Обмен веществ как основное жизненное свойство организма

Обмен белков и их использование в организме как пластические материалы. Физиологическое значение аминокислотного состава белков и их биологическая ценность. Обмен углеводов и липидов в организме человека. Водный обмен и кислотно-щелочное равновесие.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 11.10.2015
Размер файла 28,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Обмен белков

2. Обмен Углеводов

3. Обмен липидов

4. Водный обмен

5. Кислотно-щелочное равновесие

Заключение

Список литературы

Введение

Обмен веществ - основное жизненное свой свойство организма , с прекращением обмена веществ наступает смерть. В нем участвуют белки, жиры, углеводы, вода, минеральные соли . Все процессы обмена веществ взаимосвязаны. Интенсивность обмена веществ зависит от возраста , характера выполняемой работы, климатических и других факторов. Он регулируется нервной системой и гуморальными факторами. При заболеваниях происходят различные изменения в обмене веществ, иногда они являются основными признаками заболевания.

Обмен веществ начинается с поступления питательных веществ в желудочно-кишечный тракт и воздуха в легкие.

Первым этапом обмена веществ являются ферментативные процессы расщепления белков, жиров и углеводов до растворимых в воде аминокислот, моно- и дисахаридов, глицерина, жирных кислот и других соединений, происходящие в различных отделах желудочно-кишечного тракта, а также всасывание этих веществ в кровь и лимфу.

Вторым этапом обмена являются транспорт питательных веществ и кислорода кровью к тканям и те сложные химические превращения веществ, которые происходят в клетках. В них одновременно осуществляются расщепление питательных веществ до конечных продуктов метаболизма, синтез ферментов, гормонов, составных частей цитоплазмы. Расщепление веществ сопровождается выделением энергии, которая используется для процессов синтеза и обеспечения работы каждого органа и организма в целом.

Третьим этапом является удаление конечных продуктов распада из клеток, их транспорт и выделение почками, легкими, потовыми железами и кишечником.

Превращение белков, жиров, углеводов, минеральных веществ и воды происходит в тесном взаимодействии друг с другом. В метаболизме каждого из них имеются свои особенности, а физиологическое значение их различно, поэтому обмен каждого из этих веществ принято рассматривать отдельно.

1. Обмен белков

Белки используются в организме в первую очередь в качестве пластических материалов. Потребность в белке определяется тем его минимальным количеством, которое будет уравновешивать его потери организмом. Белки находятся в состоянии непрерывного обмена и обновления. В организме здорового взрослого человека количество распавшегося за сутки белка равно количеству вновь синтезированного. Вся совокупность обмена веществ в организме (дыхание, пищеварение, выделение) обеспечивается деятельностью ферментов, которые являются белками. Все двигательные функции организма обеспечиваются взаимодействием сократительных белков - актина и миозина.

Поступающий с пищей из внешней среды белок служит пластической и энергетической целям. Пластическое значение белка состоит в восполнении и новообразовании различных структурных компонентов клетки. Энергетическое значение заключается в обеспечении организма энергией, образующейся при расщеплении белков.

В тканях постоянно протекают процессы распада белка с последующим выделением из организма неиспользованных продуктов белкового обмена и наряду с этим - синтез белков. Таким образом, белки организма находятся в динамическом состоянии: из-за непрерывного процесса их разрушения и образования происходит обновление белков, скорость которого неодинакова для различных тканей. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, а также других внутренних органов и плазмы крови. Медленнее обновляются белки, входящие в состав клеток мозга, сердца, половых желез и еще медленнее - белки мышц, кожи и особенно опорных тканей (сухожилий, костей и хрящей).

Физиологическое значение аминокислотного состава пищевых белков и их биологическая ценность. Для нормального обмена белков, являющихся основой их синтеза, необходимо поступление с пищей в организм различных аминокислот. Изменяя количественное соотношение между поступающими в организм аминокислотами или исключая из рациона ту или иную аминокислоту, можно по состоянию азотистого баланса, росту, массе тела и общему состоянию животных судить о значении для организма отдельных аминокислот. Экспериментально установлено, что из 20 входящих в состав белков аминокислот 12 синтезируются в организме - заменимые аминокислоты, а 8 не синтезируются - незаменимые аминокислоты.

Без незаменимых аминокислот синтез белка резко нарушается и наступает отрицательный баланс азота, останавливается рост, уменьшается масса тела. Для людей незаменимыми аминокислотами являются лейцин, изолейцин, валин, метионин, лизин, треонин, фенилаланин, триптофан.

Белки обладают различным аминокислотным составом, поэтому и возможность их использования для синтетических нужд организма неодинакова. В связи с этим было введено понятие биологической ценности белков пищи. Белки, содержащие весь необходимый набор аминокислот в таких соотношениях, которые обеспечивают нормальные процессы синтеза, являются белками биологически полноценными. Наоборот, белки, не содержащие тех или иных аминокислот или содержащие их в очень малых количествах, являются неполноценными. Так, неполноценными белками являются желатина, в которой имеются лишь следы цистина и отсутствуют триптофан и тирозин; зеин (белок, находящийся в кукурузе), содержащий мало триптофана и лизина; глиадин (белок пшеницы) и гордеин (белок ячменя), содержащие мало лизина; и некоторые другие. Наиболее высока биологическая ценность белков мяса, яиц, рыбы, икры, молока.

У людей встречается форма белковой недостаточности, развивающаяся при однообразном питании продуктами растительного происхождения с малым содержанием белка. При этом возникает заболевание, получившее название «квашиоркор». Оно встречается среди населения стран тропического и субтропического пояса Африки, Латинской Америки и Юго-Восточной Азии. Этим заболеванием страдают преимущественно дети в возрасте от 1 года до 5 лет.

Биологическая ценность одного и того же белка для разных людей различна. Вероятно, она не является какой-то определенной величиной, а может изменяться в зависимости от состояния организма, предварительного пищевого режима, интенсивности и характера физиологической деятельности, возраста, индивидуальных особенностей обмена веществ и других факторов.

Практически важно, чтобы два неполноценных белка, один из которых не содержит одних аминокислот, а другой - других, в сумме могли обеспечить потребности организма.

Азотистый баланс. Это соотношение количества азота, поступившего в организм с пищей и выделенного из него. Так как основным источником азота в организме является белок, то по азотистому балансу можно судить о соотношении количества поступившего и разрушенного в организме белка. Количество азота, поступившего с пищей, всегда больше количества усвоенного азота, так как часть его теряется с калом.

Усвоение азота вычисляют по разности содержания его в принятой пище и в кале. Зная количество усвоенного азота, легко вычислить общее количество усвоенного организмом белка, так как в белке содержится в среднем 16% азота, т. е. 1 г азота содержится в 6,25 г белка. Следовательно, умножив найденное количество азота на 6,25, можно определить количество усвоенного белка.

Для того чтобы установить количество разрушенного белка, необходимо знать общее количество азота, выведенного из организма. Азотсодержащие продукты белкового обмена (мочевина, мочевая кислота, креатинин и др.) выделяются преимущественно с мочой и частично с потом. В условиях обычного, неинтенсивного потоотделения количество азота в поте можно не принимать во внимание, поэтому для определения количества распавшегося в организме белка обычно находят количество азота в моче и умножают на 6,25.

Между количеством азота, введенного с белками пищи, и количеством азота, выводимым из организма, существует определенная связь. Увеличение поступления белка в организм приводит к увеличению выделения азота из организма. У взрослого человека при адекватном питании, как правило, количество введенного в организм азота равно количеству азота, выведенного из организма. Это состояние получило название азотистого равновесия. Если в условиях азотистого равновесия повысить количество белка в пище, то азотистое равновесие вскоре восстановится, но уже на новом, более высоком уровне. Таким образом, азотистое равновесие может устанавливаться при значительных колебаниях содержания белка в пище.

В случаях, когда поступление азота превышает его выделение, говорят о положительном азотистом балансе. При этом синтез белка преобладает над его распадом. Устойчивый положительный азотистый баланс наблюдается всегда при увеличении массы тела. Он отмечается в период роста организма, во время беременности, в периоде выздоровления после тяжелых заболеваний, а также при усиленных спортивных тренировках, сопровождающихся увеличением массы мышц. В этих условиях происходит задержка азота в организме (ретенция азота).

Белки в организме не депонируются, т. е. не откладываются в запас, поэтому при поступлении с пищей значительного количества белка только часть его расходуется на пластические цели, большая же часть - на энергетические цели.

Когда количество выведенного из организма азота превышает количество поступившего азота, говорят об отрицательном азотистом балансе. Отрицательный азотистый баланс отмечается при белковом голодании, а также в случаях, когда в организм не поступают отдельные необходимые для синтеза белков аминокислоты.

Распад белка в организме протекает непрерывно. Степень распада белка обусловлена характером питания. Минимальные затраты белка в условиях белкового голодания наблюдаются при питании углеводами. В этих условиях выделение азота может быть в 3--З1/2 раза меньше, чем при полном голодании. Углеводы при этом выполняют сберегающую белки роль.

Распад белков в организме, происходящий при отсутствии белков в пище и достаточном введении всех других питательных веществ (углеводы, жиры, минеральные соли, вода, витамины), отражает те минимальные траты, которые обусловлены основными процессами жизнедеятельности. Эти наименьшие потери белка для организма в состоянии покоя, пересчитанные на 1 кг массы тела, были названы Рубнером коэффициентом изнашивания. Коэффициент изнашивания для взрослого человека равен 0,028--0,075 г азота на 1 кг массы тела в сутки.

Отрицательный азотистый баланс развивается при полном отсутствии или недостаточном количестве белка в пище, а также при потреблении пищи, содержащей неполноценные белки. Не исключена возможность дефицита белка при нормальном поступлении, но при значительном увеличении потребности в нем организма. Во всех этих случаях имеет место белковое голодание.

При белковом голодании даже в случаях достаточного поступления в организм жиров, углеводов, минеральных солей, воды и витаминов происходит постепенно нарастающая потеря массы тела, зависящая от того, что затраты тканевых белков (минимальные в этих условиях и равные коэффициенту изнашивания) не компенсируются поступлением белков с пищей, поэтому длительное белковое голодание в конечном счете, так же как и полное голодание, неизбежно приводит к смерти. Особенно тяжело переносит белковое голодание растущий организм, у которого в этом случае происходит не только потеря массы тела, но и остановка роста, обусловленная недостатком пластического материала, необходимого для построения клеточных структур.

Необходимо потребление не менее 0,75 г белка на 1 кг массы тела в сутки, что для взрослого здорового человека массой 70 кг составляет не менее 52,5 г полноценного белка. Для надежной стабильности азотистого баланса рекомендуется принимать с пищей 85 - 90 г белка в сутки. У детей, беременных и кормящих женщин эти нормы должны быть выше. Физиологическое значение в данном случае означает, что белки в основном выполняют пластическую функцию, а углеводы - энергетическую.

2. Обмен углеводов

Углеводы являются основным источником энергии, а также выполняют в организме пластические функции, в ходе окисления глюкозы образуются промежуточные продукты - пентозы, которые входят в состав нуклеотидов и нуклеиновых кислот. Глюкоза необходима для синтеза некоторых аминокислот, синтеза и окисления липидов, полисахаридов. Организм человека получает углеводы главным образом в виде растительного полисахарида крахмала и в небольшом количестве в виде животного полисахарида гликогена. В желудочно-кишечном тракте осуществляется их расщепление до уровня моносахаридов (глюкозы, фруктозы, лактозы, галактозы.

Уровень глюкозы в крови составляет 3,3--5,5 ммоль/л (60-- 100 мг%) и является важнейшей гомеостатической константой организма. Особенно чувствительной к понижению уровня глюкозы в крови (гипогликемия) является ЦНС. Незначительная гипогликемия проявляется общей слабостью и быстрой утомляемостью. При снижении уровня глюкозы в крови до 2,2--1,7 ммоль/л (40-- 30 мг%) развиваются судороги, бред, потеря сознания, а также вегетативные реакции: усиленное потоотделение, изменение просвета кожных сосудов и др. Это состояние получило название «гипогликемическая кома». Введение в кровь глюкозы быстро устраняет данные расстройства.

Изменения углеводов в организме. Глюкоза, поступающая в кровь из кишечника, транспортируется в печень, где из нее синтезируется гликоген. При перфузии изолированной печени раствором, содержащим глюкозу, количество гликогена в ткани печени увеличивается.

Гликоген печени представляет собой резервный, т. е. отложенный в запас, углевод. Количество его может достигать у взрослого человека 150-200 г. Образование гликогена при относительно медленном поступлении глюкозы в кровь происходит достаточно быстро, поэтому после введения небольшого количества углеводов повышения содержания глюкозы в крови (гипергликемия) не наблюдается. Если же в пищеварительный тракт поступает большое количество легко расщепляющихся и быстро всасывающихся углеводов, содержание глюкозы в крови быстро увеличивается. Развивающуюся при этом гипергликемию называют алиментарной, иначе говоря - пищевой. Ее результатом является глюкозурия, т. е. выделение глюкозы с мочой, которое наступает в том случае, если уровень глюкозы в крови повышается до 8,9-- 10,0 ммоль/л (160--180 мг%).

При полном отсутствии углеводов в пище они образуются в организме из продуктов распада жиров и белков.

По мере убыли глюкозы в крови происходят расщепление гликогена в печени и поступление глюкозы в кровь (мобилизация гликогена). Благодаря этому сохраняется относительное постоянство содержания глюкозы в крови.

Гликоген откладывается также в мышцах, где его содержится около 1-2%. Количество гликогена в мышцах увеличивается в случае обильного питания и уменьшается во время голодания. При работе мышц под влиянием фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное расщепление гликогена, являющегося одним из источников энергии мышечного сокращения.

Захват глюкозы разными органами из притекающей крови неодинаков: мозг задерживает 12% глюкозы, кишечник-- 9%, мышцы -- 7%, почки -- 5% (Е. С. Лондон).

Распад углеводов в организме животных происходит как бескислородным путем до молочной кислоты (анаэробный гликолиз), так и путем окисления продуктов распада углеводов до СО2 и Н2O.

Регуляция обмена углеводов. Основным параметром регулирования углеводного обмена является поддержание уровня глюкозы в крови в пределах 4,4--6,7 ммоль/л. Изменение содержания глюкозы в крови воспринимается глюкорецепторами, сосредоточенными в основном в печени и сосудах, а также клетками вентромедиального отдела гипоталамуса. Показано участие ряда отделов ЦНС в регуляции углеводного обмена.

Выраженным влиянием на углеводный обмен обладает инсулин -- гормон, вырабатываемый в-клетками островковой ткани поджелудочной железы. При введении инсулина уровень глюкозы в крови снижается. Это происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Инсулин является единственным гормоном, понижающим уровень глюкозы в крови, поэтому при уменьшении секреции этого гормона развиваются стойкая гипергликемия и последующая глюкозурия (сахарный диабет, или сахарное мочеизнурение).

Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый альфа-клетками островковой ткани поджелудочной железы; адреналин -- гормон мозгового слоя надпочечников; глюкокортикоиды -- гормоны коркового слоя надпочечника; соматотропный гормон гипофиза; тироксин и трийодтиронин -- гормоны щитовидной железы. В связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина эти гормоны часто объединяют понятием «контринсулярные гормоны».

В течение первых 12 часов и более после приема пищи поддержание концентрации глюкозы крови обеспечивается за счет распада гликогена в печени. После истощения запасов гликогена усиливается синтез ферментов, обеспечивающих реакции глюконеогенеза - синтеза глюкозы из лактата или аминокислот. В среднем за сутки человек потребляет 400-500 г углеводов, из которых обычно 350 - 400 г составляет крахмал, а 50 - 100 r - моно- и дисахариды. Избыток углеводов депонируется в виде жира.

3. Обмен липидов

белок обмен углеводы водный

Липиды являются сложными эфирами глицерина и высших жирных кислот. Жирные кислоты бывают насыщенными и ненасыщенными (содержащими одну и более двойных связей). Липиды играют в организме энергетическую и пластическую роль. За счет окисления жиров обеспечивается около 50% потребности в энергии взрослого организма. Жиры служат резервом питания организма, их запасы у человека в среднем составляют 10 - 20% от массы тела. Из них около половины находятся в подкожной жировой клетчатке, значительное количество откладывается в большом сальнике, околопочечной клетчатке и между мышцами.

В состоянии голода, при действии на организм холода, при физической или психоэмоциональной нагрузке происходит интенсивное расщепление запасенных жиров. В условиях покоя после приема пищи происходит ресинтез и отложение липидов в депо. Главную энергетическую роль играют нейтральные жиры - триглицериды, а пластическую осуществляют фосфолипиды, холестерин и жирные кислоты, которые выполняют функции структурных компонентов клеточных мембран, входят в состав липопротеидов, являются предшественниками стероидных гормонов, желчных кислот и простагландинов.

Липидные молекулы, всосавшиеся из кишечника, упаковываются в эпителиоцитах в транспортные частицы (хиломикроны), которые через лимфатические сосуды поступают в кровоток. Под действием липопротеидлипазы эндотелия капилляров главный компонент хиломикронов - нейтральные триглицериды - расщепляются до глицерина и свободных жирных кислот. Часть жирных кислот может связываться с альбумином, а глицерин и свободные жирные кислоты поступают в жировые клетки и превращаются в триглицериды. Остатки хиломикронов крови захватываются гепатоцитами, подвергаются эндоцитозу и разрушаются в лизосомах.

В печени формируются липопротеиды для транспорта синтезированных в ней липидных молекул. Это липопротеиды очень низкой и липопротеиды низкой плотности, которые транспортируют из печени к другим тканям триглицериды, холестерин. Липопротеиды низкой плотности захватываются из крови клетками тканей с помощью липопротеидных рецепторов, эндоцитируются, высвобождают для нужд клеток холестерин и разрушаются в лизосомах. В случае избыточного накопления в крови липопротеидов низкой плотности, они захватываются макрофагами и другими лейкоцитами. Эти клетки, накапливая метаболически низкоактивные эфиры холестерина, становятся одними из компонентов атеросклеротических бляшек сосудов.

Исключительно важное физиологическое значение имеют стерины, в частности холестерин. Это вещество входит в состав клеточных мембран, является источником образования желчных кислот, а также гормонов коры надпочечников и половых желез, витамина D. Вместе с тем холестерину отводится ведущая роль в развитии атеросклероза. Содержание холестерина в плазме крови человека имеет возрастную динамику: у новорожденных концентрация холестерина 65--70 мг/100 мл, к возрасту 1 год она увеличивается и составляет 150 мг/100 мл. Далее происходит постепенное, но неуклонное повышение концентрации холестерина в плазме крови, которое обычно продолжается у мужчин до 50 лет и у женщин до 60--65 лет. В экономически развитых странах у мужчин 40--60 лет концентрация холестерина в плазме крови составляет 205--220 мг/100 мл, а у женщин 195--235 мг/100 мл. Содержание холестерина у взрослых людей выше 270 мг/100 мл расценивается как гиперхолестеринемия, а ниже 150 мг/100 мл -- как гипохолестеринемия.

Липопротеиды высокой плотности транспортируют избыточный холестерин и его эфиры из тканей в печень, где они превращается в желчные кислоты, которые выводятся из организма. Кроме того, липопротеиды высокой плотности используются для синтеза стероидных гормонов в надпочечниках.

Как простые, так и сложные липидные молекулы могут синтезироваться в организме, за исключением ненасыщенных линолевой, линоленовой и арахидоновой жирных кислот, которые должны поступать с пищей. Эти незаменимые кислоты входят в состав молекул фосфолипидов. Из арахидоновой кислоты образуются простагландины, простациклины, тромбоксаны, лейкотриены. Отсутствие или недостаточное поступление в организм незаменимых жирных кислот приводит к задержке роста, нарушению функции почек, заболеваниям кожи, бесплодию. Биологическая юность пищевых липидов определяется наличием в них незаменимыx жирных кислот и их усвояемостью. Сливочное масло и свиной жир усваиваются на 93 - 98%, говяжий - на 80 - 94%, подсолнечное масло - на 86- 90%, маргарин - на 94-98%.

4. Водный обмен

Содержание воды в организме взрослого человека составляет в среднем 73,2±3% от массы тела. Водный баланс в организме поддерживается за счет равенства объемов потерь воды и ее поступления в организм. Суточная потребность в воде колеблется от 21 до 43 мл/кг (в среднем 2400 мл) и удовлетворяется за счет поступления воды при питье (~1200 мл), с пищей (~900 мл) и воды, образующейся в организме в ходе обменных процессов (эндогенной воды (~300 мл). Такое же количество воды выводится в составе мочи (~1400 мл), кала (~100 мл), посредством испарения с поверхности кожи и дыхательных путей (~900 мл).

Потребность организма в воде зависит от характера питания. При питании преимущественно углеводной и жирной пищей и при небольшом поступлении NaCI потребности в воде меньше. Пища, богатая белками, а также повышенный прием соли обусловливают большую потребность в воде, которая необходима для экскреции осмотически активных веществ (мочевины и минеральных ионов). Недостаточное поступление в организм воды или ее избыточная потеря приводят к дегидратации, что сопровождается сгущением крови, ухудшением ее реологических свойств и нарушением гемодинамики.

Недостаток в организме воды в объеме 20% от массы тела ведет к летальному исходу. Избыточное поступление воды в организм или снижение ее объемов, выводимых организма, приводит к водной интоксикации. В результате повышенной чувствительности нервных клеток и нервных центров к уменьшению осмолярности водная интоксикация может сопровождаться мышечными судорогами.Обмен воды и минеральных ионов в организме тесно взаимосвязаны, что обусловлено необходимостью поддержания осмотического давления на относительно постоянном уровне во внеклеточной среде и в клетках. Осуществление ряда физиологических процессов (возбуждения, синоптической передачи, сокращения мышцы) невозможно без поддержания в клетке и во внеклеточной среде определенной концентрации Na+, K+, Са2+ и других минеральных ионов. Все они должны поступать в организм с пищей.

5. Кислотно-щелочное равновесие

Кислотно-щелочное равновесие (синоним: кислотно-основное равновесие, кислотно-щелочной баланс, равновесие кислот и оснований) -- относительное постоянство концентрации водородных ионов во внутренних средах организма, обеспечивающее полноценность метаболических процессов, протекающих в клетках и тканях.

Обмен веществ и энергии в тканях нуждается в непрерывном поступлении кислорода и выведении углекислоты, образующейся в результате метаболических превращений веществ. Кислород в клетки и углекислота из клеток переносятся кровью, которая является важнейшим компонентом внутренней среды организма. Помимо углекислоты кровь содержит и другие кислые продукты, например молочную, ?-оксимасляную кислоты, а также основания. Реакция жидкостей организма зависит от соотношения в них кислот и оснований; состоянию К.-щ. р. соответствует величина рН крови в диапазоне от 7,37 до 7,44; в эритроцитах рН составляет 7,19 ± 0,02 и отличается от рН крови на 0,2 единицы рН). Колебания рН крови, выходящие за диапазоны нормальных значений, свидетельствуют о патологических изменениях обмена веществ (метаболические ацидоз и алкалоз) или дыхания (респираторные ацидоз и алкалоз).Для поддержания К.-щ. р. в организме существуют эффективные системы, способные обеспечить выведение или нейтрализацию водородных ионов (ионов Н+) при их избытке или задержку ионов Н+ в организме при их дефиците. К таким системам относятся буферные системы крови, дыхательная система (легкие) и выделительная система (почки).Наиболее важная буферная система крови -- бикарбонатная система: Н2СО3(угольная кислота) -- NaHCO3 (бикарбонат натрия), общим ионом в которой является бикарбонатный ион . Большая часть ионов образуется при диссоциации NaHCO3: NaHCO3 ???+ Na+. Бикарбонатные ионы, освобождающиеся при диссоциации соли, подавляют диссоциацию слабой угольной кислоты. Механизм буферного действия бикарбонатной системы крови состоит в следующем: при поступлении в кровь большого количества так называемых кислых эквивалентов ионы Н+ связываются ионами и образуют слабо диссоциирующую Н2СО3 до тех пор, пока концентрация водородных ионов снова не придет к норме. Если реакция крови сдвигается в щелочную сторону и в крови появляется избыток ионов ОН (ионов гидроксила), угольная кислота соединяется с ними и образует воду и ионы бикарбоната: OH- + H2CO3 = H2O + до тех пор, пока реакция среды не вернется к физиологической норме. Т.о., поступление в кровь избыточного количества кислых эквивалентов (или оснований), образующегося в результате определенных изменений в клеточном метаболизме, не приводит к сколько-нибудь заметным сдвигам в концентрации ионов Н+ в крови.Такой же механизм действия и другой буферной системы крови -- фосфатной, роль кислоты в которой играет однозамещенный фосфат натрия NaH2PO4, а роль соли -- двузамещенный фосфат натрия Na2HPO4. Общим ионом в этой системе является ион. Так как фосфатов в крови меньше, чем бикарбонатов, емкость фосфатной буферной системы ниже, чем бикарбонатной.К буферным системам крови относятся также белки, особенно гемоглобин, которые являются самой мощной буферной системой организма. При насыщении кислородом гемоглобин становится более сильной кислотой после того, как его кислотные группы, диссоциируя, отдадут в кровь ионы Н+, гемоглобин, став более слабой кислотой, начинает связывать ионы Н+. Эритроциты в капиллярах отдают кислород и принимают углекислоту, образовавшуюся в тканях. Под действием ферментакарбоангидразы эритроцита углекислота СО2 взаимодействует с водой Н2О с образованием угольной кислоты Н2СО3. Возникающий за счет диссоциации угольной кислоты избыток ионов Н+ связывается гемоглобином, отдавшим кислород, а ионы выходят из эритроцитов в плазму крови. В результате этого в плазме крови повышается концентрация бикарбонатных ионов, т.е. буферная система эритроцитов тесно связана с бикарбонатной буферной системой крови. В обмен на ионы бикарбоната в эритроцит поступают ионы хлора (Cl), для которых мембрана эритроцита проницаема, а ионы Na+ (вторая составляющая NaCI) остаются в плазме крови.

При прохождении крови через легкие ее буферные системы разгружаются от кислых эквивалентов за счет выделения углекислоты, и буферные резервы крови восстанавливаются в прежнем объеме (чтобы восстановить К.-щ. р., буферным системам крови нужно всего 30 с).Легкие обладают значительным влиянием на К.-щ. р., однако их эффект сказывается по прошествии большего промежутка времени, чем эффект буферных систем крови. Для того, чтобы ликвидировать сдвиг рН крови вправо или влево от нормальной величины, легким требуется примерно 1--3 мин. Однако, увеличивая количество выделяющейся в окружающую среду углекислоты, легкие быстро ликвидируют угрозу ацидоза. Почки обладают способностью уменьшать или увеличивать концентрацию бикарбонатов в крови при изменении концентрации водородных ионов. Процесс этот происходит медленно, для полного восстановления К.-щ. р. почкам требуется 10--20 ч. Основным механизмом поддержания К.-щ. р. при участии почек является процесс реабсорбции ионов Na+ и секреции ионов Н+ в почечных канальцах. Взамен ионов Na+, избирательно всасывающихся клетками почечных канальцев, в просвет канальца выделяются ионы водорода. В клетках канальцев из Н2СО3 образуется бикарбонат, за счет которого повышается его концентрация в крови. Другим химическим процессом, в результате которого происходит задержка ионов Na+ в организме и выведение излишка ионов Н+, является превращение бикарбонатов в угольную кислоту в просвете почечных канальцев. В клетках канальцев при взаимодействии воды с углекислотой, катализируемой карбоангидразой, образуется угольная кислота; ионы Н+, освобождающиеся при ее диссоциации, выделяются в просвет канальца и соединяются там с анионами бикарбоната, а соответствующий этим анионам ион Na+ поступает в клетки почечных канальцев. Угольная кислота, образовавшаяся в просвете канальцев из ионов Н+ и бикарбоната, распадается на СО2 и Н2О и в таком виде выводится из организма. Еще одним механизмом, способствующим сбережению натрия в организме, выведению и нейтрализации кислых эквивалентов, является образование в почках аммиака. Свободный аммиак, появившийся в результате окислительного дезаминирования аминокислот (прежде всего глутаминовой кислоты), проникает в просветы почечных канальцев, соединяется с ионом Н+ и превращается в плохо диффундирующий через клеточную мембрану ион аммония (ион NH4), не способный вновь вернуться в клетки эпителия почечных канальцев. Экскреции аммония способствуют ферменты глутаминаза и карбоангидраза.Соотношение между концентрацией ионов Н+ в моче и крови в среднем составляет 800:1, что иллюстрирует способность почек выводить из организма ионы Н+. Обычно рН мочи находится в пределах 5,5--7,5. Скорость секреции ионов Н+, обмениваемых на натрий, зависит от концентрации углекислоты во внеклеточной жидкости. Т.о., в почечных канальцах тесно переплетаются механизмы водно-солевого обмена и поддержания К.-щ. р., а уменьшение концентрации ионов Н+в крови может ограничить реабсорбцию Na+ в почечных канальцах.

Заключение

Явления обмена веществ заключаются в поступлении в организм из внешней среды различных веществ, в усвоении и изменении их и в выделении образующихся продуктов распада. При всех этих процессах изменения веществ в организме наблюдается множество различных химических, механических, термических и электрических явлений, непрерывно происходит превращение энергии: потенциальная энергия сложных органических соединений при их расщеплении освобождается и превращается в тепловую, механическую, электрическую. Преимущественно в организме освобождается тепловая и механическая энергия. Совокупность этих обменов, взаимосвязанных между собой и окружающей средой, называют обменом веществ. Обмен веществ или метаболизм - важнейшее условие и необходимый признак жизни. С прекращением обмена веществ прекращается и сама жизнь!

Список литературы

1. Влощинский П.Е., Позняковский В.М., Дроздова Т.М. Физиология питания: Учебник. -, 2007. -

2. Физиология человека. По общей редакцией профессора Н.В. Зимкина. 1975

3. Мартинчик А.Н., Королев А.А., Трофименко Л.С. Физиология питания, санитария и гигиена: Учеб. пособие. - М.: Академия, 2006.

4. Матюхина З.П. Основы физиологии питания, гигиены и санитарии: Учебник. - М.: Академия, 2006.

5. Михайлов В.С. Культура питания. - М.: Профиздат, 2000.

6. Новикова Е.Ч., Ладодо К.С., Бренц М.Я. Питание детей. - М.: Норма, 2002.

7. Павлоцкая Л.Ф. Физиология питания: Учеб. - М.: Выш. шк., 1999.

8. Популярно о питании / Под ред. А.И. Столмаковой. - К.: Здоровья, 2000.

9. Теплов В.И., Боряев В.Е. Физиология питания: Учебное пособие. - М.: Дашков, 2007.

10. материалы с сайта http://medicinform.ru/

Размещено на Allbest.ru

...

Подобные документы

  • Обмен белков, липидов и углеводов. Типы питания человека: всеядность, раздельное и низкоуглеводное питание, вегетарианство, сыроедение. Роль белков в обмене веществ. Недостаток жиров в организме. Изменения в организме в результате изменения типа питания.

    курсовая работа [33,5 K], добавлен 02.02.2014

  • Обмен веществ и энергии как основная функция организма, его основные фазы и протекающие процессы - ассимиляции и диссимиляции. Роль белков в организме, механизм их обмена. Обмен воды, витаминов, жиров, углеводов. Регуляция теплообразования и теплоотдачи.

    реферат [27,2 K], добавлен 08.08.2009

  • Результат расщепления и функции белков, жиров и углеводов. Состав белков и их содержание в пищевых продуктах. Механизмы регулирования белкового и жирового обмена. Роль углеводов в организме. Соотношение белков, жиров и углеводов в полноценном рационе.

    презентация [23,8 M], добавлен 28.11.2013

  • Специфические свойства, структура и основные функции, продукты распада жиров, белков и углеводов. Переваривание и всасывание жиров в организме. Расщепление сложных углеводов пищи. Параметры регулирования углеводного обмена. Роль печени в обмене веществ.

    курсовая работа [261,6 K], добавлен 12.11.2014

  • Значение для организма белков, жиров и углеводов, воды и минеральных солей. Белковый, углеводный, жировой обмен организма человека. Нормы питания. Витамины, их роль в обмене веществ. Основные авитаминозы. Роль минеральных веществ в питании человека.

    контрольная работа [1,6 M], добавлен 24.01.2009

  • Метаболизм липидов в организме, его закономерности и особенности. Общность промежуточных продуктов. Взаимосвязь между обменами углеводов, липидов и белков. Центральная роль ацетил-КоА во взаимосвязи процессов обмена. Расщепление углеводов, его этапы.

    контрольная работа [26,8 K], добавлен 10.06.2015

  • Изучение проблемы обмена веществ как основной функции организма человека в научной литературе. Обмен углеводов как совокупность процессов их превращения в организме, его фазы. Источник образования и поступления витаминов. Регуляция обмена веществ.

    курсовая работа [415,4 K], добавлен 01.02.2014

  • Функции обмена веществ в организме: обеспечение органов и систем энергией, вырабатываемой при расщеплении пищевых веществ; превращение молекул пищевых продуктов в строительные блоки; образование нуклеиновых кислот, липидов, углеводов и других компонентов.

    реферат [28,0 K], добавлен 20.01.2009

  • Обмен сложных белков. Переваривание, всасывание и промежуточный обмен липидов. Жирорастворимые и водорастворимые витамины. Регуляция обмена углеводов. Теплообмен и регуляция температуры тела. Регуляция липидного обмена. Роль печени в обмене веществ.

    презентация [10,2 M], добавлен 05.04.2014

  • Сущность метаболизма организма человека. Постоянный обмен веществ между организмом и внешней средой. Аэробное и анаэробное расщепление продуктов. Величина основного обмена. Источник тепла в организме. Нервный механизм терморегуляции организма человека.

    лекция [22,3 K], добавлен 28.04.2013

  • Превращения веществ и энергии, происходящие в живых организмах и лежащие в основе их жизнедеятельности. Назначение обмена веществ и энергии, взаимосвязь анаболических и катаболических процессов. Энергетическая ценность углеводов и жиров в организме.

    реферат [21,9 K], добавлен 28.05.2010

  • Поддержание концентраций растворенных веществ — важное условие жизни. Содержание и роль воды в организме, процесс водного обмена. Минеральные элементы, присутствующие в живом организме. Биологическая роль кальция, фосфора, натрия. Обезвоживание организма.

    реферат [46,3 K], добавлен 11.05.2011

  • Обмен веществ в организме - взаимосвязанное единое целое. Взаимопереходы между отдельными классами органических соединений - естественное, неизбежное и крупномасштабное явление в живой природе. Взаимосвязь обменов нуклеиновых кислот, углеводов и липидов.

    презентация [919,4 K], добавлен 13.10.2013

  • Обмен нуклеопротеинов - сложных белков, небелковым компонентом которых являются нуклеиновые кислоты – ДНК или РНК. Катаболизм пиримидиновых азотистых оснований. Роль аминокислот в синтезе мононуклеотидов. Ферменты, катализирующие реакции реутилизации.

    презентация [895,5 K], добавлен 22.01.2016

  • Углеводы и их роль в животном организме. Всасывание и обмен углеводов в тканях. Роль жиров в животном организме. Регуляция углеводно-жирового обмена. Особенности углеводного обмена у жвачных. Взаимосвязь белкового, углеводного и жирового обмена.

    презентация [2,0 M], добавлен 07.02.2016

  • Белки - основные структурные элементы клеток и тканей организма. Процессы распада и синтеза белков в ходе тканевого метаболизма. Цикл сложных химических превращений белковых веществ. Процесс переваривания и всасывания белков. Регуляция белкового обмена.

    реферат [396,3 K], добавлен 30.01.2011

  • История исследования белков. Белки: строение, классификация, обмен. Биосинтез белка. Функции белков в организме. Роль в жизнедеятельности организма. Высокомолекулярные органические соединения. Болезни, связанные с нарушением выработки ферментов.

    реферат [29,2 K], добавлен 05.10.2006

  • Роль обмена веществ в обеспечении пластических и энергетических потребностей организма. Особенности теплопродукции и теплоотдачи. Обмен веществ и энергии при различных уровнях функциональной активности организма. Температура тела человека и ее регуляция.

    реферат [22,5 K], добавлен 09.09.2009

  • Метаболизм (обмен веществ и энергии) как совокупность химических реакций, протекающих в клетках и в целостном организме, заключающихся в синтезе сложных молекул и новой протоплазмы (анаболизм) и в распаде молекул с освобождением энергии (катаболизм).

    реферат [221,8 K], добавлен 27.01.2010

  • Белки как класс биологических полимеров, присутствующих в каждом живом организме, оценка их роли и значения в процессе жизнедеятельности. Строение и основные элементы белков, их разновидности и функциональные особенности. Нарушение белкового обмена.

    презентация [980,5 K], добавлен 11.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.