоящему времени не изучена.

Анализ биохимических изменений в мозге животных с амилоид-индуцированной нейродегенерацией показал, что ведущую роль в развитии тканевой патологии (избыточной гибели нервных клеток по механизмам апоптоза и некроза) играет дизрегуляция кальпаиновой системы. Нарушения в работе указанной протеолитической системы вызваны, во-первых, снижением содержания в тканях их естественного ингибитора, кальпастатина, то есть нарушением баланса протеиназа/ингибитор, а, во-вторых, нарушением баланса внутриклеточного Са2+, сопровождающим развитие дегенеративных изменений во многих тканях, в том числе, нервной. В модельном эксперименте получены данные, подтверждающие возможность модулирования процесса нейродегенерации за счет введения половых стероидов (эстрадиола), обладающих, наряду с ранее показанным антиоксидантным и антиапоптотическим действием, способностью к избирательной регуляции Са2+-зависимых протеиназ в тканях.

Полученные данные отличаются новизной, дополняют имеющиеся в литературе сведения о протеолитических ферментах млекопитающих. Результаты актуальны как в области фундаментального естествознания для изучения основных компонентов протеолитического аппарата клетки и понимания базовых основ его функционирования в норме и патологии, так и в прикладном аспекте (биомедицина, фармацевтика) поиска подходов к регуляции протеолитических процессов, лежащих в основе патологических перестроек в тканях.

Сделан вывод о перспективности выбранного направления исследований, адекватности методических приемов для решения поставленных задач и о необходимости дальнейших исследований сложного баланса строго регулируемой физиологической и персистентной патологической активности кальпаинов, нарушение которого лежит в основе патофизиологии многих нейродегенеративных заболеваний.

ЗАКЛЮЧЕНИЕ

В ходе проведенного эксперимента по моделированию БА у крыс путем интрацеребрального введения пептида Ав1-40 было изучено участие белков кальпаин / кальпастатиновой протеолитической системы в развитии нейропатологии. Об их селективной регуляции в данных условиях судили по уровню протеолитической активности основных форм кальпаинов - м- и m-кальпаинов. Указанные кальпаины синтезируются во всех тканях и количественно превосходят другие формы фермента (в ЦНС - кальпаины 3, 5, 10) на порядки (Wu et al., 2007). м-Кальпаин in vitro активируется ионами Ca2+ при микромолярных, а m-кальпаин - при миллимолярных концентрациях (Mellgen, 1980).

В мозговой ткани крыс более высокая активность кальпаинов была зарегистрирована в цитозольной фракции (свыше 90% от общей; рис. 1).

Рисунок 1. Удельная активность кальпаинов в коре больших полушарий крыс

Здесь и на рис. 2 обозначены группы животных: 1 - контроль (ложно-оперированные); 2 - введение пептида Ав1-40; 3 - сочетанное введение Ав1-40 и 17в-эстрадиола.

Вместе с тем, учитывая особую роль мембранных фосфолипидов для активации этих протеиназ (Goll et al., 2003), наиболее важным показателем представляется их активность, ассоциированная с мембранными фракциями (грубой митохондриальной, микросомной, миелиновой), которая составила 9% от общей (рис. 1). Такое распределение пула кальпаинов между растворимой и мембраносвязанной фракциями клетки в разной степени сходно для большинства тканей млекопитающих (Goll et al., 2003; Kolchinskaya, Malysheva, 2004). Мы обнаружили, что в присутствии амилоидогенного пептида кальпаиновая система в коре больших полушарий активируется почти в 2 раза (рис. 1). При этом наблюдается увеличение активности мембраносвязанной фракции кальпаинов до 16% от общего пула. В наших исследованиях (Рендаков и др., 2014) было показано, что уровень общей активности кальпаинов коррелирует с интенсивностью гибели клеток нервной ткани у крыс экспериментальных групп.

Поскольку активность кальпаинов в ткани зависит от интенсивности аутокаталитической реакции (Goll et al., 2003) , с помощью метода казеиновой зимографии было качественно оценено соотношение полноразмерных и аутолизированных м- и m-кальпаинов. Выраженная активация кальпаинов, особенно m-кальпаина (на зимограмме - белковая полоса с молекулярной массой 120 кДа), и их аутокаталитических фрагментов с молекулярной массой 118 кДа (рис. 2) у животных с экспериментальной БА является наиболее достоверным свидетельством активации кальпаиновой системы in vivo. Характерно, что в целом невысокая активность м-кальпаина (123 кДа) в нервной ткани, составляющая в норме менее 10% от уровня активности m-кальпаина, почти полностью утрачивается у крыс с экспериментальной нейродегенерацией (рис. 2), что указывает на селективную регуляцию разных форм кальпаина при развитии патологии.

Рисунок 2. Зимограмма с казеином, демонстрирующая активные фракции кальпаинов нервной ткани крыс

Полоса с молекулярной массой 123 кДа соответствует м-кальпаину, 120 кДа - m-кальпаину, 118 кДа - зрелым м- и m-кальпаинам, образовавшимся путем аутолиза. Обозначения номеров дорожек см. в подписи к рис. 1.

Большинство нейропатологий, включая нейродегенерацию, ишемию, травмы мозга, а также нормальное старение, сопряжено с нарушением динамического равновесия внутриклеточного Са2+ (Bezprozvanny, 2009). Обычно общее содержание свободного Са2+ в цитоплазме поддерживается в диапазоне от 100 нМ до 1 мкМ (в покое и при стимуляции, соответственно). При БА концентрация внутриклеточного Са2+ достигает величины сотен мкМ, а локально, например в области Са2+-каналов, еще на порядок выше, что достаточно для персистентной активации не только м-, но и m-кальпаина, которую мы наблюдаем на зимограмме. Обнаруженная нами избирательная активация m-кальпаина, которому требуется нефизиологично высокая концентрация Са2+ для активации и аутолиза, по всей видимости, объясняется избытком кальция в цитоплазме и отражает “патологическую” активацию кальпаиновой системы, аналогичную той, что наблюдается при дегенеративных процессах и в других тканях (кардиомиопатии, макулодистрофии, кахексии, миодистрофиях, ототоксичности) (Goll et al., 2003; Немова и др., 2010).

Помимо чувствительности к Са2+, изучаемые ферменты различаются субклеточной локализацией: m-кальпаин дисперсно растворен в цитозоле и ассоциирован с мембранами эндоплазматического ретикулума, а м-кальпаин преимущественно локализован на поверхности везикул аппарата Гольджи и в небольших количествах обнаруживается в митохондриях(Goll et al., 2003; Немова и др., 2010; Hood et al., 2010). Вероятно, это и определяет отмеченные нами различия в отклике ферментов на приток Са2+, который, как теперь известно, оказывает специфичные эффекты в зависимости от источника поступления. Концепция избирательности источников дополнительного Са2+ для индукции клеточной гибели была выдвинута Майклом Тымянски (Tymianski et al., 1993); позже было показано, что она справедлива и для активации кальпаинов: обратный ток Са2+ через Na+/Ca2+-обменник приводит к активации кальпаинов, а приток Са2+ по другим путям, например через потенциал-зависимые Са2+-каналы, - нет (Araujo et al., 2007). Преимущественная активация m-кальпаина при изучаемом воздействии, вероятно, объясняется солокализацией ионообменника и m-кальпаина, которая увеличивает вероятность активации последнего.

Полученные результаты согласуются с рядом наблюдений. У пациентов с БА была описана аномальная активация м-кальпаина, сконцентрированного в синаптических терминалях (Saiti et al., 1993). Избыток активной формы m-кальпаина был обнаружен в посмертных образцах префронтальной коры мозга больных деменцией альцгеймеровского типа, причем во всех специфично поражаемых болезнью зонах мозга пациентов с БА наблюдалось снижение уровня их эндогенного ингибитора, кальпастатина (Saito et al., 1993; Nixon et al., 1994). Активация кальпаинов на фоне дефицита кальпастатина также была выявлена в мозге трансгенных мышей Tg2576, несущих мутантный вариант гена АРР человека (Vaisid et al., 2007).

Следует отметить, что у крыс, которым вводили в мозг в-амилоидный пептид, отмечалось значительное ухудшение результатов поведенческого теста (водного лабиринта Морриса). В аналогичных условиях были отмечены изменения и в других протеолитических путях, например, лизосомальной аутофагии (Рендаков и др., 2014).

СПИСОК ЛИТЕРАТУРЫ

1. Бондарева Л.А., Немова Н.Н., Кяйвяряйнен Е.И. Внутриклеточная Са2+-зависимая протеолитическая система животных. М.: Наука, 2006. 304 с.

2. Немова Н.Н., Лысенко Л.А., Канцерова Н.П., Протеазы семейства кальпаинов. Структура и функции. Отногенез. 2010. Т. 41. (5): 381-389.

3. Nixon R.A. // Ageing Res. Rev. 2003. V. 2. P. 407-418.

4. Siman R., Noszek J.C. // Neuron. 1988. V. 1. P. 279-287.

5. Carragher N.O., Walker S.M., Scott Carragher L.A., Harris F., Sawyer T.K., Brunton V.G., Ozanne B.W., Frame M.C. // Oncogene. 2006. V. 25. P. 5726-5740.

6. Chakraborti S., Alam M.N., Paik D., Shaikh S., Chakraborti T. // Indian J. Biochem. Biophys. 2012. V. 49(5). P. 316-328.

7. Moldoveanu T., Gehring K., Green D.R. // Nature. 2008. V. 456. P. 404-408.

8. Averna M., De Tullio R., Capini P., Salamino F., Pontremoli S., Melloni E. // Cell. Mol. Life Sci. 2003. V. 60. P. 2669-2678.

9. Hanna R.A., Campbell R.L., Davies P.L. // Nature. 2008. V. 456. P. 409-413.

10. Berridge M.J., Bootman M.D., Roderick H.L. // Nat. Rev. Mol. Cell. Biol. 2003. V. 4(7). P. 517-529.

11. Bevers M.B., Neumar R.W. // J. Cereb. Blood Flow Metab. 2008. V. 28(4). P. 655-673.

12. Алтаева Э.Г., Лысенко Л.А., Канцерова Н.П., Немова Н.Н., Шенкман Б.С. // Докл. АН. 2010. Т. 433. № 1. С. 138-141.

13. Atherton J., Kurbatskaya K., Bondulich M., Croft C.L., Garwood C.J., Chhabra R., Wray S., Jeromin A., Hanger D.P., Noble W. // Aging Cell. 2014. V. 13. P. 49-59.

14. Abele K., Yang J. // Acta Physiologica Sinica. 2012. V. 64(5). P. 504-514.

15. Carrell R.W., Lomas D.A. Conformation disease// Lancet. 1997. V. 350. P. 134-138.

16. Hardy J. // J. Neurochem. 2009. V. 110. P. 1129-1134.

17. Grundke-Iqbal I., Iqbal K., Tung Y.C., Quinlan M., Wisniewski H.M., Binder L.I. // Proc. Natl Acad. Sci. USA. 1986. V. 83. P. 4913-4917.

18. La Ferla F. // Nat. Rev. Neurosci. 2002. V. 3. P. 862-872

19. Tydlacka S., Wang C.E., Wang X., Li S., Li X.J. Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons // J. Neurosci. 2008. V. 28. P. 13285-13295.

20. Danysz W., Parsons C.G. // Brit. J. Pharmacol. 2012. V. 167. P. 324-352.

21. Berry J.N., Sharrett-Field L., Butler T.R., Prendergast M.A. // Neurosci. 2012. V. 222. P. 147-158.

22. Vaisid T., Kosower N.S., Elkind E., Barnoy S. // J. Neurosci. Res. 2008. V. 86. P. 2314-2325.

23. Vosler P.S., Brennan C.S., Chen J. // Mol. Neurobiol. 2008. V. 38. P. 78-100.

24. Bezprozvanny I. Calcium signaling and neurodegenerative diseases // Trends Mol. Med. 2009. V. 15. P. 89-100.

25. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248-254.

26. Enns D.L., Belcastro A.N. Early activation and redistribution of calpain activity in skeletal muscle during hindlimb unweighting and reweighting // Can. J. Physiol. Pharmacol. 2006. V. 84. P. 601-609.

27. Figueiredo-Petera M.E., Efthimiopoulos S., Tezapsidis N. Distinct secretases, a cysteine protease and serine protease, generate the C-termini of amyloid в-proteinase Aв 1-40 and Aв 1-42, respectively // J. Neurochem. 1999. Vol. 72. P. 1417-1422.

28. Goll D.E., Thompson V.F., Li H., Wei W., Cong J. Calpain system // Physiol. Rev. 2003. Vol. 83, №3. P. 731-801

29. Grynspan F., Griffin W.R., Catalado A. Active site-directed antibodies identify calpain II as early-appearing and pervasive component of neurofibrillary pathology in Alzheimer's disease // Brain Res. 1997. Vol. 763. P. 145-158.

30. Guttmann R.P., Johnson G.V.W. Calpain-mediated proteolysis of neuronal structural proteins // Calpain-Pharmacology and Toxicology of Calcium-dependent Protease, Taylor & Francis, Philadelphia, PA. - 1999. - С. 229-249.

31. Han P., Dou F. et al. Suppression of cyclin-dependent kinase 5 activation by amyloid precursor protein: a novel excitoprotective mechanism involving modulation of tau phosphorylation // J. Neurosci. 2005. Vol. 25, N 50. P. 11542-11552

32. Hood J.L., Brooks W.H., Roszman T.L. Differential compartmentalization of the calpain/calpastatin network with the endoplasmic reticulum and Golgi apparatus // J. Biol. Chem. 2004 V. 279. P. 43126-43135

33. Kolchinskaya L.I., Malysheva M.K. Activity of calpain in subcellular fractions of the rat brain // Neurophysiol. 2004. V. 36. P. 265-271.

34. Kusakawa G.-I., Saito T., Oonuki R. Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase activator to p25 // J. Biol. Chem. 2000. Vol. 275. p. 17166-17172.

35. Lee M.-S., Kwon Y.T., Li M., Peng J., Friedlander R.M., Tsai L.H. Neurotoxicity induces cleavage of p35 to p25 by calpain // Nature. 2000. Vol. 405. P. 360-364.

36. Leissring M.A., Akbari Y., Fanger C.M. et al. Capacitative calcium entry deficits and elevated luminal calcium in mutant presenilin-1 knockin mice // J. Cell. Biol. 2000. Vol. 149. P. 793-797.

37. Litersky J.M., Johnson G.V. Phosphorylation by cAMP-dependent protein kinase inhibits the degradation of tau by calpain // J. Biol. Chem. 1992. Vol. 267. P. 1563-1568

38. Marcilhac A. Intracellular signaling pathways, apoptosis and neurodegenerative diseases // Psychologie&neuropsychiatrie du vieillissement. 2004. Т. 2. №3. С. 203-214.

39. Marcum J.L., Mathenia J.K., Chen R., Cuttmann R.P. Oxidation of thiol-proteases in the hippocampus of Alzheimer's disease // Biochem. Biophys. Res. Commun. 2005. Vol. 334, №2. P. 342-348

40. Mellgren R.L. Canine cardiac calcium-dependent proteases: resolution of two forms with different requirements for calcium // FEBS Lett. 1980. V. 109. P. 129-133.

41. Morris R.G.M. Spatial localization does not require the presence of local cues // Learn. Motiv. 1981. V. 2. P. 239-260.

42. Nixon R.A., Mohan P. Calpains in the pathogenesis of Alzheimer's disease // Calpain: Pharmacology and toxicology of calcium-dependent protease / Ed. by K.K.W. Wang, P.-W. Yuen. Philadelphia (PA): Taylor and Francis, 1999. P. 229-249.

43. Nixon R.A., Saito K.I., Grynspan F., Griffin W.R., Katayama S., Honda T., Mohan P.S., Shea T.B., Beermann M. Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease // Ann. N-Y Acad. Sci. 1994. V.747. P. 77-91.

44. Rawlings N.D., Barrett A.J., Bateman A. MEROPS: the peptidase database // Nucleic Acids Res. 2012. V. 40. P. D343-D350.

45. Saito K-I., Elce J.S., Hamos J.E., Nixon R.A. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer's disease: a potential molecular basis for neuronal degeneration // Proc. Nat. Acad. Sci. USA. 1993. Vol. 90. P. 2628-2632.

46. Selkoe D.J. Alzheimer disease: genes, proteins, and therapy // Physiol. Rev. 81. 2001. Vol. 81. P. 741-766.

47. Tymianski M., Charlton M.P., Carlen P.L., Tator C.H. Source speci?city of early calcium neurotoxicity in cultured embryonic spinal neurons // J. Neurosci. 1993. V. 13.P. 2085-2104.

48. Vaisid T., Kosower N.S., Katzav A., Chapman J., Barnoy S. Amyloid b peptide toxicity in differentiated PC12 cells: Calpain-calpastatin, caspase, and membrane damage // Neurochem. Int. 2007. V. 51. P. 391-397.

49. Wu H.Y., Tomizawa K., Matsui H. Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder // Acta Med. Okayama. 2007. V. 61. P. 123-137.

50. Yamashima T. Ca2+-dependent proteases in ischemic neuronal death: a conserved “calpain-cathepsin cascade” from nematodes to primate // Cell Calcium. 2004. Vol. 36, №3-4. P. 285-293.

51. Коросов А.В., Горбач В.В. Компьютерная обработка биологических данных. Петрозаводск: ПетрГУ, 2007.

52. Немова Н.Н., Лысенко Л.А., Канцерова Н.П. Протеиназы семейства кальпаинов. Структура и функции // Онтогенез. 2010. Т. 41. С. 381-389.

53. Рендаков Н.Л., Лысенко Л.А., Люпина Ю.В., Шарова Н.П., Сельверова Н.Б., Немова Н.Н. Роль лизосомальных протеиназ и эстрадиола в нейродегенерации, индуцированной бета-амилоидом // Докл. АН. 2014

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.