Трикарбоновые кислоты. Изоферменты. Метаболические процессы
Анализ реакций цикла Кребса. Рассмотрение хода процесса, его значения и регуляции. Изучение изоформ лактатдегидрогеназы и креатинкиназы. Значение определения их активности в сыворотке крови. Протекание метаболических процессов и аллостерической регуляции.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 16.09.2015 |
Размер файла | 515,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ
МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
(ГБОУ ВПО НГМУ Минздрава России)
Фармацевтический факультет
Кафедра фармацевтической химии
Контрольная работа №1
Выполнила:
студентка 3 курса 2 группы
фармацевтического факультета
заочного отделения
Фомченко Татьяна Ивановна.
Проверил:
старший преподаватель
Юзенас Татьяна Петровна
Новосибирск 2015
Содержание
- Вопрос 1. Цикл трикарбоновых кислот. Ход процесса. Значение. Регуляция
- Вопрос 2. Изоферменты. Понятие. Примеры изоформ лактатдегидрогеназы (ЛДГ) и креатинкиназы (КК). Реакции, катализируемые ЛДГ и КК. Значение определения активности изоферментов в сыворотке крови
- Вопрос 3. Регуляция метаболических процессов. Аллостерическая регуляция. Примеры
- Список использованной литературы
- Вопрос 1. Цикл трикарбоновых кислот. Ход процесса. Значение. Регуляция
- Цикл трикарбоновых кислот (цитратный цикл, цикл лимонной кислоты, цикл Кребса) впервые был открыт английским биохимиком Кребсом.
- Реакции цикла Кребса относятся к третьей стадии катаболизма питательных веществ и происходят в митохондриях клетки. Эти реакции относятся к общему пути катаболизма и характерны для распада всех классов питательных веществ (белков, липидов, углеводов).
- Главной функцией цикла является окисление ацетального остатка с образованием четырех молекул восстановленных коферментов (трех молекул НАДН и одной молекулы ФАДН2), а также образование молекулы ГТФ путем субстратного фосфорилирования. Атомы углерода ацетильного остатка выделяются в виде двух молекул СО2.
- Цикл Кребса включает 8 последовательных реакций:
- Рисунок 1. Реакции цикла Кребса, включая образование б-кетоглутарата
1. Конденсация ацетил-КоА с оксалоацетатом.
В результате которой образуется цитрат (рис. 1, реакция 1); поэтому цикл Кребса называют также цитратным циклом. В этой реакции метильный углерод ацетильной группы взаимодействует с кетогруппой оксалоацетата; одновременно происходит расщепление тиоэфирной связи. В реакции освобождается коэнзим А, который может принять участие в окислительном декарбоксилировании следующей молекулы пирувата. Реакцию катализирует цитратсинтаза, это - регуляторный фермент, он ингибируется высокими концентрациями НАДН, сукцинил-КоА, цитрата.
2. Превращение цитрата в изоцитрат через промежуточное образование цис-аконитата.
Образующийся в первой реакции цикла цитрат содержит третичную гидроксильную группу и не способен окисляться в условиях клетки. Под действием фермента аконитазы идёт отщепление молекулы воды (дегидратация), а затем её присоединение (гидратация), но другим способом (рис.1, реакции 2-3). В результате данных превращений гидроксильная группа перемещается в положение, благоприятствующее её последующему окислению.
3. Окислительное декарбоксилирование изоцитрата.
Эту реакцию катализирует изоцитратдегидрогеназа. Существует 2 формы изоцитратдегидрогеназы: одна содержит в качестве коферманта NAD+, вторая - NADP+. NAD-зависимый фермент локализован в митохондриях и участвует в ЦТК; NADP-зависимый фермент, присутствующий и в митохондриях, и в цитоплазме, играет иную метаболическую роль. В результате действия этого фермента на изоцитрат образуется б-кетоглутарат (рис 1, реакция 4).
Реакция, катализируемая NAD-зависимой изоцитратдегидрогеназой - самая медленная реакция цитратного цикла.
Рисунок 2. Реакции цикла Кребса, начиная с б-кетоглутарата.
4. Окислительное декарбоксилирование б-кетоглутарата.
В этой реакции б-кетоглутарат подвергается окислительному декарбоксилированию с образованием в качестве конечных продуктов сукцинил-КоА, СО2 и NADH + Н+ (рис.2 реакция 5).
Реакцию катализирует б-кетоглутаратдегидрогеназный комплекс, который по структуре и функциям сходен с пируватдегидрогеназным комплексом (ПДК). Равновесие реакции окислительного декарбоксилирования б-кетоглутарата сильно сдвинуто в сторону образования сукцинил-КоА, и её можно считать однонаправленной.
5. Превращение сукцинил-КоА в сукцинат.
Сукцинил-КоА - высокоэнергетическое соединение. Изменение свободной энергии гидролиза этого тиоэфира составляет ДG0= -35,7 кДж/моль. В митохондриях разрыв тиоэфирной связи сукцинил-КоА сопряжен с реакцией фосфорилирования гуанозиндифосфата (ГДФ) до гуанозин-трифосфата (ГТФ).
Сукцинил-КоА>Сукцинат (рис2, реакция 6).
(ДG0= - 10,36кДж/моль)
Эту сопряженную реакцию катализирует сукцинаттиокиназа. Промежуточный этап реакции - фосфорилирование молекулы фермента по одному из гистидиновых остатков активного центра. Затем остаток фосфорной кислоты присоединяется к ГДФ с образованием ГТФ.
С ГТФ концевая фосфатная группа может переноситься на АДФ с образованием АТФ; эту обратимую реакцию катализирует нуклеозид-дифосфаткиназа.
ГТФ + АДФ = ГДФ + АТФ
Образование высокоэнергетической связи за счет энергии субстрата (сукцинил-КоА) - пример субстратного фосфорилирования.
6. Дегидрирование сукцината.
Образовавшийся на предыдущем этапе сукцинат превращается в фумарат под действием сукцинатдегидрогеназы (рис2. Реакция 7). Этот фермент - флавопротеин, молекула которого содержит прочно связанный кофермент FAD.
Сукцинат дегидрогеназа прочно связана с внутренней митохондриальной мембраной. Она состоит из 2 субъединиц, одна из которых связана с FAD. Кроме того, обе субъединицы содержат железо-серные центры; одна - Fe2S2, а другая - Fe4S4. В железо-серных центрах атомы железа меняют свою валентность, участвуя в транспорте электронов.
7. Образование малата из фурамата (рис. 2, реакция 8).
Образование малата происходит при участии фермента фумаратгидротазы. Этот фермент более известен как фумараза.
Фумараза - олигомерный белок, состоящий из 4 идентичных полипептидных цепей. Он расположен в матриксе митохондрий. Фумаразу относят к ферментам с абсолютной субстратной специфичностью: она катализирует гидратацию только транс-формы фумарата.
8) Дегидрирование малата, приводящее к образованию оксалоацетата и третьей молекулы НАДН (рис. 2, реакция 9). Образующийся в реакции оксалоацетат может вновь использоваться в реакции конденсации с очередной молекулой ацетил-КоА. Поэтому данный процесс носит циклический характер. Реакцию катализирует NAD-зависимая малатдегидрогеназа, содержащаяся в матриксе митохондрий.
Значение цитратного цикла.
Образованием оксалоацетата завершается один оборот цитратного цикла. В одном обороте цикла лимонной кислоты в 2 реакциях декарбоксилирования (превращение изоцитратрата и б-кетоглутарата в сукцинл-КоА) происходит образование 2 молекул СО2. В 4 реакциях цитратного цикла происходит дегидрирование с образованием восстановительных коферментов: 3 молекул NADH+H+ и 1 молекулы FADH2 в составе сукцинатдегидрогеназы.
Наконец, на один оборот цикла затрачивается 2 молекулы воды: одна - на стадии образования цитрата, вторая - на стадии гидратации фумарата.
Восстановительные коферменты (3 молекулы NADH и молекула FADH2), образованные в цикле лимонной кислоты, отдают электроны в ЦПЭ на кислород - конечный акцептор электронов. Восстановленный кислород взаимодействует с протонами с образованием воды.
На каждую молекулу NADH при образовании молекулы воды в процессе тканевого дыхания синтезируется 3 молекулы АТФ, а на каждую молекулу FADH2 - 2 молекулы АТФ.
Таким образом, каждый оборот цикла лимонной кислоты сопровождается синтезом 11 молекул АТФ путем окислительного фосфорилирования. Одна молекула АТФ образуется путем субстратного фосфорилирования.
В итоге на каждый ацетильный остаток, включенный в цитратный цикл, образуется 12 молекул АТФ.
Регуляция цитратного цикла.
В большинстве случаев скорость реакций в метаболических циклах определяется их начальными реакциями. В ЦТК важнейшая регуляторная реакция - образование цитрата из оксалоацетата и ацетил-КоА, катализируемая цитратсинтазой. Эта реакция ускоряется при повышении концентрации оксалоацетата - субстрата реакции и тормозится продуктом реакции - цитратом. Когда отношение NADH/NAD? снижается, скорость окисления малата в оксалоацетат возрастает. Повышение концентрации оксалоацетата ускоряет цитратсинтазную реакцию. Скорость реакции снижается при повышении концентрации АТФ, сукцинил-КоА длинноцепочечныхтжирных кислот.
Изоцитратдегидрогеназа, олигомерный фермент, состоит из 8 субъединиц. Присоединение изоцитрата к первой субъединице вызывает кооперативное изменение конформации других, увеличивая скорость присоединения субстрата. Фермент аллостерически активируется АДФ и СаІ?, которые присоединяются к ферменту в разных аллостерических центрах. В присутствии АДФ конформация всех субъединиц меняется таким образом, что связывание изоцитрата происходит значительно быстрее. Таким образом, при концентрации изоцитрата, которая существует в митохондриальном матриксе, небольшие изменения концентрации АДФ могут вызвать значительное изменение скорости реакции. Увеличение активности изоцитратдегидрогеназы снижает концентрацию цитрата, что, в свою очередь, уменьшает ингибирование цитратсинтазы продуктом реакции. При повышении концентрации NADH активность фермента снижается.
б -кетоглутаратдегидрогеназный комплекс, имеющий сходное строение с пируватдегидрогеназным, в отличие от последнего, не имеет в своем составе регуляторных субъединиц. Главный механизм регуляции б-кетоглутаратдегидрогеназного комплекса - ингибирование реакции NADH и сукцинил-КоА.
б-кетоглутаратдегидрогеназный комплекс, как и изоцитратдегидрогеназа, активируется СаІ+, а при повышении концентрации АТФ скорости обеих реакций снижаются.
В регуляции цитратного цикла существует множество дополнительных механизмов, обеспечивающих необходимый уровень метаболитов и их участие в других метаболических путях.
Компартментализация ферментов, участвующих в реакциях окислительного декарбоксилирования пирувата и цикла лимонной кислоты, играет важную роль в регуляции этих процессов.
Внутренняя мембрана митохондрий непроницаема для анионов и катионов, в том числе и для промежуточных продуктов цитратного цикла, которые могут быть перенесены через мембрану только при участии специальных белков. Поэтому ферменты цитратного цикла имеют больше возможностей для взаимодействия с продуктами предыдущих реакций, чем в случае свободного удаления этих продуктов из митохондрий.
Доступность субстратов возрастает также в результате образования ферментных комплексов. Малатдегидрогеназа и цитратсинтаза образуют непрочные комплексы, в которых цитратсинтаза может использовать оксалоацетат, непосредственно образующийся малатдегидрогеназой.
В ПДК и б-кетоглутаратдегидрогеназном комплексе субстраты непосредственно передаются от одного фермента к другому: только трансацилаза может взаимодействовать с промжуточным продуктом, связанным с ТДФ, дигидролипоилдегидрогеназа - с дигидролипоевой кислотой.
NAD+, NADH, КоА, ацетил-КоА сукцинил-КоА не имеют транспортных белков в мембране митохондрий. Поэтому эти соединения не могут пройти через митохондриальную мембрану.
Накопление ацил-КоА производных, таких как ацетил-КоА или сукцинил-КоА, в митохондриальном матриксе ингибирует другие реакции, для которых необходим КоА.
Тесная связь цитратного цикла с ЦПЭ поддерживается благодаря использованию в этих реакциях общего фонда NAD+ и NADH.
Вопрос 2. Изоферменты. Понятие. Примеры изоформ лактатдегидрогеназы (ЛДГ) и креатинкиназы (КК). Реакции, катализируемые ЛДГ и КК. Значение определения активности изоферментов в сыворотке крови
Изоферменты, или изоэнзимы - ферменты, катализирующие один и тот же тип реакции с принципиально одинаковым механизмом, но отличающихся друг от друга кинетическими параметрами, условиями активации, особенностями связи апофермента и кофермента.
Природа появления изоферментов разнообразна, но чаще всего обусловлена различиями в структуре генов, кодирующих эти изоферменты. Следовательно, изоферменты различаются по первичной структуре белковой молекулы и, соответственно, по физико-химическим свойствам.
По своей структуре изоферменты в основном являются олигомерными белками. Причем та или иная ткань синтезирует преимущественно определенные виды протомеров. В результате определенной комбинации этих протомеров формируются ферменты с различной структурой - изомерные формы. Обнаружение определенных изоферментных форм ферментов позволяет использовать их для диагностики заболеваний.
Лактатдегидрогеназа (ЛДГ) - олигомерный белок с молекулярной массой 134000 Д. ЛДГ состоит из 4 пептидных цепей двух типов - M(от. англ. muscle) и H(от. англ.heart). Выделяют 5 изоформ ЛДГ, несколько отличающихся по химическим и физическим свойствам. В отличие от общей ЛДГ, изоформы фермента более или менее специфичны для разных тканей.
· ЛДГ-1 (HHHH, H4) - преобладает в сердце, почках и эритроцитах;
· ЛДГ-2 (HHHM, H3M) - в сердце, селезенке и лимфатических узлах; кребс изоформа кровь метаболический
· ЛДГ-3 (HHMM, H2M2) - в легких;
· ЛДГ-4 (HMMM, HM3) - в поджелудочной железе, плаценте;
· ЛДГ-5 (MMMM, M4) - в печени и скелетных мышцах.
Появление в эволюции различных изоформ ЛДГ обусловлено особенностями окислительного метаболизма тканей. Изоферменты ЛДГ4 и ЛДГ5 (м-типы) работают эффективно в анаэробных условиях, ЛДГ1 и ЛДГ2 (Н-типы) - в аэробных, когда пируват быстро окисляется до СО2 и Н2О, а не восстанавливается до молочной кислоты.
Фермент лактатдегидрогеназа (ЛДГ) катализирует обратимую реакцию окисления лактата (молочной кислоты) до пирувата (пировиноградной кислоты)
При ряде заболеваний исследуют активность ЛДГ в плазме крови. В норме активность ЛДГ составляет 170 - 520 ЕД/л. Повышение активности определенных изоформ ЛДГ наблюдают при поражениях сердца, печени, почек, а также при мегалобластных и гемолитических анемиях. Для постановки диагноза необходимо исследование изоформ ЛДГ в плазме крови методом электрофореза. Выявление в плазме крови тканеспецифических изоформ ЛДГ широко используется в качестве диагностического теста. При поражении печени в крови повышается активность ЛДГ5, а при инфаркте миокарда - ЛДГ1.
Креатинкиназа (КК) - это фермент, который катализирует реакцию переноса фосфорильного остатка с АТФ на креатинин с образованием креатинфосфата и АДФ. АТФ (аденозинтрифосфат) - молекула, являющаяся источником энергии в биохимических реакциях человеческого организма.
Реакция, катализируемая креатинкиназой, обеспечивает энергией мышечные сокращения. Различают креатинкиназу, содержащуюся в митохондриях и цитоплазме клеток.
Молекула креатинкиназы состоит из двух частей, которые могут быть представлены одной из двух субъединиц: М, от английского muscle - "мышца", и B, brain - "мозг". Таким образом, в организме человека креатинкиназа есть в виде трёх изомеров: ММ, МВ, ВВ. ММ-изомер содержится в скелетной мускулатуре и миокарде, МВ - в основном в миокарде, ВВ - в тканях головного мозга, в небольшом количестве в любых клетках организма.
Активность КК в норме не должна превышать 90 МЕ/л. Определение активности КК в плазме крови имеет диагностическое значение при инфаркте миокарда (происходит повышение уровня МВ-изоформы). Количество изоформы ММ может повышаться при травмах и повреждениях скелетных мышц. Изоформа ВВ не может проникнуть через гематоэнцефалический барьер, поэтому в крови практически не определяется даже при инсультах и диагностического значения не имеет.
Вопрос 3. Регуляция метаболических процессов. Аллостерическая регуляция. Примеры
Принципы регуляции метаболических путей
Все химические реакции в клетке протекают при участии ферментов. Поэтому, чтобы воздействовать на скорость протекания метаболического пути, достаточно регулировать количество или активность ферментов. Обычно в метаболических путях есть ключевые ферменты, благодаря которым происходит регуляция скорости всего пути. Эти ферменты (один или несколько в метаболическом пути) называются регуляторными ферментами; они катализируют, как правило, начальные реакции метаболического пути, необратимые реакции, скорость-лимитирующие реакции (самые медленные) или реакции в месте переключения метаболического пути (точки ветвления).
Регуляция скорости ферментативных реакций осуществляется на 3 независимых уровнях:
· изменением количества молекул фермента;
· доступностью молекул субстрата и кофермента;
· изменением каталитической активности молекулы ферманта.
Регуляция каталитической активности ферментов
Важнейшее значение в изменении скорости метаболических путей играет регуляция каталитической активности одного или нескольких ключевых ферментов данного метаболического пути. Это высокоэффективный и быстрый способ регуляции метаболизма.
Основные способы регуляции активности ферментов:
· аллостерическая регуляция;
· регуляция с помощью белок-белковых взаимодействий;
· регуляция путём фосфорилирования/дефосфорилирования молекулы фермента;
· регуляция частичным (ограниченным) протеолизом.
Аллостерическая регуляция
Аллостерическими ферментами называют ферменты, активность которых регулируется не только количеством молекул субстрата, но и другими веществами, называемыми эффекторами. Участвующие в аллостерической регуляции эффекторы - клеточные метаболиты часто именно того пути, регуляцию которого они осуществляют.
Аллостерические ферменты играют важную роль в метаболизме, так как они чрезвычайно быстро реагируют на малейшие изменения внутреннего состояния клетки. Аллостерическая регуляция имеет большое значение в следующих ситуациях:
· при анаболических процессах. Ингибирование конечным продуктом метаболического пути и активация начальными метаболитами позволяют осуществлять регуляцию синтеза этих соединений;
· при катаболических процессах. В случае накопления АТФ в клетке происходит ингибирование метаболических путей, обеспечивающих синтез энергии. Субстраты при этом расходуются на реакции запасания резервных питательных веществ;
· для координации анаболических и катаболических путей. АТФ и АДФ - аллостерические эффекторы, действующие как антагонисты;
· для координации параллельно протекающих и взаимосвязанных метаболических путей (например, синтез пуриновых и пиримидиновых нуклеотидов, используемых для синтеза нуклеиновых кислот). Таким образом, конечные продукты одного метаболического пути могут быть аллостерическими эффекторами другого метаболического пути.
Аллостерические эффекторы. Эффектор, вызывающий снижение (ингибирование) активности фермента, называют отрицательным эффектором, или ингибитором. Эффектор, вызывающий повышение (активацию) активности ферментов, называют положительным эффектором, или активатором.
Аллостерическими эффекторами часто служат различные метаболиты. Конечные продукты метаболического пути - часто ингибиторы аллостерических ферментов, а исходные вещества - активаторы. Это так называемая гетеротропная регуляция. Такой вид аллостерической регуляции очень распространён в биологических системах.
Более редкий случай аллостерической регуляции, когда сам субстрат может выступать в качестве положительного эффектора. Такая регуляция называется гомотропной (эффектор и субстрат - одно и то же вещество). Эти ферменты имеют несколько центров связывания для субстрата, которые могут выполнять двойную функцию: каталитическую и регуляторную. Аллостерические ферменты такого типа используются в ситуации, когда субстрат накапливается в избытке и должен быстро преобразоваться в продукт.
Выявить ферменты с аллостерической регуляцией можно, изучая кинетику этих ферментов.
Особенности строения и функционирования аллостерических ферментов:
обычно это олигомерные белки, состоящие из нескольких протомеров или имеющие доменное строение;
они имеют аллостерический центр, пространственно удалённый от каталитического активного центра;
эффекторы присоединяются к ферменту нековалентно в аллостерических (регуляторных) центрах;
аллостерические центры, так же, как и каталитические, могут проявлять различную специфичность по отношению к лигандам: она может быть абсолютной и групповой. Некоторые ферменты имеют несколько аллостерических центров, одни из которых специфичны к активаторам, другие - к ингибиторам.
протомер, на котором находится аллостерический центр, - регуляторный протомер, в отличие от каталитического протомера, содержащего активный центр, в котором проходит химическая реакция;
аллостерические ферменты обладают свойством кооперативности: взаимодействие аллостерического эффектора с аллостерическим центром вызывает последовательное кооперативное изменение конформации всех субъединиц, приводящее к изменению конформации активного центра и изменению сродства фермента к субстрату, что снижает или увеличивает каталитическую активность фермента;
регуляция аллостерических ферментов обратима: отсоединение эффектора от регуляторной субъединицы восстанавливает исходную каталитическую активность фермента;
аллостерические ферменты катализируют ключевые реакции данного метаболического пути.
Рисунок 3. Схема, поясняющая работу аллостерического фермента. А - действие отрицательного эффектора (ингибитора); Б - действие положительного эффектора (активатора).
Локализация аллостерических ферментов в метаболическом пути.
Скорость метаболических процессов зависит от концентрации веществ, использующихся и образующихся в данной цепи реакций. Такая регуляция представляется логичной, так как при накоплении конечного продукта он (конечный продукт) может действовать как аллостерический ингибитор фермента, катализирующего чаще всего начальный этап данного метаболического пути:
Фермент, катализирующий превращение субстрата А в продукт В, имеет аллостерический центр для отрицательного эффектора, которым служит конечный продукт метаболического пути F. Если концентрация F увеличивается (т.е. вещество F синтезируется быстрее, чем расходуется), ингибируется активность одного из начальных ферментов. Такую регуляцию называют отрицательной обратной связью, или ретроингибированием. Отрицательная обратная связь - часто встречающийся механизм регуляции метаболизма в клетке.
В центральных метаболических путях исходные вещества могут быть активаторами ключевых ферментов метаболического пути. Как правило, при этом аллостерической активации подвергаются ферменты, катализирующие ключевые реакции заключительных этапов метаболического пути:
В качестве примера можно рассмотреть принципы регуляции гликолиза - специфического (начального) пути распада глюкозы (рис. 4). Один из конечных продуктов распада глюкозы - молекула АТФ. При избытке в клетке АТФ происходит ретроингибирование аллостерических ферментов фосфофруктокиназы и пируваткиназы. При образовании большого количества фруктозо-1,6-бисфосфата наблюдают аллостерическую активацию фермента пируваткиназы.
Рисунок 4. Схема положительной и отрицательной регуляции катаболизма глюкозы.
Молекула АТФ участвует в ретроингибировании аллостерических ферментов фосфофруктокиназы и пируваткиназы. Фруктозе-1,6-бисфосфат - активатор метаболического пути распада глюкозы. Плюсами отмечена активация, минусами - ингибирование ферментов.
Благодаря такой регуляции осуществляется слаженность протекания метаболического пути распада глюкозы.
Список использованной литературы
Биохимия : учебник / под ред. Е.С. Северина. - 5-е изд., испр. и доп. - М. : ГЭОТАР-Медиа, 2014. - 768 с. : ил.
Информация из интернета:
http://www.helix.ru/kb/item/197
http://dendrit.ru/page/show/mnemonick/energeticheskiy-obmen-i-obschiy-put-kata/
Размещено на Allbest.ru
...Подобные документы
Метаболизм как обмен питательных веществ в организме. Организация химических реакций в метаболические пути. Принципы регуляции метаболических путей. Внутриклеточная локализация ферментов. Схема положительной и отрицательной регуляции катаболизма глюкозы.
реферат [1,2 M], добавлен 26.11.2014Клеточный цикл как период жизни клетки, его этапы и протекающие процессы, значение в выживании организма. Методы регуляции репликации клетки. Программируемая клеточная гибель (апоптоз) и порядок влияния на нее. Биологическая роль процесса апоптоза.
лекция [284,6 K], добавлен 21.07.2009Представления о регулировании физиологических функций. Механизмы регуляции: нервно-рефлекторные и гуморальные. Виды нервных волокон. Законы проведения возбуждения. Функциональное значение нейронов структурных элементов, процессы, протекающие в них.
контрольная работа [29,6 K], добавлен 21.01.2010Механизм образования активных форм регуляторных пептидов. Метод определения активности ангиотензинпревращающего фермента. Исследование активности карбоксипептидазы N в сыворотке крови онкологических больных при химиотерапевтическом воздействии.
дипломная работа [74,0 K], добавлен 25.06.2009Ферменты обмена регуляторных пептидов. Методы определения концентрации вещества P, активности КПN, активности ангиотензинпревращающего фермента и лейцинаминопептидазы. Роль регуляторных пептидов в сыворотке крови спортсменов при физической работе.
дипломная работа [143,7 K], добавлен 25.06.2009Понятие и значение регуляции как направленного изменения интенсивности работы клеток, тканей, органов для достижения результата и удовлетворения потребностей организма. Типы регуляции и саморегуляции, а также системы, отвечающие за данные процессы.
презентация [31,4 K], добавлен 15.02.2014Дифференциальная экспрессия генов и ее значение в жизнедеятельности организмов. Особенности регуляции активности генов у эукариот и их характеристики. Индуцибельные и репрессибельные опероны. Уровни и механизмы регуляции экспрессии генов у прокариот.
лекция [2,8 M], добавлен 31.10.2016Основные системы регуляции метаболизма. Функции эндокринной системы по регуляции обмена веществ посредством гормонов. Организация нервно-гормональной регуляции. Белково-пептидные гормоны. Гормоны - производные аминокислот. Гормоны щитовидной железы.
презентация [5,3 M], добавлен 03.12.2013Общее понятие о гуморальной регуляции, принципы организации. Главные свойства гормонов. Сложные интегральные белки. Значение вторичных посредников. Стероидные и тиреоидные гормоны. Ядерные и цитоплазматические рецепторы. Связи гипоталамуса и гипофиза.
презентация [5,3 M], добавлен 05.01.2014Рефлексы, участвующие в регуляции дыхания. Разновидности рецепторов бронхо-легочного аппарата, принимающих участие в регуляции дыхания. Рефлексы, возникающие при изменении объема легких. Дополнительные разновидности патологических дыхательных движений.
презентация [2,4 M], добавлен 08.01.2014Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.
презентация [1,1 M], добавлен 07.12.2014Каталитическая активность молекул нуклеиновой кислоты РНК, функции фермента. Процесс созревания мРНК и тРНК. Понятие и разновидности сплайсинга малых ядерных РНК, роль и свойства мяРНК. Механизм регуляции активности генов и клеточной дифференцировки.
курсовая работа [4,4 M], добавлен 09.06.2011Сущность клеточного цикла - периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.
презентация [823,0 K], добавлен 28.10.2014Исследование роли коры в регуляции поведенческих реакций человека. Определение энергетических затрат в зависимости от вида профессиональной деятельности. Характеристика физиологических основ оздоровительной тренировки, разгрузочно-диетической терапии.
контрольная работа [22,7 K], добавлен 02.12.2011Сравнительное рассмотрение постсинаптических механизмов. Рецептия с участием G-белков, системы трансформации внеклеточного сигнала. Роль цАМФ в регуляции пролиферации и дифференцировки нервных клеток и модулирования активности ионных каналов мембран.
курсовая работа [76,2 K], добавлен 27.08.2009Сосудистая система в организме, ее основные функции. Факторы, определяющие движение крови по сосудам. Основные показатели гемодинамики. Кровяное давление и факторы, влияющие на его величину. Давление крови. Нервные механизмы регуляции сосудистого тонуса.
лекция [25,1 K], добавлен 30.07.2013Описание химического состава плодов и овощей. Роль обмена веществ и энергии в жизни живых существ. Биологическое значение цикла Кребса. Микро- и макроэволюция как две стороны единого эволюционного процесса. Определение понятий "антиген", "антитело".
контрольная работа [24,2 K], добавлен 13.10.2010Учение о биоритмах как важнейшего механизма регуляции функций организма. Физиологические и природные ритмы. Изучение максимальной активности и работоспособности человека в его суточном или циркадном биоритме. Рекомендации по профилактике переутомления.
презентация [1,3 M], добавлен 04.02.2015Типы взаимодействия неаллельных генов. Теория Ф. Жакоба и Ж. Моно о регуляции синтеза и-РНК и белков. Дигибридное скрещивание при неполном доминировании. Неаллельные взаимодействия генов. Механизм регуляции генетического кода, механизм индукции-репрессии.
реферат [159,6 K], добавлен 29.01.2011Система регуляции деятельности внутренних органов посредством гормонов. Функции эндокринной системы, участие в гуморальной (химической) регуляции функций организма и координирование деятельности всех органов и систем. Функция паращитовидных желёз.
реферат [17,2 K], добавлен 22.04.2009