Техническое и программное обеспечение систем автоматизации контроля и управления в биомедицинских исследованиях в биофизиологическом эксперименте
Техника безопасности в биологическом кабинете. Экспериментальные методы в биологии. Техническое и программное обеспечение биомедицинских исследований. Множественное сравнение и его особенности. Стохастическое (теоретико-вероятностное) моделирование.
Рубрика | Биология и естествознание |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 07.09.2015 |
Размер файла | 583,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Техническое и программное обеспечение систем автоматизации контроля и управления в биомедицинских исследованиях в биофизиологическом эксперименте
Введение
Люди с древнейших времён изучали окружающую их природу, используя различные методы (от греческого «методос» -- способ познания, путь). К основным методам относятся наблюдение, эксперимент (опыт) и измерения.
Наблюдение -- восприятие природных объектов или явлений с помощью органов чувств. В ходе наблюдения объекта или явления человек лишь фиксирует результаты, не вмешиваясь в сам процесс. Например, наблюдения за сезонными периодическими явлениями в жизни растений и животных, которые изучает фенология (от греческих слов «файно» -- являю и «логос»).
Эксперимент -- наблюдение в специально создаваемых и контролируемых условиях, которые позволяют установить, как те или иные условия влияют на объект или явление. Например, мы можем поставить эксперимент, который позволит выяснить, какие условия необходимы для прорастания семян разных растений.
Результаты, полученные в ходе наблюдений и экспериментов, должны быть проверены и подтверждены новыми наблюдениями и экспериментами. Только после этого они могут считаться научными фактами.
При проведении наблюдений и экспериментов всегда проводятся измерения. Каждый из вас неоднократно измерял длину и ширину тел, время, температуру, расстояние, скорость движения и т. д. Именно анализ и сравнение измерений, полученных при проведении наблюдений и экспериментов, позволяют выявить определённые закономерности.
1. Приборы и инструменты
В современных биологических лабораториях используются самые различные, иногда очень сложные и дорогие, приборы и инструменты (рис. 1). При проведении лабораторных работ важно правильно использовать имеющееся оборудование и строго соблюдать правила техники безопасности при работе с ним.
Рис. 1. Приборы и инструменты биологической лаборатории
1.1 Техника безопасности в биологическом кабинете
биологический экспериментальный моделирование стохастический
1. Внимательно изучить содержание и порядок проведения лабораторной или практической работы, а также безопасные приёмы её выполнения.
2. Подготовить к работе рабочее место, убрать посторонние предметы. Приборы и оборудование разместить таким образом, чтобы исключить их падение и опрокидывание.
3. Проверить исправность оборудования, приборов, целостность лабораторной посуды и приборов из стекла.
4. При нагревании жидкости в пробирке или колбе использовать специальные держатели (штативы), отверстие пробирки или горлышко колбы не направлять на себя и на своих товарищей.
5. Во избежание ожогов запрещается брать незащищёнными руками нагретую посуду с жидкостями.
6. Соблюдать осторожность при обращении с колюще-режущими инструментами, приборами из стекла и лабораторной посудой, не бросать, не ронять и не ударять их.
7. В случае если разбилась лабораторная посуда или приборы из стекла, не собирать их осколки незащищёнными руками, а использовать для этой цели щётку и совок, предварительно поставив в известность учителя.
8. При разливе легковоспламеняющейся жидкости и её загорании немедленно постараться погасить огонь или вызвать МЧС и покинуть помещение.
2. Методы биологических исследований
Когда мы говорим о биологии, мы говорим о науке, которая занимается исследованием всего живого. Все живые существа, включая ареал их обитания, изучаются биологией. Начиная от строения клеток и заканчивая сложными биологическими процессами, все это является предметом биологии. В ходе биологических исследований применяются биологические методы. Методы биологических исследований это:
· Эмпирические/экспериментальные методы
· Описательные методы
· Сравнительные методы
· Статистические методы
· Моделирование
· Исторические методы
Эмпирические методы заключаются в том, что объект опыта подвергается изменению условий его существования, а потом, учитываются полученные результаты. Эксперименты бывают двух видов в зависимости от их места проведения: лабораторные эксперименты и полевые эксперименты. Для проведения полевых экспериментов используются естественные условия, а для проведения лабораторных экспериментов, используется специальное лабораторное оборудование.
Описательные методы основываются на наблюдение, с последующим анализом и описанием феномена. Этот метод позволяет выделить особенности биологических явлений и систем. Это один из самых древних методов.
Сравнительные методы подразумевают сравнение полученных фактов и явлений с другими фактами и явлениями. Сведения получаются путем наблюдения. В последнее время стало популярно применять мониторинг. Мониторинг это постоянное наблюдение, которое позволяет собрать данные, на основе которых будет проводиться анализ, а потом прогнозирование.
Статистические методы также известны под названием математические методы, и используются для того, чтобы обработать данные числового характера, которые были получены в ходе эксперимента. Кроме этого, данный метод применяется для того, чтобы убедиться в достоверности определенных данных.
Моделирование это метод, который в последнее время принимает большие обороты и подразумевает работать с объектами путем представления их в моделях. То, что нельзя анализировать и изучать впоследствии эксперимента, то можно узнать путем моделирования. Частично используется не только обычное моделирование, а также математическое моделирование.
Исторические методы основываются на изучение предыдущих фактов, и позволяют определить существующие закономерности. Но так как не всегда один метод оказывается достаточно эффективным, принято эти методы совмещать для получения лучших результатов.
2.1 Общие методы исследований в биологии
Наблюдение
Наблюдение - это исследование внешних признаков и видимых изменений объекта на протяжении определённого промежутка времени. Например, наблюдение за ростом и развитием проростка.
Наблюдение - это отправной пункт всякого естественнонаучного исследования.
В биологии это особенно хорошо заметно, так как объект её изучения - человек и окружающая его живая природа. Уже в школе на уроках зоологии, ботаники, анатомии детей учат проведению самых простых биологических исследований путём наблюдения за ростом и развитием растений и животных, за состоянием собственного организма.
Наблюдение как метод собирания информации - хронологически самый первый приём исследования, появившийся в арсенале биологии, а точнее, ещё её предшественницы - естественной истории. И это неудивительно, так как наблюдение опирается на чувственные способности человека (ощущение, восприятие, представление). Классическая биология - это биология по преимуществу наблюдательная. Но, тем не менее, этот метод не утратил своего значения и по сей день.
Наблюдения могут быть прямыми или косвенными, они могут вестись с помощью технических приспособлений или без таковых. Так, орнитолог видит птицу в бинокль и может слышать её, а может фиксировать прибором звуки вне слышимого человеческим ухом диапазона. Гистолог наблюдает с помощью микроскопа зафиксированный и окрашенный срез ткани. А для молекулярного биолога наблюдением может быть фиксация изменения концентрации фермента в пробирке.
Важно понимать, что научное наблюдение, в отличие от обыденного, есть не простое, но целенаправленное изучение объектов или явлений: оно ведётся для решения поставленной задачи, и внимание наблюдателя не должно рассеиваться. Например, если стоит задача изучить сезонные миграции птиц, то мы будем замечать сроки их появления в местах гнездования, а не что-либо иное. Таким образом, наблюдение -- это избирательное выделение из действительности определенной части, иначе говоря, аспекта, и включение этой части в изучаемую систему.
В наблюдении важна не только точность, аккуратность и активность наблюдателя, но и его непредвзятость, его знания и опыт, правильный выбор технических средств. Постановка задачи предполагает также наличие плана наблюдений, т.е. их планомерность. [Кабакова Д.В. Наблюдение, описание и эксперимент как основные методы биологии // Проблемы и перспективы развития образования: материалы междунар. науч. конф. (г. Пермь, апрель 2011 г.).Т. I. Пермь: Меркурий, 2011. С. 16-19.].
Описательный метод
Описательный метод - это фиксирование наблюдаемых внешних признаков объектов исследования с выделением существенного и отбрасыванием несущественного. Этот метод стоял у истоков биологии, как науки, но ее развитие было бы невозможно без применения других методов исследования.
Описательные методы позволяют вначале описывать, а затем анализировать явления, происходящие в живой природе, сравнивать их, находя определённые закономерности, а также обобщать, открывать новые виды, классы и прочее. Описательные методы начали использоваться ещё в древности, но на сегодняшний день не утратили своей актуальности и широко применяются в ботанике, этологии, зоологии и т. д.
Сравнительный метод
Сравнительный метод - это исследование сходства и различия в строении, протекании жизненных процессов и поведении различных объектов. Например, сравнение особей разного пола, приндлежащих к одному биологическому виду.
Позволяет изучать объекты исследования путём их сравнения между собой или с другим объектом. Позволяет выявлять сходства и различия живых организмов, а также их частей. Полученные данные дают возможность объединять исследованные объекты в группы по признакам сходства в строении и происхождении. На основе сравнительного метода, например, строится систематика растений и животных. Этот метод использовался также при создании клеточной теории и для подтверждения теории эволюции. В настоящее время он применяется практически во всех направлениях биологии.
Этот метод утвердился в биологии в XVIII в. и оказался очень плодотворным в решении многих крупнейших проблем. С помощью этого метода и в сочетании с описательным методом были получены сведения, позволившие в XVIII в. заложить основы систематики растений и животных (К. Линней), а в XIX в. сформулировать клеточную теорию (М. Шлейден и Т. Шванн) и учение об основных типах развития (К. Бэр). Метод широко применялся в XIX в. в обосновании теории эволюции, а также в перестройке ряда биологических наук на основе этой теории. Однако использование этого метода не сопровождалось выходом биологии за пределы описательной науки. Сравнительный метод широко применяется в разных биологических науках и в наше время. Сравнение приобретает особую ценность тогда, когда невозможно дать определение понятия. Например, с помощью электронного микроскопа часто получают изображения, истинное содержание которых заранее неизвестно. Только сравнение их со светомикроскопическими изображениями позволяет получить желаемые данные.
Исторический метод
Позволяет выявить закономерности образования и развития живых систем, их структур и функций, сопоставлять их с ранее известными фактами. Данный метод, в частности, успешно использовался Ч. Дарвином для построения его эволюционной теории и способствовал превращению биологии из описательной науки в науку объясняющую.
Во второй половине XIX в. благодаря работам Ч. Дарвина исторический метод поставил на научные основы исследование закономерностей появления и развития организмов, становления структуры и функций организмов во времени и пространстве. С введением этого метода в биологии произошли значительные качественные изменения. Исторический метод превратил биологию из науки чисто описательной в науку объясняющую, которая объясняет, как произошли и как функционируют многообразные живые системы. В настоящее время исторический метод, или "исторический подход" стал всеобщим подходом к изучению явлений жизни во всех биологических науках.
Экспериментальный метод
Эксперимент - это проверка верности выдвинутой гипотезы с помощью целенаправленного воздействия на объект.
Эксперимент (опыт) - искусственное создание в контролируемых условиях ситуации, которая помогает выявить глубоко скрытые свойства живых объектов.
Экспериментальный метод исследования явлений природы связан с активным воздействием на них путем проведения опытов (экспериментов) в контролируемых условиях. Этот метод позволяет изучать явления изолированно и достигать повторяемости результатов при воспроизведении тех же условиях. Эксперимент обеспечивает более глубокое, чем другие методы исследования, раскрытие сущности биологических явлений. Именно благодаря экспериментам естествознание в целом и биология частности дошли до открытия основных законов природы.
Экспериментальные методы в биологии служат не только для проведения опытов и получения ответов на интересующие вопросы, но и для определения правильности сформулированной в начале изучения материала гипотезы, а также для её корректировки в процессе работы. В двадцатом столетии данные способы исследования становятся ведущими в этой науке благодаря появлению современного оборудования для проведения опытов, такого как, например, томограф, электронный микроскоп и прочее. В настоящее время в экспериментальной биологии широко используются биохимические приёмы, рентгеноструктурный анализ, хроматография, а также техника ультратонких срезов, различные способы культивирования и многие другие. Экспериментальные методы в сочетании с системным подходом расширили познавательные возможности биологической науки и открыли новые дороги для применения знаний практически во всех сферах деятельности человека.
Вопрос об эксперименте как одной из основ в познании природы, был поставлен ещё в XVII в. английским философом Ф. Бэконом (1561-1626). Его введение в биологию связано с работами В. Гарвея в XVII в. по изучению кровообращения. Однако экспериментальный метод широко вошел в биологию лишь в начале XIX в., причем через физиологию, в которой стали использовать большое количество инструментальных методик, позволявших регистрировать и количественно характе- ризовать приуроченность функций к структуре. Благодаря трудам Ф. Мажанди (1783-1855), Г. Гельмгольца (1821-1894), И.М. Сеченова (1829-1905), а также классиков эксперимента К. Бернара (1813-1878) и И.П. Павлова (1849-1936) физиология, вероятно, первой из биологических наук стала экспериментальной наукой.
Другим направлением, по которому в биологию вошел экспериментальный метод, оказалось изучение наследственности и изменчивости организмов. Здесь главнейшая заслуга принадлежит Г. Менделю, который, в отличие от своих предшественников, использовал эксперимент не только для получения данных об изучаемых явлениях, но и для проверки гипотезы, формулируемой на основе получаемых данных. Работа Г. Менделя явилась классическим образцом методологии экспериментальной науки.
В обосновании экспериментального метода важное значение имели работы, выполненные в микробиологии Л. Пастером (1822-1895), который впервые ввёл эксперимент для изучения брожения и опровержения теории самопроизвольного зарождения микроорганизмов, а затем для разработки вакцинации против инфекционных болезней. Во второй половине XIX в. вслед за Л. Пастером значительный вклад в разработку и обоснование экспериментального метода в микробиологии внесли Р. Кох (1843-1910), Д. Листер (1827-1912), И.И. Мечников (1845-1916), Д.И. Ивановский (1864-1920), С.Н. Виноградский (1856- 1890), М. Бейерник (1851-1931) и др. В XIX в. биология обогатилась также созданием методических основ моделирования, которое является также высшей формой эксперимента. Изобретение Л. Пастером, Р. Кохом и другими микробиологами способов заражения лабораторных животных патогенными микроорганизмами и изучение на них патогенеза инфекционных болезней - это классический пример моделирования, перешедшего в XX в. и дополненного в наше время моделированием не только разных болезней, но и различных жизненных процессов, включая происхождение жизни.
Начиная, например, с 40-х гг. XX в. экспериментальный метод в биологии подвергся значительному усовершенствованию за счет повышения разрешающей способности многих биологических методик и разработки новых экспериментальных приемов. Так, была повышена разрешающая способность генетического анализа, ряда иммунологических методик. В практику исследований были введены культивирование соматических клеток, выделение биохимических мутантов микроорганизмов и соматических клеток и т. д. Экспериментальный метод стал широко обогащаться методами физики и химии, которые оказались исключительно ценными не только в качестве самостоятельных методов, но и в сочетании с биологическими методами. Например, структура и генетическая роль ДНК были выяснены в результате сочетанного использования химических методов выделения ДНК, химических и физических методов определения ее первичной и вторичной структуры и биологических методов (трансформации и генетического анализа бактерий), доказательства ее роли как генетического материала.
В настоящее время экспериментальный метод характеризуется исключительными возможностями в изучении явлений жизни. Эти возможности определяются использованием микроскопии разных видов, включая электронную с техникой ультратонких срезов, биохимических методов, высокоразрешающего генетического анализа, иммунологических методов, разнообразных методов культивирования и прижизненного наблюдения в культурах клеток, тканей и органов, маркировки эмбрионов, оплодотворения в пробирке, метода меченых атомов, рентгеноструктурного анализа, ультрацентрифугирования, спектрофотометрии, хроматографии, электрофореза, секвенирования, конструкции биологически активных рекомбинантных молекул ДНК и т. д. Новое качество, заложенное в экспериментальном методе, вызвало качественные изменения и в моделировании. Наряду с моделированием на уровне органов в настоящее время развивается моделирование на молекулярном и клеточном уровнях.
Моделирование
Моделирование основывается на таком приёме, как аналогия - это умозаключение о сходстве объектов в определенном отношении на основе их сходства в ряде иных отношений.
Модель - это упрощённая копия объекта, явления или процесса, заменяющая их в определённых аспектах.
Моделирование - это, соответственно, создание упрощённой копии объекта, явления или процесса.
Моделимрование:
1) создание упрощённых копий объектов познания;
2) исследование объектов познания на их упрощённых копиях.
Метод моделирования - это исследование свойств определенного объекта посредством изучения свойств другого объекта (модели), более удобного для решения задач исследования и находящегося в определенном соответствии с первым объектом.
Моделирование (в широком смысле) - это основной метод исследования во всех областях знаний. Методы моделирования используются для оценок характеристик сложных систем и принятия научно обоснованных решений в разных сферах человеческой деятельности. Существующую или проектируемую систему можно эффективно исследовать с помощью математических моделей (аналитических и имитационных) с целью оптимизации процесса функционирования системы. Модель системы реализуется на современных компьютерах, которые в этом случае выступают в качестве инструмента экспериментатора с моделью системы.
Моделирование позволяет изучать какой-либо процесс или явление, а также направления эволюции путём воссоздания их в виде более простого объекта при помощи современных технологий и оборудования.
Теория моделирования - теория замещения объекта-оригинала его моделью и исследования свойств объекта на его модели [15].
Моделирование - метод исследования, основанный на замене исследуемого объекта-оригинала его моделью и на работе с ней (вместо объекта) [7, 15].
Модель (объекта-оригинала) (от лат. modus - «мера», «объем», «образ») - вспомогательный объект, отражающий наиболее существенные для исследования закономерности, суть, свойства, особенности строения и функционирования объекта-оригинала [7].
Когда говорят о моделировании, обычно имеют в виду моделирование некоторой системы.
Система - совокупность взаимосвязанных элементов, объединенных для реализации общей цели, обособленная от окружающей среды и взаимодействующая с ней как целостное целое и проявляющая при этом основные системные свойства. В [7] выделено 15 основных системных свойств, к которым относятся: эмергентность (эмерджентность); цельность; структурированность; целостность; подчиненность цели; иерархичность; бесконечность; эргатичность; открытость; необратимость; единство структурной устойчивости и неустойчивости; нелинейность; потенциальная многовариантность актуальных структур; критичность; непредсказуемость в критической области.
При моделировании систем используют два подхода: классический (индуктивный), сложившийся исторически первым, и системный, получивший развитие в последнее время [7, 15].
Классический подход. Исторически первым сложился классический подход к изучению объекта, моделированию системы. Реальный объект, подлежащий моделированию, разбивается на подсистемы, выбираются исходные данные (Д) для моделирования и ставятся цели (Ц), отражающие отдельные стороны процесса моделирования. По отдельной совокупности исходных данных ставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некоторая компонента (К) будущей модели. Совокупность компонент объединяется в модель.
Т.о. происходит суммирование компонент, каждая компонента решает свои собственные задачи и изолирована от других частей модели. Применим подход только для простых систем, где можно не учитывать взаимосвязи между компонентами. Можно отметить две отличительные стороны классического подхода: 1) наблюдается движение от частного к общему при создании модели; 2) созданная модель (система) образуется путем суммирования отдельных ее компонент и не учитывает возникновение нового системного эффекта.
Системный подход - методологическая концепция, основанная на стремлении построить целостную картину изучаемого объекта с учетом важных для решаемой задачи элементов объекта, связей между ними и внешних связей с другими объектами и окружающей средой. С усложнением объектов моделирования возникла необходимость их наблюдения с более высокого уровня. В этом случае разработчик рассматривает данную систему как некоторую подсистему более высокого ранга. Например, если ставится задача проектирования АСУ предприятия, то с позиции системного подхода нельзя забывать, что эта система является составной частью АСУ объединением. В основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение при разработке начинается с главного - формулировки цели функционирования. Важным для системного подхода является определение структуры системы - совокупности связей между элементами системы, отражающих их взаимодействие.
Существуют структурные и функциональные подходы к исследованию структуры системы и ее свойств.
При структурном подходе выявляются состав выделенных элементов системы и связи между ними.
При функциональном подходе рассматриваются алгоритмы поведения системы (функции - свойства, приводящие к достижению цели).
Виды моделирования:
1. Предметное моделирование, при котором модель воспроизводит геометрические, физические, динамические или функциональные характеристики объекта. Например, модель моста, плотины, модель крыла самолета и т.д.
2. Аналоговое моделирование, при котором модель и оригинал описываются единым математическим соотношением. Примером могут служить электрические модели, используемые для изучения механических, гидродинамических и акустических явлений.
3. Знаковое моделирование, при котором в роли моделей выступают схемы, чертежи, формулы. Роль знаковых моделей особенно возросла с расширением масштабов применения ЭВМ при построении знаковых моделей.
Со знаковым тесно связано мысленное моделирование, при котором модели приобретают мысленно наглядный характер. Примером может в данном случае служить модель атома, предложенная в свое время Бором.
4. Модельный эксперимент. Наконец, особым видом моделирования является включение в эксперимент не самого объекта, а его модели, в силу чего последний приобретает характер модельного эксперимента. Этот вид моделирования свидетельствует о том, что нет жесткой грани между методами эмпирического и теоретического познания.
С моделированием органически связана идеализация - мысленное конструирование понятий, теорий об объектах, не существующих и не осуществимых в действительности, но таких, для которых существует близкий прообраз или аналог в реальном мире. Примерами построенных этим методом идеальных объектов являются геометрические понятия точки, линии, плоскости и т.д. С подобного рода идеальными объектами оперируют все науки - идеальный газ, абсолютно черное тело, общественно-экономическая формация, государство и т.д.
Методы моделирования
1. Натурное моделирование - эксперимент на самом исследуемом объекте, который при специально подобранных условиях опыта служит моделью самого себя.
2. Физическое моделирование - эксперимент на специальных установках, сохраняющих природу явлений, но воспроизводящих явления в количественно измененном масштабированном виде.
3. Математическое моделирование - использование моделей по физической природе, отличающихся от моделируемых объектов, но имеющих сходное математическое описание. Натурное и физическое моделирование можно объединить в один класс моделей физического подобия, так как в обоих случаях модель и оригинал одинаковы по физической природе.
Методы моделирования можно классифицировать на три основные группы: аналитические, численные и имитационные [8, 15, 18].
1. Аналитические методы моделирования. Аналитические методы позволяют получить характеристики системы как некоторые функции параметров ее функционирования. Таким образом, аналитическая модель представляет собой систему уравнений, при решении которой получают параметры, необходимые для расчета выходных характеристик системы (среднее время обработки задания, пропускную способность и т.д.). Аналитические методы дают точные значения характеристик системы, но применяются для решения только узкого класса задач. Причины этого заключается в следующем. Во-первых, вследствие сложности большинства реальных систем их законченное математическое описание (модель) либо не существует, либо еще не разработаны аналитические методы решения созданной математической модели. Во-вторых, при выводе формул, на которых основываются аналитические методы, принимаются определенные допущения, которые не всегда соответствуют реальной системе. В этом случае от применения аналитических методов приходится отказываться.
2. Численные методы моделирования . Численные методы предполагают преобразование модели к уравнениям, решение которых возможно методами вычислительной математики. Класс задач, решаемых этими методами, значительно шире. В результате применения численных методов получают приближенные значения (оценки) выходных характеристик системы с заданной точностью.
3. Имитационные методы моделирования. С развитием вычислительной техники широкое применение получили имитационные методы моделирования для анализа систем, преобладающими в которых являются стохастические воздействия.
Суть имитационного моделирования (ИМ) заключается в имитации процесса функционирования системы во времени, с соблюдением таких же соотношений длительности операций как в системе оригинале. При этом имитируются элементарные явления, составляющие процесс, сохраняется их логическая структура, последовательность протекания во времени. В результате применения ИМ получают оценки выходных характеристик системы, которые необходимы при решении задач анализа, управления и проектирования.
В биологии, например, можно построить модель состояния жизни в водоеме через некоторое время при изменении одного, двух или более параметров (температуры, концентрации солей, наличия хищников и др.). Такие приемы стали возможны благодаря проникновению в биологию идей и принципов кибернетики - науки об управлении.
В основу классификации видов моделирования можно положить различные признаки [7, 8, 15, 18]. В зависимости от характера изучаемых процессов в системе моделирование может быть разделено на детерминированное и стохастическое; статическое и динамическое; дискретное и непрерывное.
Детерминированное моделирование применяется для исследования систем, поведение которых можно абсолютно точно предвидеть. Например, путь, пройденный автомобилем, при равноускоренном движении в идеальных условиях; устройство, возводящее в квадрат число и т.п. Соответственно в этих системах протекает детерминированный процесс, который адекватно описывается детерминированной моделью.
Стохастическое (теоретико-вероятностное) моделирование применяется для исследования системы, состояние которой зависит не только от контролируемых, но и от неконтролируемых воздействий или в ней самой есть источник случайности. К стохастическим системам относятся все системы, которые включают человека, например, заводы, аэропорты, вычислительные системы и сети, магазины, предприятия бытового обслуживания и т.п.
Статическое моделирование служит для описания систем в какой-либо момент времени.
Динамическое моделирование отражает изменение системы во времени (выходные характеристики системы в данный момент времени определяются характером входных воздействий в прошлом и настоящем). Примером динамических систем являются биологические, экономические, социальные системы; такие искусственные системы как завод, предприятие, поточная линия и т.п.
Дискретное моделирование применяют для исследования систем, в которых входные и выходные характеристики измеряется или изменяется во времени дискретно, в противном случае применяют непрерывное моделирование. Например, электронные часы, электросчетчик - дискретные системы; солнечные часы, нагревательные приборы - непрерывные системы.
В зависимости от формы представления объекта (системы) можно выделить мысленное и реальное моделирование.
При реальном (натурном) моделировании исследование характеристик системы проводится на реальном объекте, либо на его части. Реальное моделирование - наиболее адекватно, но его возможности, с учетом особенностей реальных объектов, ограничены. Например, проведение реального моделирования с АСУ предприятия требует, во-первых, создания АСУ; во-вторых, проведения экспериментов с предприятием, что невозможно. К реальному моделированию относят производственный эксперимент и комплексные испытания, которые обладают высокой степенью достоверности. Другой вид реального моделирования - физическое . При физическом моделировании исследование проводится на установках, которые сохраняют природу явления и обладают физическим подобием.
Мысленное моделирование применяется для моделирования систем, которые практически не реализуемы на заданном интервале времени. В основе мысленного моделирования лежит создание идеальной модели, основанной на идеальной, мыслительной аналогии. Различают два вида мысленного моделирования: образное (наглядное) и знаковое.
При образном моделировании на базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте. Например, модели частиц газов в кинетической теории газов в виде упругих шаров, воздействующих друг на друга во время столкновения.
При знаковом моделировании описывают моделируемую систему с помощью условных знаков, символов, в частности, в виде математических, физических и химических формул. Наиболее мощный и развитый класс знаковых моделей представляют математические модели.
Математическая модель - это искусственно созданный объект в виде математических, знаковых формул, который отображает и воспроизводит структуру, свойства, взаимосвязи и отношения между элементами исследуемого объекта [7, 18]. Далее рассматриваются только математические модели и соответственно математическое моделирование.
Математическое моделирование - метод исследования, основанный на замене исследуемого объекта-оригинала его математической моделью и на работе с ней (вместо объекта) [7]. Математическое моделирование можно разделить на аналитическое (АМ), имитационное (ИМ), комбинированное (КМ).
При АМ создается аналитическая модель объекта в виде алгебраических, дифференциальных, конечно-разностных уравнений. Аналитическая модель исследуется либо аналитическими методами, либо численными методами.
При ИМ создается имитационная модель, используется метод статистического моделирования для реализации имитационной модели на компьютере.
При КМ проводится декомпозиция процесса функционирования системы на подпроцессы. Для тех из них, где это возможно, используют аналитические методы, в противном случае - имитационные.
Математические методы
Сравнение и группировка объектов; различение и разделение групп; определение места объекта (группы) в ранее описанной системе (идентификация). Взаимосвязи и зависимости; особенности анализа процессов.
Разделение признаков (переменных) на независимые - факторы и зависимые - "отклики"; качественные и количественные характеристики. Влияние на характер анализа особенностей представления признаков. Производные "вторичные" признаки (индексы, главные компоненты и др.).
Множественное сравнение и его особенности. Основы дисперсионного анализа; его отличия и преимущества перед попарным сравнением. Требования к исходным данным для одно- и многофакторного комплекса; влияние отклонений. Трансформация данных; преобразование неравномерных комплексов. Иерархическая модель дисперсионного анализа, ее особенности. Схема с «повторными измерениями».
Оценка и интерпретация результатов дисперсионного анализа. Планирование многофакторного дисперсионного анализа по полной и сокращенной схеме; греколатинский квадрат.
Корреляционный анализ. Факторный анализ. Регрессионный анализ. Ряды динамики (временные ряды). Количественные методы классификации.
Математическая статистика.
Теоретический (системный метод)
Этот метод, как и кибернетический подход, относится к категории новых методов исследования. Живые объекты рассматриваются как системы, то есть совокупности элементов с определенными отношениями. С учетом иерархичности живых систем каждый объект может рассматриваться одновременно как система и как элемент системы более высокого порядка. Поэтому принципы системной организации справедливы для всех уровней - от макромолекул до биосферы Земли.
Широкое развитие системного движения в современной науке, в том числе и в биологии, означает постепенный переход от анализа к синтезу.
Анализ - это дискретный подход, углубление в структуру и функции отдельных элементов системы - внутри клетки, внутри организма, внутри экологического сообщества. Синтез означает интегративный подход, изучение целостных характеристик системы - клетки, организма, биоценоза. Исследование всегда совершается сначала от общего к частному - анализ, а потом от частного к общему, но на новом уровне познания этого общего - синтез.
Аналитический подход в биологии открыл химическую и микроструктурную организацию живых объектов, выяснил видовое разнообразие среди животных, растений, микроорганизмов, выявил генетическую неоднородность организмов внутри популяций и другие внутренние характеристики систем.
Постепенно объем накопленных аналитических данных становился достаточным для перехода к их синтезу. Так возникли синтетическая теория эволюции, нейро - гуморальная физиология, современная иммунология, молекулярно-клеточная биология, новая мегасистематика организмов, основанная на их комплексной характеристике - от экологии и анатомии до молекулярной генетики.
Решается актуальная задача современного естествознания - создание целостной биологической картины мира.
Повышение интереса к синтезу в науке свидетельствует о переходе от эмпирической к теоретической стадии познания. От получения фактов, через их обобщение начинается выдвижение новых гипотез, далее обычно следует их повторная эмпирическая проверка(новые наблюдения, эксперименты, сравнения, моделирования). Эмпирическая проверка ведет либо к опровержению гипотезы, либо к ее подтверждению с той или иной степенью вероятности. Высоко достоверные гипотезы становятся законами, из них слагаются теории.
Между всеми перечисленными методами нельзя проводить строгую границу. Применяемые в сочетании друг с другом, они дают возможность более полно и эффективно исследовать живые системы, а также устанавливать закономерности их возникновения, развития и функционирования.
2.2 Техническое и программное обеспечение биомедицинских исследований
Электронная таблица -- компьютерная программа, позволяющая проводить вычисления с данными, представленными в виде двумерных массивов, имитирующих бумажные таблицы. Некоторые программы организуют данные в «листы», предлагая, таким образом, третье измерение.
Электронные таблицы (ЭТ) представляют собой удобный инструмент для автоматизации вычислений. Многие расчёты, в частности в области бухгалтерского учёта, выполняются в табличной форме: балансы, расчётные ведомости, сметы расходов и т. п. Кроме того, решение численными методами целого ряда математических задач удобно выполнять именно в табличной форме. Использование математических формул в электронных таблицах позволяет представить взаимосвязь между различными параметрами некоторой реальной системы. Решения многих вычислительных задач, которые раньше можно было осуществить только с помощью программирования, стало возможно реализовать через электронные таблицы.
Microsoft Excel (также иногда называется Microsoft Office Excel) -- программа для работы с электронными таблицами, созданная корпорацией Microsoft для Microsoft Windows, Windows NT и Mac OS. Она предоставляет возможности экономико-статистических расчетов, графические инструменты и, за исключением Excel 2008 под Mac OS X, язык макропрограммирования VBA (Visual Basic for Application). Microsoft Excel входит в состав Microsoft Office и на сегодняшний день Excel является одним из наиболее популярных приложений в мире.
Microsoft Office Access или просто Microsoft Access -- реляционная СУБД корпорации Microsoft. Имеет широкий спектр функций, включая связанные запросы, связь с внешними таблицами и базами данных. Благодаря встроенному языку VBA, в самом Access можно писать приложения, работающие с базами данных.
Состав программного продукта:
Основные компоненты MS Access:
· построитель таблиц;
· построитель экранных форм;
· построитель SQL-запросов (язык SQL в MS Access не соответствует стандарту ANSI);
· построитель отчётов, выводимых на печать.
Они могут вызывать скрипты на языке VBA, поэтому MS Access позволяет разрабатывать приложения и БД практически «с нуля» или написать оболочку для внешней БД.
Microsoft Jet Database Engine (англ.), которая используется в качестве движка базы данных MS Access является файл-серверной СУБД и потому применима лишь к приложениям, работающим с небольшими объёмами данных и при небольшом числе пользователей, одновременно работающих с этим данными. Непосредственно в Access отсутствует ряд механизмов, необходимых в многопользовательских базах данных, таких, например, как триггеры.
Программа для обработки статистических данных STATISTICA
Описание: это современный пакет статистического анализа, в котором реализованы все новейшие компьютерные и математические методы анализа данных.
Программа предназначена для всех отраслей промышленности (бизнес, наука, обучение). В ней реализовано все возможные функции для статистической обработки данных, плюс к этому возможность построения графиков, базы данных и т.д. В программу встроен STATISTICA Visual Basic, что добавляет еще около 10000 новых функций. Синтаксис этого Basic'а полностью совместим с Microsoft Visual Basic.
Популярный для расчетов пакет анализа, работающая portable - версия.
Возможности: STATISTICA - это система статистического анализа данных, включающая широкий набор аналитических процедур и методов:
· более 100 различных типов графиков,
· описательные и внутригрупповые статистики,
· быстрые основные статистики и блоковые статистики,
· множественная регрессия,
· непараметрические статистики,
· разведочный анализ данных, корреляции,
· общая модель дисперсионного и ковариационного анализа,
· интерактивный вероятностный калькулятор,
· T-критерии (и другие критерии групповых различий),
· таблицы частот, сопряженности, флагов и заголовков,
· анализ многомерных откликов,
· подгонка распределений и многое другое.
Продукты серии STATISTICA основаны на самых современных технологиях, целиком и полностью соответствуют завершительным приобретениям в области IT, позволяют решать любые задачи в области анализа и отделки данных, совершенно подходят для решения полезных задач в маркетинге, финансах. Страховании, экономике, бизнесе. Промышленности, медицине и тд.
3. Практический эксперимент
В качестве эксперимента в биологическом исследовании выберем эксперимент по изучению питательных свойств различных кормов. В качестве биологического материала для изучения данной проблемы выберем хомячков.
Эксперимент будет представлять собой опыт, в котором мы будем кормить хомячков разними кормами и наблюдать за изменением их массы тела. В качестве кормов для изучения их питательных свойств выберем обычный корм, корм с улучшенными питательными свойствами и специальный корм.
Для определения питательных свойств кормов возьмем три группы хомячков, по три особи в каждой группе и будем кормить хомячков исследуемыми кормами. Хомячков выберем одного весе и возраста. Для определения питательных свойств кормов будем взвешивать хомячков каждое утро на лабораторных весах. Опыт будет продолжаться в течении 2х недель. Данные полученные в ходе исследования занесем в таблицу и обработаем опыт при помощи компьютера (табличный редактор MS Excel).
Оборудование для эксперимента:
- клетки для хомячков;
- лабораторные весы;
- компьютер;
- миски для кормов.
Материалы для проведения опыта:
- три группы хомячков по три особи в каждой;
- три вида корма: обычный, с улучшенными питательными свойствами и специальный.
Данные, полученные в процессе проведения опыта представлены в табл.1.
Таблица 1. Изменение массы хомячков
День |
Группа хомячков (обычный корм), масса, гр. |
Группа хомячков (корм с улучшенными питательными свойствами), масса, гр. |
Группа хомячков (специальный корм), масса, гр. |
|||||||
1 |
2 |
3 |
1 |
2 |
3 |
1 |
2 |
3 |
||
1 |
55 |
56 |
55 |
56 |
57 |
55 |
55 |
57 |
56 |
|
2 |
56 |
56 |
55 |
56 |
57,5 |
55,5 |
56 |
58 |
56,5 |
|
3 |
57 |
56 |
55,5 |
56,5 |
58 |
56 |
56,5 |
58 |
57 |
|
4 |
57,5 |
56,2 |
55,7 |
57 |
59 |
57 |
57 |
58,5 |
58 |
|
5 |
58 |
56,5 |
56 |
57,2 |
59,5 |
57,5 |
58 |
59 |
58,7 |
|
6 |
58 |
56,5 |
56,5 |
57,5 |
60 |
57,5 |
58,5 |
60 |
59,5 |
|
7 |
58,5 |
57 |
56,7 |
58 |
60,7 |
58 |
59 |
60,5 |
60 |
|
8 |
58,5 |
57,2 |
57 |
58,5 |
61 |
58,5 |
60 |
61 |
61 |
|
9 |
59 |
57,5 |
57,2 |
59 |
61,7 |
59 |
61 |
62 |
62 |
|
10 |
59,2 |
57,5 |
58 |
60 |
62,5 |
59,2 |
61,5 |
64 |
62,8 |
|
11 |
59,5 |
58 |
58,2 |
60,5 |
63 |
60 |
62 |
64,2 |
64 |
|
12 |
60 |
58 |
58,5 |
61 |
64 |
61 |
63 |
65 |
65 |
|
13 |
60 |
58,2 |
58,5 |
62 |
64,8 |
62 |
64 |
65,2 |
65,5 |
|
14 |
60,2 |
58,5 |
58,7 |
62,5 |
65 |
62,5 |
64,5 |
65,5 |
65,8 |
График изменения массы хомячков представлен на рис.3.
Рис.2. Изменение массы хомячков
Среднесуточный прирост массы тела представлен в табл.2.
Таблица 2. Среднесуточный прирост массы тела
День |
Группа хомячков (обычный корм) |
Группа хомячков (корм с улучшенными питательными свойствами) |
Группа хомячков (специальный корм) |
|||||||
1 |
2 |
3 |
1 |
2 |
3 |
1 |
2 |
3 |
||
1 |
0,00 |
0,00 |
0,00 |
0,00 |
0,00 |
0,00 |
0,00 |
0,00 |
0,00 |
|
2 |
1,00 |
0,00 |
0,00 |
0,00 |
0,50 |
0,50 |
1,00 |
1,00 |
0,50 |
|
3 |
1,00 |
0,00 |
0,50 |
0,50 |
0,50 |
0,50 |
0,50 |
0,00 |
0,50 |
|
4 |
0,50 |
0,20 |
0,20 |
0,50 |
1,00 |
1,00 |
0,50 |
0,50 |
1,00 |
|
5 |
0,50 |
0,30 |
0,30 |
0,20 |
0,50 |
0,50 |
1,00 |
0,50 |
0,70 |
|
6 |
0,00 |
0,00 |
0,50 |
0,30 |
0,50 |
0,00 |
0,50 |
1,00 |
0,80 |
|
7 |
0,50 |
0,50 |
0,20 |
0,50 |
0,70 |
0,50 |
0,50 |
0,50 |
0,50 |
|
8 |
0,00 |
0,20 |
0,30 |
0,50 |
0,30 |
0,50 |
1,00 |
0,50 |
1,00 |
|
9 |
0,50 |
0,30 |
0,20 |
0,50 |
0,70 |
0,50 |
1,00 |
1,00 |
1,00 |
|
10 |
0,20 |
0,00 |
0,80 |
1,00 |
0,80 |
0,20 |
0,50 |
2,00 |
0,80 |
|
11 |
0,30 |
0,50 |
0,20 |
0,50 |
0,50 |
0,80 |
0,50 |
0,20 |
1,20 |
|
12 |
0,50 |
0,00 |
0,30 |
0,50 |
1,00 |
1,00 |
1,00 |
0,80 |
1,00 |
|
13 |
0,00 |
0,20 |
0,00 |
1,00 |
0,80 |
1,00 |
1,00 |
0,20 |
0,50 |
|
14 |
0,20 |
0,30 |
0,20 |
0,50 |
0,20 |
0,50 |
0,50 |
0,30 |
0,30 |
|
среднее |
0,41 |
0,30 |
0,45 |
0,50 |
0,67 |
0,70 |
0,70 |
0,70 |
0,85 |
|
среднее по группе |
0,39 |
0,62 |
0,75 |
Среднесуточный прирост массы тела представлен на графике рис.3.
Рис. 4. Среднесуточный прирост массы тела
Вывод:
Таким образом, мы выяснили, что кормление хомячков кормом с улучшенными питательными свойствами приводит к большему увеличению массы тела, по сравнению с обычным кормом. Специализированный корм вызывает наибольшее увеличение массы тела.
Заключение
Таким образом, в процессе выполнения курсовой работы изучено техническое и программное обеспечение систем автоматизации контроля и управления в биомедицинских исследованиях в биофизиологическом эксперименте на примере эксперимента по изучению питательных свойств кормов для хомячков.
Персональный компьютер расширяет возможности использования таблиц за счёт того, что позволяет не только представлять данные в электронном виде, но и обрабатывать их. Класс программного обеспечения, используемый для этой цели, называется табличными процессорами или электронными таблицами. Основное назначение табличных процессоров - обработка таблично организованной информации, проведение расчётов на её основе и обеспечение визуального представления хранимых данных и результатов их обработки в виде графиков, диаграмм. Табличный процессор или электронная таблица - это интерактивная система обработки данных, в основе которой лежит двухмерная таблица. Ячейки таблицы могут содержать числа, строки или формулы, задающие зависимость ячейки от других ячеек. Пользователь может просматривать, задавать и изменять значение ячеек. Изменение значение ячейки ведет к немедленному изменению значений зависящих от нее ячеек. Табличные процессоры обеспечивают также задание формата изображения, поиск, сортировку. Применение электронных таблиц упрощает работу с данными и позволяет получать результаты без проведения расчётов вручную. Расчёт по заданным формулам выполняется автоматически.
Литература
1. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Основы моделирования и первичная обработка данных. - М.: «Финансы и статистика», 1983. - 471 с.
2. Альсова О.К. Моделирование систем (часть 1): Методические указания к лабораторным работам по дисциплине «Моделирование» для студентов III - IV курсов АВТФ. - Новосибирск: Изд-во НГТУ, 2006. - 68с. Моделирование систем (часть 2): Методические указания к лабораторным работам по дисциплине "Моделирование" для студентов III - IV курсов АВТФ. - Новосибирск: Изд-во НГТУ, 2007. - 35 с.
3. Альсова О.К. Моделирование систем: учеб. пособие/О.К. Альсова . - Новосибирск: Изд-во НГТУ, 2007 - 72 с.
4. Губарев В.В. Системный анализ в экспериментальных исследованиях. - Новосибирск: Изд-во НГТУ, 2000. - 99 с.
5. Денисов А.А., Колесников Д.Н. Теория больших систем управления: Учеб. пособие для вузов. - Л. Энергоиздат, 1982. - 288 с.
6. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. - М.: Статистика, 1973.
7. Кельтон В., Лоу А. Имитационное моделирование. Классика CS . 3-е изд. СПб.: Питер; Киев: 2004. - 847 с.
8. Лемешко Б.Ю., Постовалов С.Н. Компьютерные технологии анализа данных и исследования статистических закономерностей: Учеб. пособие. - Новосибирск: Изд-во НГТУ, 2004. - 120 с.
9. Моделирование систем. Практикум: Учеб. пособие для вузов/Б.Я. Советов, С.А. Яковлев. - 2-е изд., перераб. и доп. - М.: Высшая школа, 2003. 295 с.
10. Рыжиков Ю.И. Имитационное моделирование. Теория и технологии. - СПб.: КОРОНА принт; М.: Альтекс-А, 2004. - 384 с.
Размещено на Allbest.ur
...Подобные документы
Изучение экспрессии генов и поиск мутаций в биомедицинских исследованиях. Электронные микросхемы, предназначенные для одновременного выявления множества определенных последовательностей ДНК. История изобретения, классификация и технология ДНК-микрочипов.
презентация [3,1 M], добавлен 27.01.2015Программное обеспечение для осуществления моделирования биохимических и генетических процессов в клетке. Математическая модель динамики изменения объема и потенциала эритроцита. Симуляция гибели эритроцита методом фиксации трансмембранного потенциала.
дипломная работа [1,3 M], добавлен 26.05.2012Характеристика передовых инновационных биомедицинских технологий. Биотехнология и лекарственные средства. Существенные особенности биотехнологических лекарственных средств. Биотехнология с точки зрения экономики. Специфические черты рынка продукции.
реферат [24,0 K], добавлен 23.01.2010Особенности вида, жизненный цикл и строение дрозофилы. Половой деморфизм особей. История великих открытий в генетике. Использование плодовых мушек в современных научных исследованиях. Генетическое моделирование болезней и космическая одиссея дрозофил.
реферат [286,2 K], добавлен 16.12.2014Экология биологического круговорота. Энергетическое обеспечение биологического круговорота и трофические цепи. Химический состав живого вещества как следствие избирательного перемещения элементов в биологическом круговороте. Классификации круговоротов.
реферат [56,0 K], добавлен 07.01.2009Электрофорез как один из наиболее важных методов для разделения и анализа компонентов веществ в химии, биохимии и молекулярной биологии. Электрофорез белков в полиакриламидном и агарозном геле. Оборудование для проведения капиллярного электрофореза.
реферат [25,5 K], добавлен 31.08.2014Зарождение биологии как науки. Идеи, принципы и понятия биологии XVIII в. Утверждение теории эволюции Ч. Дарвина и становление учения о наследственности. Эволюционные воззрения Ламарка, Дарвина, Менделя. Эволюция полигенных систем и генетический дрейф.
курсовая работа [65,3 K], добавлен 07.01.2011Обзор социально-культурного контекста истории развития биологии с древнейших времен до наших дней. Основные пути ее становления и развития как целостной системы знаний, формирование фундаментальных идей, концепций, теорий, методов исследований и приборов.
методичка [15,4 M], добавлен 27.03.2011Общая характеристика науки биологии. Этапы развития биологии. Открытие фундаментальных законов наследственности. Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии. Вопрос о функциях живого вещества.
контрольная работа [28,1 K], добавлен 25.02.2012Теоретические основы, предмет, объект и закономерности биологии. Сущность, анализ и доказательство аксиом теоретической биологии, обобщенных Б.М. Медниковым и характеризующих жизнь и отличающуюся от нее нежизнь. Особенности генетической теории развития.
реферат [47,8 K], добавлен 28.05.2010Понятие увеличительных приборов (лупа, микроскоп), их назначение и устройство. Основные функциональные и конструктивно-технологические части современного микроскопа, используемого на уроках биологии. Проведение лабораторных работ на уроках биологии.
курсовая работа [3,8 M], добавлен 18.02.2011Основные этапы развития, задачи и разделы генетики, ее влияние на другие отрасли биологии. Характеристика основных методов изучения наследственности: генеалогического, близнецового, биохимического, цитогенетического (кариотипического) и популяционного.
реферат [42,0 K], добавлен 10.03.2012Значение открытия кровообращения для развития биологии и медицины. Экспериментальные и клинические исследования кровообращения, аналитический и метафизический подходы к физиологическим явлениям. Исследования строения и работы сердца, движения крови.
реферат [36,8 K], добавлен 07.11.2010Методология современной биологии. Философско-методологические проблемы биологии. Этапы трансформации представлений о месте и роли биологии в системе научного познания. Понятие биологической реальности. Роль философской рефлексии в развитии наук о жизни.
реферат [22,0 K], добавлен 30.01.2010Изучение биологических характеристик азовского пузанка с применением ихтиологических методов обработки рыб: половая и возрастная структуры, динамика роста, упитанность. Ознакомление с методами рыбохозяйственных исследований и применение их на практике.
курсовая работа [1,2 M], добавлен 11.12.2010Влияние наглядности на качество усвоения знаний учащихся по биологии на всех этапах урока. История возникновения понятия "наглядности", как дидактического принципа обучения. Классификация наглядных пособий по биологии и методика их применения на уроках.
курсовая работа [76,5 K], добавлен 03.05.2009Предмет, задачи и методы биологии, история зарождения и современные достижения в данной области знания. Человек как объект биологии, характеристика и обоснование его биосоциальной природы. Теории происхождения жизни, иерархические уровни ее организации.
презентация [3,7 M], добавлен 25.12.2014Морфологическая характеристика тетеревиных. Ареал вида, образ жизни, питание, размножение, рост и развитие. Особенности сезонной смены перьевого покрова. Динамика численности тетеревиных. Сходства и различия в биологии изученных видов тетеревиных.
курсовая работа [3,8 M], добавлен 12.02.2015Цитология как раздел биологии, наука о клетках, структурных единицах всех живых организмов, предмет и методы ее изучения, история становления и развития. Этапы исследований клетки как элементарной единицы живого организма. Роль клетки в эволюции живого.
контрольная работа [378,6 K], добавлен 13.08.2010Определение психогенетики как науки о наследственности и изменчивости психических свойств, возникшая на стыке психологии и генетики. Концепция близнецового метода и его основные разновидности. Экспериментальные схемы генетико-популяционных исследований.
контрольная работа [121,4 K], добавлен 12.07.2011