Основы биологии
Дезоксирибонуклеиновая кислота, ее биологическая сущность, законы наследственности. Назначение цитоплазмы, примеры генов вне хромосом, структура белков и ферментов. Механизмы саморегуляции в клетке, значение евгеники, этапы антропогенеза, теория эволюции.
Рубрика | Биология и естествознание |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 06.09.2015 |
Размер файла | 76,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Химический состав нуклеотидов ДНК и РНК, их сходство и отличия
Дезоксирибонуклеимновая кислотам (ДНК) -- макромолекула (одна из трёх основных, две другие -- РНК и белки), обеспечивающаяхранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.
В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.
С химической точки зрения ДНК -- это длинная полимерная молекула, состоящая из повторяющихся блоков -- нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи). В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».
В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин -- только с цитозином. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессетрансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции. Кроме того, в геноме эукариот часто встречаются участки, принадлежащие «генетическим паразитам», например, транспозонам.
Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону и Морису Уилкинсу была присуждена Нобелевская премия по физиологии или медицине 1962 г. Розалинд Франклин, которая получила рентгенограммы, без которых Уотсон и Крик не имели бы возможность сделать выводы о структуре ДНК, умерла в 1958 г. от рака, а Нобелевскую премию не дают посмертно[1].
Рибонуклеимновая кислотам (РНК) -- одна из трёх основных макромолекул (две другие -- ДНК и белки), которые содержатся в клетках всех живых организмов.
Так же, как ДНК (дезоксирибонуклеиновая кислота), РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.
Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами -- РНК-полимеразами. Затем матричные РНК (мРНК) принимают участие в процессе, называемомтрансляцией. Трансляция -- это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.
Для одноцепочечных РНК характерны разнообразные пространственные структуры, в которых часть нуклеотидов одной и той же цепи спарены между собой. Некоторые высокоструктурированные РНК принимают участие в синтезе белка клетки, например, транспортные РНК служат для узнавания кодонов и доставки соответствующих аминокислот к месту синтеза белка, а рибосомные РНК служат структурной и каталитической основой рибосом.
Однако функции РНК в современных клетках не ограничиваются их ролью в трансляции. Так, малые ядерные РНК принимают участие в сплайсинге эукариотических матричных РНК и других процессах.
Помимо того, что молекулы РНК входят в состав некоторых ферментов (например, теломеразы), у отдельных РНК обнаружена собственная ферментативная активность: способность вносить разрывы в другие молекулы РНК или, наоборот, «склеивать» два РНК-фрагмента. Такие РНК называются рибозимами.
Геномы ряда вирусов состоят из РНК, то есть у них она играет роль, которую у высших организмов выполняет ДНК. На основании разнообразия функций РНК в клетке была выдвинута гипотеза, согласно которой РНК -- первая молекула, которая была способна к самовоспроизведению в добиологических системах.
Между ДНК и РНК есть три основных отличия:
1. ДНК содержит сахар дезоксирибозу, РНК -- рибозу, у которой есть дополнительная, по сравнению с дезоксирибозой, гидроксильная группа. Эта группа увеличивает вероятность гидролиза молекулы, то есть уменьшает стабильность молекулы РНК.
2. Нуклеотид, комплементарный аденину, в РНК не тимин, как в ДНК, а урацил -- неметилированная форма тимина.
3. ДНК существует в форме двойной спирали, состоящей из двух отдельных молекул. Молекулы РНК, в среднем, гораздо короче и преимущественно одноцепочечные.
Структурный анализ биологически активных молекул РНК, включая тРНК, рРНК, мяРНК и другие молекулы, которые не кодируют белков, показал, что они состоят не из одной длинной спирали, а из многочисленных коротких спиралей, расположенных близко друг к другу и образующих нечто, похожее на третичную структуру белка. В результате этого РНК может катализировать химические реакции, например, пептидил-трансферазный центр рибосомы, участвующий в образовании пептидной связи белков, полностью состоит из РНК
2. Принцип комплементарности и каково его биологическое значение?
КОМПЛЕМЕНТАРНОСТЬ (от лат. complementum -- дополнение) -- 1) пространственная взаимодополняемость молекул, приводящая к образованию вторичной и третичной структуры макромолекул. Принцип комплементарности лежит в основе многих важнейших биологических процессов, основанных на «узнавании» на молекулярном уровне: взаимодействие ДНК-иРНК, иРНК-тРНК, образование «шпилек» (комплементарно спаренных участков) в молекулах ДНК и тРНК, формирование третичной и четвертичной структуры белков. Комплементарно взаимодействуют антитело и антиген, субстрат и фермент; 2) один из типов взаимодействия двух неаллельных генов, при котором их совместное присутствие в генотипе обеспечивает развитие нового признака, отсутствовавшего у родительских особей. Например, при скрещивании самки дрозофилы с алыми глазами с самцом, имеющим бурые глаза, в первом поколении гибридов проявляется темно-красная окраска глаз, характерная для мух дикого типа.
Принцип комплементарности (дополнительности) используется, когда к одной цепи ДНК надо построить вторую. А соответствие, в данном случае, это способность образовывать водородные связи.
Поскольку цепь ДНК построена из простых нуклеотидов, водородные связи между собой образуют аденин и тимин (в РНК -- урацил), гуанин и цитозин.
Принцип комплементарности наблюдается при транскрипции ДНК в РНК. Комплементарность в молекулярной биологии, взаимное соответствие, обеспечивающее связь дополняющих друг друга структур (макромолекул, молекул, радикалов) и определяемое их химическими свойствами. К. возможна, «если поверхности молекул имеют комплементарные структуры, так что выступающая группа (или положительный заряд) на одной поверхности соответствуют полости (или отрицательному заряду) на другой. Иными словами, взаимодействующие молекулы должны подходить друг к другу, как ключ к замку» (Дж. Уотсон) . К. цепей нуклеиновых кислот основана на взаимодействии входящих в их состав азотистых оснований. Так, только при расположении аденина (А) в одной цепи против тимина (Т) (или урацила -- У) в другой, а гуанина (Г) -- против цитозина (Ц) , в этих цепях между основаниями возникают водородные связи. К. -- по-видимому, единственный и универсальный химический механизм матричного хранения и передачи генетической информации.
Другой пример К. -- взаимодействие фермента с соответствующим субстратом. В иммунологии говорят о К. антигена и соответствующих ему антител. В биологической литературе термин «К. » иногда употребляют в значении, близком к понятию комплементация. В двойной цепи ДНК или РНК напротив нуклеотида с аденином может быть только с тимином (в РНК с урацилом) , а напротив нуклеотида с гуанином - только нуклеотид с цитозином.
3. Что такое код наследственности и какова его химическая природа? Что такое кодовое число?
ГЕНЕТИЧЕСКИЙ КОД, способ записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности образующих эти кислоты нуклеотидов. Определённой последовательности нуклеотидов в ДНК и РНК соответствует определённая последовательность аминокислот в полипептидных цепях белков. Код принято записывать с помощью заглавных букв русского или латинского алфавита. Каждый нуклеотид обозначается буквой, с которой начинается название входящего в состав его молекулы азотистого основания: А (А) - аденин, Г (G) - гуанин, Ц (С) - цитозин, Т (Т) - тимин; в РНК вместо тимина урацил - У (U). Каждую аминокислоту кодирует комбинация из трёх нуклеотидов - триплет, или кодон. Кратко путь переноса генетической информации обобщён в т. н. центральной догме молекулярной биологии: ДНК ` РНК f белок. В особых случаях информация может переноситься от РНК к ДНК, но никогда не переносится от белка к генам. Реализация генетической информации осуществляется в два этапа. В клеточном ядре на ДНК синтезируется информационная, или матричная, РНК (транскрипция). При этом нуклеотидная последовательность ДНК «переписывается» (перекодируется) в нуклеотидную последовательность мРНК. Затем мРНК переходит в цитоплазму, прикрепляется к рибосоме, и на ней, как на матрице, синтезируется полипептидная цепь белка (трансляция). Аминокислоты с помощью транспортной РНК присоединяются к строящейся цепи в последовательности, определяемой порядком нуклеотидов в мРНК. Из четырёх «букв» можно составить 64 различных трёхбуквенных «слова» (кодона). Из 64 кодонов 61 кодирует определённые аминокислоты, а три отвечают за окончание синтеза полипептидной цепи. Так как на 20 аминокислот, входящих в состав белков, приходится 61 кодон, некоторые аминокислоты кодируются более чем одним кодоном (т. н. вырождённость кода). Такая избыточность повышает надёжность кода и всего механизма биосинтеза белка. Другое свойство кода - его специфичность (однозначность): один кодон кодирует только одну аминокислоту. Кроме того, код не перекрывается - информация считывается в одном направлении последовательно, триплет за триплетом. Наиболее удивительное свойство кода - его универсальность: он одинаков у всех живых существ - от бактерий до человека (исключение составляет генетический код митохондрий). Учёные видят в этом подтверждение концепции о происхождении всех организмов от одного общего предка. Расшифровка генетического кода, т. е. определение «смысла» каждого кодона и тех правил, по которым считывается генетическая информация, осуществлена в 1961-1965 гг. и считается одним из наиболее ярких достижений молекулярной биологии.
4. Что представляет собой цитоплазматическая наследственность, приведите её примеры
В случае партеногенеза или наследованиее при полиплоидии наследуемые признаки передавались через ядерные структуры - хромосомы . Различия состояли только в том, сколько таких хромосом имеется в клетке и получает ли организм их от обоих родителей или только от одного. Но, кроме того, существует еще особый тип передачи наследуемых признаков - не через ядро, а через цитоплазму клетки. В этом случае говорят о нехромосомной, или цитоплазматической наследственности. Наиболее важные случаи нехромосомной наследственности - это наследование пластид и митохондрий.
Растительные клетки содержат особые органеллы, так называемые пластиды, которые имеют собственную кольцевую хромосому и размножаются делением. Если клетка утратила пластиды, то она не способна образовать их заново. Например, обычно эвглена зеленая содержит около 100 хлоропластов . При выращивании эвглены в темноте ее хлоропласты не делятся, в то время как сами одноклеточные продолжают делиться. В результате этого процесса появляются эвглены, не имеющие хлоропластов. У таких эвглен новые хлоропласты не образуются.
Пластиды обычно передаются с яйцеклеткой , но не передаются со спермиями, практически лишенными цитоплазмы. (Однако имеются и исключения, например, спермин герани содержат цитоплазму и пластиды).
Ясно, что наследование пластид подчиняется особым правилам. Этот тип наследования был описан немецкими учеными, (переоткрывшими законы Менделя) еще в 1908 г. при изучении передачи по наследству пестролистности у растений. Рассмотрим этот пример более подробно.
Пестролистные растения состоят из клеток с нормальными пластидами, содержащими хлорофилл и имеющими зеленый цвет, и из клеток с мутантными пластидами, которые не содержат хлорофилла и имеют белый цвет. Листья таких растений "пестрые", т.е. состоят из участков с разной окраской, от чисто зеленой до чисто белой. Нередко одна ветка такого растения несет зеленые листья, а другая - белые. Сами по себе белые листья не могли бы выжить, так как в них не идет процесс фотосинтеза. Но на пестролистном растении они выживают, и на ветках с такими листьями даже могут развиваться цветки, так как они получают питательные вещества от нормальных частей растения.
Пластиды наследуются только по материнской линии. Поскольку пыльцевые клетки не содержат пластид, то, например, при опылении цветка нормального зеленого растения пыльцой цветков, развившихся на ветках с зелеными или с бесцветными листьями, все равно получаются гибриды с нормальными пластидами, т.е. с фенотипом материнского растения.
Теми же особенностями, что и пластиды, обладают митохондрии , имеющие собственную ДНК. Митохондрии сперматозоида при оплодотворении не проникают внутрь клетки или разрушаются в ней. Так что все митохондрии организм получает от матери. Поскольку подавляющее большинство клеток эукариот содержат митохондрии, нехромосомная наследственность - обычное явление. Этот тип наследственности зависит от двух факторов: во-первых, от характера распределения данных митохондрий по дочерним клеткам при делении материнской клетки; во-вторых, от свойств генов, которые локализованы в ДНК пластид или митохондрий. Например, в одну из дочерних клеток может попасть больше мутантных пластид, а в другую меньше или не попасть совсем. В результате потомки этих дочерних клеток будут обладать разными признаками.
В ряде случаев показано, что хромосомная наследственность и нехромосомная могут комбинироваться, давая сложные случаи наследования признаков. Дело в том, что не все белки, необходимые для функционирования митохондрий, закодированы в их ДНК. Большая часть таких белков (до 90%) закодирована в ядерной ДНК клетки. Те признаки митохондрий, которые закодированы в хромосомах ядра клетки, наследуются по законам Менделя, а те признаки, которые закодированы в ДНК самих митохондрий, наследуются (вместе с самими митохондриями) с цитоплазмой яйцеклетки, т.е. по материнской линии.
У бактерий тоже есть генетический материал ( плазмиды ), который не связан с их единственной хромосомой.
В конце XIX века биологи потратили много труда, чтобы сначала доказать, что носителем наследственности является ядро клетки, а затем конкретизировать это утверждение и доказать хромосомную теорию наследственности. Противники этой точки зрения пытались доказать, что наследственные признаки передаются через цитоплазму клетки. В этой дискуссии было придумано и проведено много экспериментов и теорий. Проводилась пересадка ядер из одних клеток в другие, удаление отдельных хромосом из яйцеклеток и т.д. В результате хромосомная теория восторжествовала, а идея цитоплазматическои наследственности, хотя и не была отвергнута полностью, но влачила жалкое существование. Однако в последние десятилетия ХХ столетия было показано, что такие важные органеллы, как пластиды и митохондрии, имеют собственный генетический материал и передаются в дочерние клетки с цитоплазмой.
Таким образом, были определены границы применимости каждой из, на первый взгляд, альтернативных теорий, после чего они заняли в генетике свои законные места.
5. Что представляет собой цитоплазматическая мужская стерильность и как это используется на практике?
Цитоплазматическая мужская стерильность (ЦМС, англ. Cytoplasmic male sterility, CMS) -- явление полной или частичной стерильности андроцея высших растений, причиной которого является наличие особой мутации в митохондрионе, т.е. в геноме митохондрий, фертильность растений восстанавливается полностью или частично при наличии доминантного аллеля ядерного гена-восстановителя фертильности. Впервые описана Маркусом М. Роудсом у кукурузы, описана также у петунии, капусты, подсолнечника и других растений. Для ЦМС характерен так называемый материнский тип наследования.
Общий механизм ЦМС
Цитоплазматическая мужская стерильность проявляется во взаимодействии ядерного генома с митохондрионом. Митохондрии и пластиды как органеллы, ведущие своё происхождение от эндосимбионтных прокариотических микроорганизмов, имеют свой уникальный геном, и хотя в процессе эволюции эукариотической клетки они потеряли большую часть своей автономности и утратили большинство генов, часть важных белков ещё кодируются под контролем генов митохондрий и пластид. Митохондрии и пластиды также имеют рабочий белоксинтезирующий аппарат. Цитоплазматическая мужская стерильность возникает в результате определённой мутации в митохондрионе, в результате чего происходит дегенерация андроцея растения, проявляющаяся либо в дегенерации пыльников, либо в нераскрытии пыльников, либо в образовании нежизнеспособной пыльцы. Генотипы с диким типом митохондрий обозначаются N либо CytN (т.е. нормальный тип цитоплазмы), генотипы с мутантным митохондрионом обозначаются как S либо CytS (т.е. стерильная цитоплазма). В ядерном геноме клетки растений также имеются особые гены-восстановители фертильности (англ. restorer of fertility или Rf-гены), доминантные аллели которых полностью либо частично восстанавливают фертильность андроцея. Только генотипы, имеющие мутантный митохондрион и являющиеся рецессивными гомозиготами по Rf-генам, являются стерильными (CytSrfrf), все остальные генотипы являются фертильными.
ЦМС у кукурузы
У кукурузы (Zea mays L.) известно несколько типов ЦМС, наиболее изученными являются т.н. Т-тип ЦМС[2] (называемый также техасским), С-тип ЦМС[3] (т.н. чарруа тип, также называемый парагвайским и колумбийским) и S-тип ЦМС[4] (называемый также молдавским или М-типом ЦМС). Каждый тип ЦМС определяется своей специфичной мутацией в митохондрионе и восстанавливается своими генами-восстановителями фертильности. Так, Т-тип ЦМС обусловлен мутацией в регионе митохондриона T-urf в результате чего митохондрии начинают производить мутантный токсический белок Urf13, который приводит в свою очередь к дегенерации клеток тапетума, что приводит к образованию мужскостерильного фенотипа кукурузы, ген Rf1, находящийся в прицентромерном регионе короткого плеча хромосомы 3, продуцирует митохондриальную альдегиддегидрогеназу mtALDH, снимающую токсический эффект химерного белка и приводящую к восстановлению фертильности. Ген Rf2, находящийся в прицентромерном регионе хромосомы 9 комплементарно взаимодействует с геном Rf1, и для восстановления фертильности у линий кукурузы с Т-типом цитоплазмы оба гена должны находиться в доминантном состоянии. S-тип ЦМС обусловлен мутацией открытых рамок считывания orf355 и orf77, образуется химерная нуклеотидная последовательность R orf355-orf77[5]. Геном-восстановителем фертильности является Rf3, ввиду постмейотического восстановления фертильности генотипы Rf3rf3 образуют 50% фертильной пыльцы. Было показано, что Rf3 оказывает влияние на уровни экспрессии митохондриальных и ядерных генов и оказывает плейотропное действие на уровне транскрипции. Возможным механизмом S-типа ЦМС у кукурузы является изменение уровня экспрессии генов у orf355-orf77 растений и включении механизма программируемой клеточной гибели, восстановление же фертильности обусловлено нормализацией уровня транскриптов в митохондриях и ингибировании апоптотических механизмов.[6] Продукт экспрессии гена Rf3 изменяет уровень экспрессии химерной последовательности orf355-orf77.[7]С-тип ЦМС обусловлен мутацией в генах АТФ-синтаз[5] и образованием химерной АТФ-синтазы atp6-atp9 типа[8], С-тип ЦМС восстанавливается генами Rf4, Rf5 и Rf6.
6. Приведите примеры генов вне хромосом. Какие признаки они контролируют?
Митохондриальная ДНК (мтДНК) -- ДНК, находящаяся (в отличие от ядерной ДНК) в митохондриях, органоидах эукариотических клеток.
Гены, закодированные в митохондриальной ДНК, относятся к группе плазмагенов, расположенных вне ядра (вне хромосомы). Совокупность этих факторов наследственности, сосредоточенных в цитоплазме клетки, составляет плазмон данного вида организмов (в отличие от генома)
У большинства изученных организмов митохондрии содержат только кольцевые молекулы ДНК, у некоторых растений одновременно присутствуют и кольцевые, и линейные молекулы, а у ряда протистов (например, инфузорий) имеются только линейные молекулы.[5]
Митохондрии млекопитающих обычно содержат от двух до десяти идентичных копий кольцевых молекул ДНК.[6]
У растений каждая митохондрия содержит несколько молекул ДНК разного размера, которые способны к рекомбинации.
У протистов из отряда кинетопластид (например, у трипаносом) в особом участке митохондрии (кинетопласте) содержится два типа молекул ДНК -- идентичные макси-кольца (20-50 штук) длиной около 21 т.п.о. и мини-кольца (20 000 -- 55 000 штук, около 300 разновидностей, средняя длина около 1000 п.о.). Все кольца соединены в единую сеть (катенаны), которая разрушается и восстанавливается при каждом цикле репликации. Макси-кольца гомологичны митохондриальной ДНК других организмов. Каждое мини-кольцо содержит четыре сходных консервативных участка и четыре уникальных гипервариабельных участка.[7] В мини-кольцах закодированы короткие молекулы направляющих РНК (guideRNA), которые осуществляют редактирование РНК, транскрибируемых с генов макси-колец.
Митохондриальная ДНК особенно чувствительна к активным формам кислорода, генерируемым дыхательной цепью, в связи с непосредственной их близостью.
Хотя митохондриальная ДНК связана с белками, их защитная роль менее выражена, чем в случае ядерной ДНК. Мутации в ДНК митохондрий могут вызывать передаваемые по материнской линии наследственные заболевания. Также имеются данные, указывающие на возможный вклад мутаций митохондриальной ДНК в процесс старения и развитие возрастных патологий.[8] У человека митохондриальная ДНК обычно присутствует в количестве 100--10000 копий на клетку (сперматозоиды и яйцеклетки являются исключением). С множественностью митохондриальных геномов связаны особенности проявления митохондриальных болезней -- обычно позднее их начало и очень изменчивые симптомы.
Геном митохондрий[править | править вики-текст]
У млекопитающих каждая молекула мтДНК содержит 15000-17000 пар оснований (у человека 16565 пар нуклеотидов -- исследование закончено в 1981 году[22], по другому источнику 16569 пар[23]) и содержит 37 генов -- 13 кодируют белки, 22 -- гены тРНК, 2 -- рРНК (по одному гену для 12S и 16S рРНК). Другие многоклеточные животные имеют схожий набор митохондриальных генов, хотя некоторые гены могут иногда отсутствовать. Генный состав мтДНК разных видов растений, грибов и особенно протистов [24] различается более значительно.
Так, у жгутиконосца-якобиды Reclinomonas americana найден наиболее полный из известных митохондриальных геномов: он содержит 97 генов, в том числе 62 гена, кодирующих белки (27 рибосомальных белков, 23 белка, участвующих в работе электрон-транспортной цепи и в окислительном фосфорилировании, а также субъединицы РНК-полимеразы).
Один из наиболее маленьких митохондриальных геномов имеет малярийный плазмодий (около 6.000 п.о., содержит два гена рРНК и три гена, кодирующих белки). Недавно открытые рудиментарные митохондрии (митосомы) некоторых протистов (дизентерийной амёбы, микроспоридий и лямблий) не содержат ДНК.[25] Митохондриальные геномы различных видов грибов содержат от 19 431 (делящиеся дрожжи Schizosaccharomyces pombe) до 100 314 (сордариомицет Podospora anserina) пар нуклеотидов[26].
Некоторые растения имеют огромные молекулы митохондриальной ДНК (до 25 миллионов пар оснований), при этом содержащие примерно те же гены и в том же количестве, что и меньшие мтДНК. Длина митохондриальной ДНК может широко варьировать даже у растений одного семейства. В митохондриальной ДНК растений имеются некодирующие повторяющиеся последовательности. Геном человека содержит только по одному промотору на каждую комплементарную цепь ДНК[22].
Геном митохондрий человека кодирует следующие белки и РНК:
7. Чем объясняется первичная, вторичная, третичная структуры белка?
Уровни организации
К. Линдстрём-Ланг предложил выделять 4 уровня структурной организации белков: первичную, вторичную, третичную и четвертичнуюструктуры. Хотя такое деление несколько устарело, им продолжают пользоваться[4]. Первичная структура (последовательность аминокислотных остатков) полипептида определяется структурой его гена и генетическим кодом, а структуры более высоких порядков формируются в процессе сворачивания белка[23]. Хотя пространственная структура белка в целом определяется его аминокислотной последовательностью, она является довольно лабильной и может зависеть от внешних условий, поэтому более правильно говорить о предпочтительной или наиболее энергетически выгодной конформации белка[4].
Первичная структура
Первичная структура -- последовательность аминокислотных остатков в полипептидной цепи. Первичную структуру белка, как правило, описывают, используя однобуквенные или трёхбуквенные обозначения для аминокислотных остатков.
Важными особенностями первичной структуры являются консервативные мотивы -- устойчивые сочетания аминокислотных остатков, выполняющие определённую функцию и встречающиеся во многих белках. Консервативные мотивы сохраняются в процессе эволюции видов, по ним часто удаётся предсказать функцию неизвестного белка[24]. По степени гомологии (сходства) аминокислотных последовательностей белков разных организмов можно оценивать эволюционное расстояние между таксонами, к которым принадлежат эти организмы.
Первичную структуру белка можно определить методами секвенирования белков или по первичной структуре его мРНК, используя таблицу генетического кода.
Вторичная структура
Вторичная структура -- локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями. Ниже приведены самые распространённые типы вторичной структуры белков[23]:
* б-спирали -- плотные витки вокруг длинной оси молекулы, один виток составляют 3, 6 аминокислотных остатка, и шаг спирали составляет 0, 54 нм[25] (на один аминокислотный остаток приходится 0, 15 нм), спираль стабилизирована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена. Хотя б-спираль может быть как левозакрученной, так и правозакрученной, в белках преобладает правозакрученная. Спираль нарушают электростатические взаимодействия глутаминовой кислоты, лизина, аргинина. Расположенные близко друг к другу остатки аспарагина, серина, треонина и лейцина могут стерически мешать образованию спирали, остатки пролина вызывают изгиб цепи и тоже нарушают б-спирали;
* в-листы (складчатые слои) -- несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга (0, 34 нм на аминокислотный остаток[26]) в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в б-спирали. Эти цепи обычно направлены N-концами в противоположные стороны (антипараллельная ориентация). Для образования в-листов важны небольшие размеры боковых групп аминокислот, преобладают обычно глицин и аланин;
* р-спирали;
* 310-спирали;
* неупорядоченные фрагменты.
Третичная структура
Разные способы изображения трёхмерной структуры белка на примере триозофосфатизомеразы. Слева -- «стержневая» модель, с изображением всех атомов и связей между ними; цветами показаны элементы. В середине -- мотив укладки. Справа -- контактная поверхность белка, построенная с учётом ван-дер-ваальсовых радиусов атомов; цветами показаны особенности активности участков
Третичная структура -- пространственное строение полипептидной цепи. Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:
* ковалентные связи (между двумя остатками цистеина -- дисульфидные мостики);
* ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;
* водородные связи;
* гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула сворачивается так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.
Исследования принципов укладки белков показали, что между уровнем вторичной структуры и атомарной пространственной структурой удобно выделять ещё один уровень -- мотив укладки (архитектура, структурный мотив). Мотив укладки определяется взаимным расположением элементов вторичной структуры (б-спиралей и в-тяжей) в пределах белкового домена -- компактной глобулы, которая может существовать или сама по себе или входить в состав более крупного белка наряду с другими доменами. Рассмотрим для примера один из характерных мотивов строения белков. Изображённый на рисунке справа глобулярный белок, триозофосфатизомераза, имеет мотив укладки, который называется б/в-цилиндр: 8 параллельных в-тяжей формируют в-цилиндр внутри ещё одного цилиндра, сложенного из 8 б-спиралей. Такой мотив обнаруживается примерно в 10 % белков[27].
Известно, что мотивы укладки являются довольно консервативными и встречаются в белках, которые не имеют ни функциональных, ни эволюционных связей. Определение мотивов укладки лежит в основе физической, или рациональной классификации белков (такой как CATH или SCOP)[27].
Для определения пространственной структуры белка применяют методы рентгеноструктурного анализа, ядерного магнитного резонанса и некоторые виды микроскопии.
8. При каких условиях происходит гидролиз, денатурация белка? Какие особенности молекулы белка определяют ее растворимость в воде?
Гидролиз (гидролизация) белков - это процесс дробления цепочек белковых молекул на части.
Получаемые фрагменты называются пептидами и обладают рядом полезных свойств. Главное из которых - намного более быстрое усвоение по сравнению с первоначальной молекулой. Идеальный гидролиз белков - это расщепление молекулы белка до составляющих аминокислот. Именно они и ложатся в основу аминокислотных комплексов - самых эффективных препаратов с точки зрения снабжения мышечных клеток строительным материалом. Однако далеко не всегда имеет смысл проводить полный цикл гидролиза. Для улучшения скорости усвоения и повышения пищевой ценности протеинов достаточно провести частичный гидролиз белка. В итоге исходная молекула распадается на цепочки по несколько аминокислот, которые называются ди- и три-пептидами.
Денатурация белков (лат. denaturatus -- лишенный природных свойств; от de- -- приставка, означающая отделение, удаление +natura -- природа, естество) -- термин биологической химии, означающий потерю белками их естественных свойств (растворимости, гидрофильности и др.) вследствие нарушения пространственной структуры их молекул.
Процесс денатурации отдельной белковой молекулы, приводящий к распаду её «жёсткой» трёхмерной структуры, иногда называют плавлением молекулы.
Механизмы денатурации
Практически любое заметное изменение внешних условий, например, нагревание или существенное изменение pH приводит к последовательному нарушению четвертичной, третичной и вторичной структур белка. Обычно денатурация вызывается повышением температуры, действием сильных кислот и щелочей, солей тяжелых металлов, некоторых растворителей (спирт), радиации и др.
Денатурация часто приводит к тому, что в коллоидном растворе белковых молекул происходит процесс агрегации частиц белка в более крупные. Визуально это выглядит, например, как образование «белка» при жарке яиц.
9. Что такое многофункциональность белков и что её обуславливает?
Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в составшёлка и паутины[20]. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора[18].
Белки также делятся на гидрофильные и гидрофобные (водооталкивающие). К гидрофильным относится большинство белков цитоплазмы, ядра и межклеточного вещества, в том числе нерастворимые кератин и фиброин. К гидрофобным относится большинство белков, входящих в состав биологических мембран, -- интегральных мембранных белков, которые взаимодействуют с гидрофобными липидами мембраны[21] (у этих белков, как правило, есть и гидрофильные участки).
10. Дайте определение пептидным и водородным связям, солевым и дисульфидным мостикам, и как они образуются?
Жесткость пептидной связи. В структурных формулах пептидов связь между карбонильной группой и атомом азота изображается как одинарная, однако на самом деле эта связь между атомами углерода и азота носит характер частично двойной связи. Свободное вращение вокруг нее невозможно, и все четыре атома лежат в одной плоскости. Вращение же вокруг остальных связей полипептидного остова, наоборот, достаточно свободно. Эта полужесткость ведет к важным последствиям, сказывающимся на более высоких уровнях структурной организации белка.
Водородные связи образуются 1) между группами, входящими в состав боковых цепей и способными к формированию водородных связей; 2) между атомами азота и кислорода, принадлежащими пептидным группам остова; 3) между полярными остатками, расположенными на поверхности молекулы белка, и молекулами воды. Все они играют важную роль в стабилизации вторичной, третичной и т. д. структур белка.
11. Дайте определение ферментам, какова их химическая природа и их роль в клетке?
Фермемнты, или энзиммы[1] (от лат. fermentum, греч. жэмз, ?нжхмпн -- закваска) -- обычно белковые молекулы или молекулы РНК(рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества -- продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу).
Ферментативная активность может регулироваться активаторами и ингибиторами (активаторы -- повышают, ингибиторы -- понижают).
Белковые ферменты синтезируются на рибосомах, а РНК -- в ядре.
Термины «фермент» и «энзим» давно используют как синонимы (первый в основном в русской и немецкой научной литературе, второй -- в англо- и франкоязычной).
Наука о ферментах называется энзимологией, а не ферментологией (чтобы не смешивать корни слов латинского и греческого языков).
Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ (субстратов) в другие (продукты). Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах. К 2013 году было описано более 5000 разных ферментов[3][4]. Они играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.
Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону. Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокаяспецифичность -- константа связывания некоторых субстратов с белком может достигать 10?10 моль/л и менее. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду.
Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка телёнка, створаживает около 106 молекул казеиногена молока за 10 мин при температуре 37 °C.
При этом эффективность ферментов значительно выше эффективности небелковых катализаторов -- ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы -- в сотни и тысячи раз.
12. В чем проявляется специфичность ферментов и как условия среды влияют на их активность?
Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность).
Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер), региоселективности (образуют или разрывают химическую связь только в одном из возможных положений субстрата) и хемоселективности (катализируют только одну химическую реакцию из нескольких возможных для данных условий).
Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидаза трипсин разрывает пептидную связь только после аргинина или лизина, если за ними не следует пролин, а пепсин гораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами.
Активность ферментов зависит от условий в клетке или организме -- давления, кислотности среды, температуры, концентрации растворённых солей (ионной силы раствора) и др.
13. В чем выражается обратимость ферментативных реакций, от чего зависит направление реакций (приведите примеры)
Скорость ферментативной реакции может быть снижена действием ряда химических веществ, называемых ингибиторами. Некоторые ингибиторы являются для человека ядами, например, цианиды, другие - используются в качестве лекарственных препаратов.
Ингибиторы можно разделить на два основных типа: необратимые и обратимые. Необратимые ингибиторы (I) связываются с ферментом с образованием комплекса, диссоциация которого с восстановлением активности фермента невозможна: E + I EI.
Примером необратимого ингибитора является диизопропилфторфосфат (ДФФ). ДФФ ингибирует фермент ацетилхолинэстеразу, играющего важную роль в передаче нервного импульса. Этот ингибитор взаимодействует с серином активного центра фермента, блокируя тем самым активность последнего. Вследствие этого нарушается способность отростков нервных клеток нейронов проводить нервный импульс. ДФФ является одним из первых веществ нервно-паралитического действия. На его основе создан ряд относительно нетоксичных для человека и животных инсектицидов - веществ, ядовитых для насекомых.
Обратимые ингибиторы, в отличие от необратимых, при определенных условиях могут быть легко отделены от фермента. Активность последнего при этом восстанавливается:
Среди обратимых ингибиторов выделяют конкурентные и неконкурентные ингибиторы.
Конкурентный ингибитор, являясь структурным аналогом субстрата, взаимодействует с активным центром фермента и таким образом перекрывает доступ субстрата к ферменту. При этом ингибитор не подвергается химическим превращениям и связывается с ферментом обратимо. После диссоциации комплекса EI фермент может связаться либо с субстратом и преобразовать его, либо с ингибитором (рис. 34.). Поскольку и субстрат и ингибитор конкурируют за место в активном центре, такое ингибирование называется конкурентным.
Конкурентные ингибиторы используются в медицине. Для борьбы с инфекционными болезнями ранее широко применялись сульфаниламидные препараты. Они близки по своей структуре к пара-аминобензойной кислоте (ПАБК), необходимому фактору роста многих патогенных бактерий. ПАБК является предшественником фолиевой кислоты, которая служит кофактором ряда ферментов. Сульфаниламидные препараты выступают в качестве конкурентного ингибитора ферментов синтеза фолиевой кислоты из ПАБК и тем самым подавляют рост и размножение патогенных бактерий.
Неконкурентные ингибиторы по структуре не сходны с субстратом и при образовании EI взаимодействуют не с активным центром, а с другим участком фермента. Взаимодействие ингибитора с ферментом приводит к изменению структуры последнего. Образование EI-комплекса является обратимым, поэтому после его распада фермент вновь способен атаковать субстрат .
В качестве неконкурентного ингибитора может выступать цианид CN-. Он связывается с ионами металлов, входящими в состав простетических групп и подавляет активность этих ферментов. Отравления цианидами крайне опасны. Они могут привести к летальному исходу.
14. Каталитический и контактный центры фермента? Может ли действовать фермент и почему, если разрушить контактный центр, каталитический центр?
Известно, что размеры ферментов намного превышают размеры субстратов или функциональных групп, на которые они действуют. Это дало основание предполагать, что субстрат соединяется не со всей молекулой фермента, а с отдельным его участком, получившим название “а к т и в н ы й ц е н т р”, т.е. та область фермента, в которой происходит связывание и превращение субстрата.
Активный центр образуется радикалами аминокислотных остатков полипептидной цепи при формировании ее третичной структуры; у двухкопонентных ферментов в состав активного центра входят и некоторые группировки небелковой части. Достройка активного центра двухкомпонентных ферментов происходит после взаимодействия апофермента с небелковой частью. Нарушение третичной структуры фермента под влиянием различных факторов приводит к дефомации активного центра и изменению ферментативной активности.
Наиболее часто в состав активных центров ферментов входят радикалы серина, гистидина, треонина, цистеина, аргинина, аспарагиновой и глутаминовой кислот.
Активный центр функционально неоднороден; в нем условно выделяют “каталитически активный” участок, где происходит превращение субстрата (расщепление или синтез связи), и так называемый контактный или “якорный” участок, который обеспечивает связывание субстрата с ферментом.
15. Что такое ген-регулятор и как он был обнаружен, механизмы его действия
В бактериальном геноме существуют специальные регуляторные гены. Один из них - ген-регулятор (ген R), функция которого заключается в регуляции процесса транскрипции структурного гена (или генов). Ген- регулятор кодирует синтез специфического аллостерического белка- репрессора, имеющего два центра связывания: один узнает определенную последовательность нуклеотидов на участке ДНК, называемомоператором (ген О) , другой - взаимодействует с эффектором. Ген-оператор расположен рядом со структурным геном (генами) и служит местом связывания репрессора.
В отличие от операторных генов гены-регуляторы расположены на некотором расстоянии от структурных генов (продукты регуляторных генов - репрессоры являются свободно диффундирующими белковыми молекулами).
16. Что такое репрессор, индуктор? Механизмы индукции и репрессии, их отличительные признаки?
РЕПРЕССОР (лат. repressor -- ограничивающий, сдерживающий, от reprimo -- подавляю, обуздываю), регуляторныйбелок, подавляющий транскрипцию генов регулируемого им оперона в результате связывания с оператором(регуляторным участком оперона). Это приводит к прекращению синтеза соотв. и РНК и, следовательно, ферментов, кодируемых опероном. Р. синтезируется под контролем гена-регулятора в кол-ве от 10 до 20молекул на клетку в виде активной, т. е. способной непосредственно связываться с оператором, илинеактивной форм. Образование активного Р. характерно для т. н. индуцибельных ферментов, синтез к-рыхначинается только при попадании в клетку специфич. низкомолекулярных веществ -- индукторов. Связывание индуктора с Р. инактивирует Р. и тем самым открывает синтез соотв. ферментов (индукция). Длят. н. репрессибельных ферментов характерно образование неактивного Р. (апорепрессора), активация к-рого происходит при попадании в клетку низкомолекулярных веществ -- корепрессоров. При этом синтезферментов, кодируемых опероном, прекращается (репрессия). Обычно индукторы и корепрессоры обозначают общим термином -- эффекторы.
Теоретически регуляция синтеза ферментов могла бы осуществляться как при транскрипции, так и при трансляции. Как выяснилось, экспрессия генов у прокариот регулируется главным образом на уровне транскрипции. Большинство генов, кодирующих структуру полипептидных цепей, подвержено регуляции-точнее, регулируется их транскрипция. От условий среды и состояния клеточного метаболизма зависит, будут ли синтезироваться определенные ферменты, т.е. будут ли вообще и с какой частотой транскрибироваться соответствующие гены.
Для такой регуляции нужно, чтобы к ДНК из других частей клетки поступали определенные сигналы. Сигнальные вещества, или молекулы-эффекторы, представляют собой низкомолекулярные соединения, такие как сахара или их производные, аминокислоты или нуклеотиды. Поскольку такие эффекторы не могут вступать в прямое взаимодействие с ДНК, посредником для каждого из них служит определенный регуля-торный белок. Если эффектор присутствует в клетке в высокой концентрации, то в результате специфического присоединения к регуляторному белку он изменяет его кон формацию и тем самым-его способность связываться с ДНК. Регуляторный белок, который связывается с ДНК в отсутствие эффектора (индуктора), называют репрессором. Если же белок связывается с ДНК в присутствии эффектора (корепрессора), его называют апорепрессором.
Участки ДНК, к которым присоединяются регуляторные белки, -это не сами структурные гены, а непосредственно прилегающие к ним области, называемые промоторами и операторами. Промотор представляет собой последовательность оснований, распознаваемую ДНК-зависимой РНК-полимеразой; он служит местом связывания РНК-полимеразы, и от него начинается транскрипция. С промотором связаны и гены, экспрессия которых не подвержена регуляции. Промоторы регулируемых генов могут изменять свои свойства в результате связывания регуляторных белков. Оператор представляет собой нуклеотидную последовательность, расположенную между промотором и структурными генами. Он тоже взаимодействует с регуля-торным белком-репрессором, от которого зависит, будет ли подавлена транскрипция или она произойдет. Промотор, оператор и структурные гены образуют оперон. Опероном называют группу функционально связанных между собой генов. Белки, кодируемые генами одного оперона, -это, как правило, ферменты, катализирующие разные этапы одного метаболического пути. Транскрипция генов оперона ведет к синтезу одной общей (полицистронной) молекулы мРНК.
За синтез регуляторных белков ответственны гены-регуляторы, которые, вероятно, являются конститутивными. Они могут располагаться по соседству с соответствующим опероном, но это не обязательно.
По-видимому, РНК-полимераза способна правильно присоединяться к промотору только в форме полного голофермента. Она состоит из субъединиц а, р, р1, а и со. В отсутствие легко отделяющегося фактора сигма (а) фермент обладает полной каталитической активностью, но не способен связываться со специфическим участком ДНК - промотором. Этот фактор транскрипции (сигма) играет, вероятно, важную роль при специфическом присоединении полимеразы к ДНК.
За прекращение (терминацию) синтеза мРНК у конца оперона или отдельного гена, по-видимому, также ответственна специфическая область ДНК - терминатор. Какую роль играет фактор терминации (р)-тетрамерный белок-при отделении РНК-полимеразы от ДНК, пока неясно.
Матричная РНК (мРНК) в отличие от тРНК и рРНК неустойчива и недолговечна; время ее полураспада составляет от 0, 5 до 5 мин. Концентрация той или иной мРНК в клетке зависит только от частоты транскрипции соответствующего гена; и в свою очередь она определяет содержание в клетке ферментов, кодируемых этим геном.
Различают индуцибельные и репрессибельные опероны. Опероны, управляющие катаболизмом лактозы, галактозы и арабинозы, являются индуцибельными, т. е. максимальная частота их транскрипции достигается только тогда, когда в питательной среде присутствует внешний эффектор-лактоза, галактоза или арабиноза. Внешние эффекторы называют также внешними индукторами. Синтез ферментов индуцибельных оперонов включается посредствоминдукции. Наоборот, опероны, управляющие синтезом аргинина, гистидина или триптофана, являются ре-прессибельными, т.е. максимальная частота транскрипции достигается только при отсутствии в клетке соответствующих низкомолекулярных эффекторов-аргинина, гистидина и триптофана (или в том случае, если их концентрация ниже критического порогового уровня).
Такие эффекторы называют корепрессорами, а соответствующие ре-гуляторные белки - белками-репрессорами или апорепрессорами. Синтез ферментов репрессибельного оперона включается посредством дере-прессии.
Индукция лактозного оперона (отрицательный контроль). Лактозный оперон (/ас-оперон) Escherichia coliсодержит /ас-промотор, /ас-оператор и структурные гены для трех ферментов: $-галактозидазы, пермеазы итрансацетилазы (рис. 16.7). Этот оперон был тщательно исследован; удалось выделить его ДНК; была определена нуклеотидная последовательность области промотор-оператор; были выделены и исследованы регуляторные белки.
Оперон находится под отрицательным контролем, т.е. регуляторный белок (/ас-репрессор) остается связанным с оператором и препятствует транскрипции до тех пор, пока отсутствует индуктор. Внешним индуктором служит лактоза (а-В-галактозил-р-1, 4-В-глюкоза). Она транспортируется с помощью пермеазы и превращается в аллолактозу (a-D-ra-лактозил-р-1, 6-В-глюкозу), действующую как индуктор (внутренний). Катализатором этого превращения служит (3-галактозидаза. Оба фермента -пермеаза и (3-галактозидаза-присутствуют и в неиндуциро-ванных клетках, но в концентрациях, составляющих менее 0, 001 от их концентраций после полной индукции. Связав аллолактозу, /ас-репрессор претерпевает конформационное изменение, уменьшающее его сродство к ДНК оператора, и в результате освобождает оперон для транскрипции.
...Подобные документы
Общая характеристика науки биологии. Этапы развития биологии. Открытие фундаментальных законов наследственности. Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии. Вопрос о функциях живого вещества.
контрольная работа [28,1 K], добавлен 25.02.2012Этапы становления биологии: традиционный - идея эволюции живой природы, эволюционный - теория Дарвина и Ламарка, молекулярно-генетический - законы наследственности. Создание синтетической теории эволюции. Мир живого: возникновение и эволюция жизни.
реферат [33,2 K], добавлен 14.01.2008Дезоксирибонуклеиновая кислота - биологический полимер, состоящий из двух спирально закрученных цепочек, история ее открытия. Первичная структура нуклеиновых кислот, конформации их компонентов. Макромолекулярная структура ДНК. Полиморфизм двойной спирали.
презентация [1,1 M], добавлен 28.01.2013Роль ДНК при хранении и передаче генетической информации в живых организмах. Основные свойства нуклеиновых кислот. Рентгеноструктурный анализ молекул ДНК. Исследование пространственной структуры белков. Создание трёхмерной модели ДНК Криком-Уотсоном.
презентация [2,0 M], добавлен 14.12.2011Классификация и свойства генов, особенности структурных и регуляторных генов. Структурные единицы наследственности организмов. Особенности генома человека. Наследственный материал, заключенный в клетке человека. Уровни структурной организации хромосом.
презентация [564,6 K], добавлен 28.10.2014Ген как последовательность ДНК, несущая информацию об определенном белке. Идентификация генов по кластеру (группе) мутаций. Элементарный фактор наследственности: доминантные и рецессивные признаки. Независимость генов, роль хромосом в наследственности.
реферат [2,9 M], добавлен 26.09.2009Выявление параллелизма в поведении генов и хромосом в ходе формирования гамет и оплодотворения. Понятие генетической рекомбинации, исследование явления на дрозофилах, проведенное Т. Морганом. Основные положения хромосомной теории наследственности.
презентация [582,2 K], добавлен 28.12.2011Понятие и функции в организме хромосомы как комплекса ДНК с белками (гистоновыми и негистоновыми). История разработки и содержание хромосомной теории наследственности. Типы хромосом в клетке в зависимости от фазы клеточного цикла, уровни организации.
презентация [5,8 M], добавлен 11.11.2014История открытия дезоксирибонуклеиновой кислоты - биологического полимера, состоящего из двух спирально закрученных цепочек. Первичная структура и конформации компонентов нуклеиновых кислот. Макромолекулярная структура ДНК, полиморфизм двойной спирали.
презентация [1,1 M], добавлен 07.11.2013Наука, изучающая ископаемые остатки организмов. Название парных генов гомологичных хромосом. Орган, в который воздух попадает из гортани. Синтез ферментов лизосом. Превращение артериальной крови у человека в венозную. Основные положения клеточной теории.
тест [508,0 K], добавлен 12.04.2009Хромосомная теория наследственности. Генетический механизм определения пола. Поведение хромосом в митозе и мейозе. Классификация хромосом, составление идиограммы. Методы дифференциальной окраски хромосом. Структура хромосом и хромосомные мутации.
реферат [32,7 K], добавлен 23.07.2015Мейоз как один из ключевых механизмов наследственности и изменчивости. Биологическое значение мейоза: поддержание постоянства кариотипа в ряду поколений, обеспечение рекомбинации хромосом и генов. Законы Грегора Менделя как основа классической генетики.
презентация [3,3 M], добавлен 15.04.2014Описание процесса онтогенеза как индивидуального развития организма. Ген как элементарная единица наследственности, строение хромосом и дезоксирибонуклеиновой кислоты. Раскрытие содержания учения В. Вернадского о биосфере. Характеристика типов личности.
контрольная работа [34,6 K], добавлен 10.08.2015Свойства цитоплазмы, химическая природа и функциональное значение ферментов. Действие недостатка воды на растение. Современные представления о сущности фотосинтеза. Физиологическая роль каротиноидов, химизм аэробной фазы дыхания, заслуга Г. Кребса.
контрольная работа [129,7 K], добавлен 12.07.2010Биологические системы, организация живой природы. Цитология: строение ядра, деление клетки; молекулярная биология. Размножение и развитие организмов, общая и медицинская генетика, хромосомная теория наследственности; теория эволюции и антропогенез.
курс лекций [301,1 K], добавлен 13.02.2012Химический состав, природа и структура белков. Механизм действия ферментов, виды их активирования и ингибирования. Современная классификация и номенклатура ферментов и витаминов. Механизм биологического окисления, главная цепь дыхательных ферментов.
шпаргалка [893,3 K], добавлен 20.06.2013Понятие и сущность евгеники как науки. История ее развития. Роль наследственности в развитии качеств человека. Особенности и черты позитивной и негативной евгеники. Этические проблемы этой дисциплины. Значение генетических изменений в развитии человека.
контрольная работа [24,9 K], добавлен 28.11.2014Биологическая роль нуклеиновых кислот. Строение и значение ферментов. Общая характеристика и биологические функции почек. Патологические компоненты в моче. Молекулярные механизмы утомления. Основные факторы, лимитирующие спортивную работоспособность.
контрольная работа [129,7 K], добавлен 20.06.2012Зарождение биологии как науки. Идеи, принципы и понятия биологии XVIII в. Утверждение теории эволюции Ч. Дарвина и становление учения о наследственности. Эволюционные воззрения Ламарка, Дарвина, Менделя. Эволюция полигенных систем и генетический дрейф.
курсовая работа [65,3 K], добавлен 07.01.2011Теория эволюции. Синтетическая теория эволюции. Причины появления креационистских теорий. Доказательства эволюции. Виды и направления креационизма. Религиозный креационизм. Современный креационизм. Столкновение мировоззрений. Идея развития в биологии.
реферат [33,2 K], добавлен 04.10.2008