Методы оценки клеточного иммунитета
Защитные функции клеточного иммунитета. Классификация способов определения количества Т-лимфоцитов, Т-хелперов, Т-супрессоров и лимфоцитов-киллеров. Содержание, значение и перспективы применения методов. Оценка функциональной активности Т-лимфоцитов.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 02.11.2015 |
Размер файла | 26,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Клеточный иммунитет (англ. Cell-mediated immunity) - это такой тип иммунного ответа, в котором не участвуют ни антитела, ни система комплемента. В процессе клеточного иммунитета активируются макрофаги, натуральные киллеры, антиген-специфичные цитотоксические Т-лимфоциты, и в ответ на антиген выделяются цитокины.
Иммунная система исторически разделена на две части - систему гуморального иммунитета и систему клеточного иммунитета. В случае гуморального иммунитета, защитные функции выполняют молекулы, находящиеся в плазме крови, но не клеточные элементы. В то время как в случае клеточного иммунитета защитная функция связана именно с клетками иммунной системы. Лимфоциты кластера дифференцировки CD4 или Т-хелперы осуществляют защиту против различных патогенов.
Система клеточного иммунитета выполняет защитные функции следующими способами:
· путём активации антиген-специфических цитотоксичных Т-лимфоцитов, которые могут вызывать апоптоз соматических клеток, демонстрируя на поверхности эпитопы чужеродных антигенов, например, клеток, заражённых вирусами, содержащими бактерии и клеток опухолей, демонстрирующих опухолевые антигены;
· путём активации макрофагов и натуральных киллеров, которые разрушают внутриклеточные патогены;
· путём стимулирования секреции цитокинов, которые оказывают влияние на другие клетки иммунной системы, принимающие участие в адаптивном иммунном ответе и врождённом иммунном ответе.
Клеточный иммунитет направлен преимущественно против микроорганизмов, которые выживают в фагоцитах и против микроорганизмов, поражающие другие клетки. Система клеточного иммунитета особенно эффективна против клеток, инфицированных вирусами, и принимает участие в защите от грибов, простейших, внутриклеточных бактерий и против клеток опухолей. Также система клеточного иммунитета играет важную роль в отторжении тканей.
Выделяют три вида методов оценки клеточного иммунитета, о которых речь пойдет далее.
Определение количества Т-лимфоцитов, Т-хелперов, Т-супрессоров и лимфоцитов-киллеров
Проводится с помощью иммунофлюоресцентного метода и моноклональных антител к поверхностным рецепторам этих клеток: CD3+ все Т-лимфоциты, СВ 4+-хелперы, СВ 8+-супрессоры, СО 16+-киллеры. До недавнего времени для количественной характеристики Т-лимфоцитов и их подклассов (хелперов, супрессоров, киллеров) использовался тест розеткообразования, т.е. способность лимфоцитов формировать розетки с эритроцитами барана. Однако в настоящее время этот тест утрачивает свое значение, уступая место менее сложному и более специфичному иммунофлюоресцентному методу с использованием моноклональных антител к поверхностным рецепторам лимфоцитов. Упоминание здесь о тестах розеткообразования обусловлено тем, что некоторые результаты, о которых речь пойдет далее, получены с их помощью.
Иммунофлуоресцентный анализ (МФА - метод флуоресцирующих антител, иммунофлуоресценция) (англ. Immunofluorescence) - набор иммунологических методов для качественного и количественного определения поверхностных и внутриклеточных антигенов в образцах клеточных суспензий (культур клеток, бактерий, микоплазм, риккетсий, вирусов), образцов крови, костного мозга, альвеолярных смывов, тонких тканевых срезов. Метод позволяет детально анализировать биологические образцы на присутствие определенных антигенных детерминант, характерных для определенных возбудителей или заболеваний, проводить количественную оценку как поверхностных, так и внутриклеточных белков и рецепторов. Исследование и оценка может выполняться вручную при помощи флюоресцентного микроскопа или автоматизировано с использованием проточного цитометра (flow cytometer) или микрочипового цитометра (сhip cytometer). Возможно применение конфокального микроскопа и роботизированного флюоресцентного микроскопа (в том числе совмещенных с проточным цитометром) в сочетании с программной системой обработки изображений. Имеющиеся в настоящее время автоматизированные технологии позволяют анализировать в одном образце примерно 50 различных антигенов с использованием набора различных флюоресцентных маркеров в формате высокоинформативной микроскопии и цитометрии (методы носят названия high-content imaging, high-content cytometry, high-content screening) и примерно вдвое меньшем максимальным набором антигенов с использованием современной проточной цитометрии или конфокальной микроскопии. Основными практическими приложениями являются онкология, микробиология, клеточная биология, генетика, фармакология и др.
Сущность и классификация метода. Сущность метода заключается в визуализации антигена специфическими антителами с флуоресцентными маркерами. Метод конъюгации глобулинов с органическими флюорохромами разработан в 1942 году А. Кунсом (англ.)русск.. [1] В настоящее время метод использует как антитела к различным антигенам, так и специфические красители к ДНК (к примеру, DAPI), РНК (к примеру, Sybr Green II), липидам и белкам.
В базовой МФА методике различают прямой метод, разработанный А. Кунсом и Мелвином Капланом, [2] и непрямой, разработанный А. Кунсом и Уиллером в первоначальном варианте непрямого МФА с комплементом.
При прямом методе (пМФА) на исследуемый препарат или в суспензию клеток наносят раствор прямо меченых флюоресцентным красителем антител. Образование комплекса антиген-антитело обнаруживается флюоресцентным сигналом в виде свечения разной степени интенсивности и четкости.
При непрямом методе (нМФА) на препарат наносят антитела против искомых антигенов (т. н. "первые" антитела), а затем видоспецифичные "вторые" антитела против "первых" антител, что позволяет избежать неспецифических реакций. При этом только вторые антитела коньюгированны с флюоресцентным красителем. К примеру, если при исследовании в качестве "первых" антител используются мышиные антитела - mouse IgG, то в качестве "вторых" используются антивидовые anti-mouse IgG коньюгированные с флюоресцентным красителем. Комплекс антиген-антитело дает флюоресцентное окрашивание только после связывания со "вторым" антителом.
Непрямые методы требуют наличия только антиглобулиновых видовых сывороток с флюорохромами, но при этом необходимо большое количество тестовых контролей. При постановке прямым методом делается только один контроль, хотя в более ранних версиях метода требовалось множество моноспецифических сывороток. Долгое время недостатками прямых видов МФА являлись ограниченная чувствительность из-за наличия возможных перекрестных реакций между близкими по антигенному составу объектами и неспецифическая флуоресценция вследствие адсорбции флуоресцирующих глобулинов на различных элементах препарата. В настоящее время используются коммерческие стандартные конъюгаты, содержащие иммуноглобулины к исследуемым антигенам. Использование биоинженерных иммуноглобулинов и высокая степень очистки антител позволили практически свести на нет неспецифические реакции, что сделало возможным дальнейшее технологическое развитие метода.
Поскольку прямой метод в настоящее время позволяет избежать неспецифических реакций, автоматизированные методики преимущественно используют прямой метод иммунофлуоресценции.
Результаты ручной микроскопической оценки описываются в так называемых "крестах" (от одного + до четырёх ++++) - субъективная градация степени выраженности реакции глазом исследователя. В автоматизированных методах в качестве детектора используются фотоумножители или высокочувствительные флуоресцентные фотокамеры, что позволяет регистрировать сигнал с большой точностью и дает значение относительного уровня флюоресценции (relative fluorescence ratio) в широком диапазоне шкалы. Абсолютное значение высчитывается с помощью контролей или антигенов с известным постоянным содержанием в образце. При использовании автоматизированных методов обработка данных осуществляется специализированными программами для обработки изображений и анализа цитометрических данных.
Значение и перспективы метода. Метод имеет решающее значение в ранней диагностике и лечении онкологических заболеваний (иммуногистохимия, онкогематология), диагностике инфекционных заболеваний (например, определение CD4+ клеток при ВИЧ) и наследственных синдромов. Интенсивно развиваются автоматизированные методы, среди которых направления высокоинформативной микроскопии (high content imaging) и высокоинформативной цитометрии (high content cytometry), параллельно развивающиеся с 90-х годов комбинированные методики цитометрии-микроскопии (цитометр-микроскоп), а также методы микрочиповой цитометрии с плазмонной голографией в которых отдельные антитела метятся наночастицами.
Метод моноклональных антител. Моноклональные антитела - антитела, вырабатываемые иммунными клетками, принадлежащими к одному клеточному клону, то есть произошедшими из одной клетки-предшественницы. Моноклональные антитела распознают и связывают антигены для распознавания специфических эпитопов, которые обеспечивают защиту против болезнетворных организмов.
Моноклональные антитела связывают различные белки, которые влияют на активность клеток, такие как рецепторы или другие белки, представленные на поверхности нормальных и раковых клеток. Специфичность моноклональных антител позволяет им связывать раковые клетки и, взаимодействуя с цитотоксическими агентами, такими как сильная радиоактивы, разрушают раковые клетки, не повреждая здоровые.
Раковые клетки, которые способны реплицироваться бесконечно, сливаются с клетками млекопитающих, которые продуцируют специфические антитела, что приводит к образованию гибридом, постоянно продуцирующих антитела. Эти антитела называют моноклональными, которые происходят из одного типа клеток, т.е. из клеток-гибридом. Антитела, получаемые с помощью традиционных методов, получают из клеток различного типа и называют поликлональными.
Моноклональные антитела искусственно производят против специфических антигенов, для связи с антигенами-мишенями. Лабораторное производство моноклональных антител, основанное на получении антигенов из одной клетки, позволяет получать идентичные друг другу моноклональные антитела.
При слиянии культур миеломных клеток с антителами клеток селезенки млекопитающих образуются гибридные клетки/ гибридомы, которые производят моноклональные антитела в большом количестве. Слияние клеток приводит к образованию двух типов клеток, один тип способен расти постоянно, другой тип способен производить чистые антитела в больших количествах. Гибридные клетки производят только одно лучшее антитело, более чистое, чем поликлональные антитела, получаемые с помощью традиционных методик. Моноклональные антитела являются гораздо более эффективными методами, чем традиционные методы лечения, поскольку эти методики воздействуют не только на инородную субстанцию, но и на собственные клетки организма, что вызывает сильные побочные эффекты. Моноклональные антитела взаимодействуют только с инородными антителами/ клетками-мишенями, не оказывая или оказывая минимальные побочные эффекты.
Присутствие большого количества специфических моноклональных антител в крови говорит о присутствии в организме аномального белка. Как правило, этот белок может быть обнаружен в процессе клинического обследования и идентифицирован с помощью скринингового анализа крови, например, с помощью белкового электрофореза. Источником аномального производства моноклональных антител является популяция плазматических клеток в костном мозге.
Антивирусные (9 продуктов): ANT-143 (анти-денге тип 2), ANT-150 (вирус гепатита В), ANT-156 (вирус гепатита С NS3), ANT-158 (вирус гепатита D), ANT-152 (HIV-1 p24), ANT-159(HIV-1 gp41), ANT-151 (HIV-1 gp120), ANT-153 (HIV-2 gp39), ANT-178 (нуклеокапсидный белок SARS), ANT-179 (SARS Spike).
Анти-мышиные лимфоциты (9 продуктов): ANT-175 (CD3), ANT-165 (CD4), ANT-136 (CD11b-FITC), ANT-135 (CD11a), ANT-133, ANT-142 (CD90 Thy-1), ANT-140 (CD90 Thy-1.1), ANT-141 (CD90 Thy-1.2), ANT-139 (B220)
Анти-мышиные цитокины (8 продуктов): ANT-116 (CTLA-4), ANT-105 (интерлейкин-2), ANT-103 (рецептор интерлейкина-2), ANT-108 (интерлейкин-4), ANT-113 (интерлейкин-10), ANT-114 (интерлейкин-12p40), ANT-209 (интерлейкин-12p75), ANT-166 (IFN-гамма).
Античеловеческие лимфоциты (12 продуктов): ANT-206 (CD1A), ANT-207 (CD2), ANT-144 (CD3), ANT-137 (CD3-FITC), ANT-138 (CD3-биотинилированный), ANT-145 (CD4), ANT-132(CD4-FITC), ANT-167(CD4-биотинилированный), ANT-171 (CD5), ANT-148 (CD8), ANT-131 (CD8-FITC), ANT-134 (CD8-биотинилированный).
Античеловеческие хемокины (9 продуктов): ANT-126 (эотаксин-1), ANT-127 (эотаксин-2), ANT-119 (моноцитарный хемотаксический и активирующий фактор), ANT-120 (хемотоксический фактор-3 макрофагов-моноцитов), ANT-118 (воспалительный белок макрофагов-1a), ANT-121 (воспалительный белок макрофагов-3), ANT-212 (белок воспаления макрофагов-3), ANT-212 (b) (белок воспаления макрофагов-3 бета), ANT-170 (фактор активации нейтрофилов).
Античеловеческие цитокины (28 продутов): ANT-128 (нейротропный фактор головного мозга), ANT-183 (белок морфогенеза костей-2), ANT-169 (эпидермальный фактор роста), ANT-187 (эритропоэтин), ANT-196 (эритропоэтин клон NYRhEPO), ANT-204 (анти-FAS-антитело), ANT-205 (FAS-активирующее антитело), ANT-197 (гормон роста), ANT-129 (КОЕ макрофагов-гранулоцитов), ANT-184 (КОЕ гранулоцитов), ANT-122 (нейтрализатор интерферона-альфа), ANT-208, ANT-185 (интерферон-бета), ANT-123 (интерферон-гамма), ANT-102(интерлейкин-2), ANT-104 (рецептор интерлейкина-2), ANT-106 (интерлейкин-3), ANT-107 (интерлейкин-4), ANT-109 (интерлейкин-6), ANT-110 (интерлейкин-7), ANT-111(интерлейкин-8), ANT-112 (интерлейкин-10), ANT-115 (интерлейкин-15), ANT-172 (лептин), ANT-117 (нейротрофин-4), ANT-124 (фактор некроза опухолей-альфа), ANT-168(трансфоримрующий фактор роста-бета), ANT-125 (фактор роста ЭПР).
Другие антитела: (25 продуктов): ANT-191 (СD20), ANT-130 (хламидия LPS), ANT-211 (c-Myc), ANT-146 (FLAG), ANT-186 (Neisseria Gonorrhea), ANT-176 (H-2K), ANT-101 (HA-tag белок),ANT-194 (поверхностный антиген Ck вируса гепатита В), ANT-147 (hCG beta core), ANT-149 (лизозим Hen Egg), ANT-154 (гепараназа человека-1 3/17), ANT-202 (легкие цепи каппа Ig),ANT-203 (легкие цепи лямбда Ig), ANT-193 (гепараназа человека-1 130), ANT-201 (IgA 1&2), ANT-174 (компонент IgA Sec), ANT-173 (IgG-Fc), ANT-100 (инсулин), ANT-177 (белок, связывающий мальтозу), ANT-199 (миелин олигонуклецит гликопротеин), ANT-198 (Staphylococcus aureus, устойчивый к метициллину), ANT-192 (p53 scFv), ANT-200 (фосфолипидный белок миелина), ANT-195 (anti-Tetanus Toxoid scFv), ANT-164 (глутатион-S-трансфераза).
Лейкоцитарные тесты. Лейкоцитарные тесты - группа диагностических тестов, в которых показателем для оценки специфической реактивности организма и функции иммунной системы служат изменения различных свойств лейкоцитов. К лейкоцитарным относятся тест розеткообразования, бластотрансформация лимфоцитов, торможение миграции макрофагов, аллергическая альтерация лейкоцитов и тест с глюкокортикоидрезистентной фракцией лимфоцитов.
Тест розеткообразования основан на различиях рецепторной структуры лейкоцитов (лимфоцитов, гранулоцитов, моноцитов), которые при взаимодействии с эритроцитами могут спонтанно присоединять последние к своей поверхности. При этом образуются фигуры, напоминающие розетки, в центре которых находится лейкоцит, а вокруг него располагаются не менее 3-5 эритроцитов. Существует несколько вариантов этого теста. При прямом тесте в формировании розеток участвуют антигены самих эритроцитов, а при непрямом - антигены, искусственно фиксированные на поверхности эритроцитов. При прямом тесте образуются спонтанные и иммунные розетки: спонтанные розетки - между лимфоцитами человека или животных и эритроцитами барана; иммунные - с эритроцитами, использованными для иммунизации донора лейкоцитов. Прямой тест используют для определения количества Т-лимфоцитов (т.к. эти клетки несут рецепторы к эритроцитам барана), широко применяют для оценки иммунного статуса, а в некоторых случаях - для выделения В-клеток. Розетки могут формироваться за счет иммуноглобулинов, которые образуются в В-клетках или фиксируются на клетках (гранулоцитах, моноцитах). Феномен розеткообразования может возникать не только с эритроцитами, но и с другими клетками и искусственными гранулами.
Сущность метода заключается в выделении взвеси лейкоцитов (лимфоцитов) обследуемого, инкубации их со взвесью эритроцитов барана (обработанных или не обработанных антигеном) и подсчета числа розеткообразующих клеток.
Бластотрансформация лимфоцитов - превращение малых зрелых лимфоцитов в малодифференцированные клетки типа бластов. Различают спонтанную и индуцированную бластотрансформацию лимфоцитов. Последняя возникает под влиянием неспецифических митогенов или специфических аллергенов (антигенов). К взвеси лейкоцитов крови добавляют раствор аллергена, смесь культивируют в течение 5-7 дней, а затем под микроскопом определяют процентное содержание лимфобластов в окрашенных мазках. Для более точной оценки бластотрансформации лимфоцитов к взвеси клеток добавляют 3Н-тимидин, который включается в ДНК клеток. По разнице радиоактивности образцов клеток, культивированных с антигеном и без него, судят о степени специфической бластотрансформации лимфоцитов под влиянием аллергена (антигена).
Торможение миграции макрофагов происходит под влиянием специфического антигена. Существует несколько модификаций теста, наиболее распространенный - капиллярный. В лунку с питательной средой помещают отрезок капилляра, заполненный клетками, и добавляют в нее испытуемый антиген. После культивирования клеток в течение 24 ч при 37° измеряют один из параметров мигрировавших из капилляра клеток (диаметр, площадь миграции и др.). Отношение опытного параметра к контрольному (без антигена) составляет индекс миграции. Реакция считается положительной, если опытные и контрольные показатели различаются более чем на 20 %. Описаны методы оценки миграции клеток из капли агарозы, содержащей клетки, и миграции клеток из лунки под агарозу. В качестве тестируемых клеток в клинике наиболее часто используют лейкоциты крови, а в эксперименте - макрофаги и иногда лимфоциты. Тормозят миграцию клеток медиаторы, выделяющиеся из сенсибилизированных к данному антигену лимфоцитов, которые всегда присутствуют во взвеси испытуемых клеток: фактор торможения миграции макрофагов (MIF), фактор торможения миграции лейкоцитов (LIF) и др. Реакции торможения миграции макрофагов и лейкоцитов отражают состояние гиперчувствительности замедленного типа. клеточный иммунитет защитная лимфоцит
Аллергическая альтерация лейкоцитов - повреждение лейкоцитов под влиянием специфического аллергена.
Для выявления повреждения нейтрофильиых лейкоцитов используют тест ППН (показатель повреждения нейтрофилов) по Фрадкину. Кровь больных, страдающих аллергией, культивируют с аллергеном в течение 2 ч. Затем готовят мазки, которые окрашивают на гликоген с докраской ядер клеток гематоксилином. При положительном тесте наблюдается усиление амебоидной реакции нейтрофилов на аллерген, специфичный по отношению к циркулирующим в крови антителам. Амебоидная реакция сопровождается насыщением гликогеном псевдоподий клеток. Для оценки специфического повреждения лейкоцитов крови широко используется люминесцентная микроскопия. Пусковым механизмом аллергической альтерации клеток является образование комплекса, состоящего из аллергена и антител, связанных с поверхностью клеток. Альтерация лейкоцитов под влиянием специфического аллергена - показатель аллергии немедленного типа. Альтерация сопровождается не только морфологическими изменениями клеток, но и выделением из них биологически активных веществ, например освобождением гистамина.
Лейкоцитарный тест с глюкокортикоидрезистентной фракцией лимфоцитов - относительная и абсолютная величина лимфоцитов в единице объема крови, устойчивая к литическому действию глюкокортикоидов. Все лимфоциты, толерантные в условиях культивации in vitro к литическому действию глюкокортикоидов, называются глюкокортикоидрезистентными. В зависимости от используемого глюкокортикоида их называют кортизолрезистентными, кортикостеронрезистентными и т.д. Тест отражает степень активации иммунной системы под влиянием антигенной стимуляции, позволяет оценивать изменения этой активации в процессе развития заболевания и, следовательно, имеет прогностическое значение. При инфекционных, инфекционно-аллергических и аллергических заболеваниях отмечается увеличение кортизолрезистентной фракции лимфоцитов. У взрослых в норме она составляет 60-64 % или 1100-1250 лимфоцитов в 1 млк крови.
Оценка функциональной активности Т-лимфоцитов
Этот тест основан на способности Т-лимфоцитов пролиферировать в ответ на стимуляцию неспецифическим митогеном (субстанциями, названными так из-за способности вызывать митозы в лимфоцитах) и продуцировать интерлейкины (ИЛ-1 и ИЛ-2). Необходимо отметить, что раньше пролиферативную активность лимфоцитов оценивали по количеству бластов (бласттрансформация) и митозов, появляющихся в стимулированной митогеном культуре, в настоящее время - используя радиоактивную метку и ее подсчет на сцинтилляционном счетчике.
Пролиферативную активность Т-лимфоцитов оценивают по интенсивности синтеза ДНК в ответ на стимуляцию митогеном (поликлональная стимуляция) или антигеном (моно- и олигоклональная стимуляция). В последнем случае применяются распространенные антигены или аллоантигены. Интенсивность синтеза ДНК оценивают по включению в нее меченных радиоактивным изотопом нуклеозидов, например 3Н-тимидина. Результаты обычно выражают в импульсах в минуту (имп/мин) и в виде индекса стимуляции - отношение радиоактивности стимулированных и нестимулированных лимфоцитов. Митогены стимулируют пролиферацию значительной части Т-лимфоцитов, поэтому результат оценивают обычно через 3 сут. Антиген стимулирует пролиферацию только тех Т-лимфоцитов, которые несут рецептор к нему, поэтому индуцированную антигеном пролиферацию оценивают через 5-7 сут. Для оценки пролиферативной активности Т-лимфоцитов, как и при проведении кожных проб, применяют набор широко распространенных антигенов. У ВИЧ-инфицированных пролиферативная реакция Т-лимфоцитов на распространенные антигены может быть снижена уже на ранних стадиях заболевания. Прогрессирование ВИЧ- инфекции и других иммунодефицитов сопровождается снижением реакции Т-лимфоцитов на аллоантигены, а впоследствии - и на митогены. Отсутствие реакции на митогены свидетельствует о тяжелой недостаточности клеточного иммунитета.
Помимо того исследование Т-лимфоцитов проводят, оценивая на цитотоксичность. Обычно оценивают цитотоксичность, ограниченную по HLA, опосредованную лимфоцитами CD8. Клетками-мишенями служат собственные клетки, несущие на своей поверхности чужеродный антиген, связанный с антигенами HLA класса I. Лимфоциты CD8играют важную роль в защите от вирусных инфекций. Наряду с лимфоцитами CD8 ограниченную по HLA цитотоксичность осуществляют некоторые лимфоциты CD4, распознающие антиген в комплексе с антигенами HLA класса II. Обе субпопуляции лимфоцитов несут антигенраспознающий рецептор, образованный альфа- и бета-цепями. Лимфоциты CD8 с антигенраспознающим рецептором, образованным гамма- и дельта-цепями, участвуют в цитотоксичности, не ограниченной по HLA. Эти лимфоциты присутствуют в крови в незначительном количестве и разрушают клетки- мишени подобно NK-лимфоцитам, то есть без предварительной иммунизации. Оценка клеточной цитотоксичности необходима для диагностики иммунодефицитов. Оценку цитотоксической активности лимфоцитов проводят следующим образом:
1) клетки-мишени обрабатывают радиоактивной меткой (51Сr);
2) к меченым клеткам-мишеням добавляют исследуемые лимфоциты;
3) гибель клеток-мишеней оценивают по выходу радиоактивной метки в раствор. Полученные результаты сравнивают с нормальными показателями.
При исследовании ограниченной по HLA цитотоксичности исследуемые Т-лимфоциты предварительно инкубируют с антигеном, присутствующим на клетках-мишенях.
Оценка системы натуральных киллеров
Для этого используется цитотоксический тест, в котором клетками-мишенями чаще всего служит линия клеток К-562, меченная 3Н-уридином. Тестируемые лимфоциты вносят в культуру К-562, инкубируют в присутствии РНКазы, а затем оценивают уровень радиоактивного уридина, высвободившегося из лизированных клеток-мишеней.
Размещено на Allbest.ru
...Подобные документы
Формы, механизмы, органы, регуляция иммунитета. Субпопуляции Т-лимфоцитов, их функции. История открытия регуляторных Т-клеток. Эффективность микробиологической диагностики. Иммунная регуляторная система. Будущее трансплантологии, технические трудности.
контрольная работа [1,7 M], добавлен 11.05.2016Основные типы лимфоцитов по функциональным и морфологическим признакам как клеток иммунной системы и ее ключевого звена. Дезоксирибонуклеазы секреторных гранул лимфоцитов периферической крови пациентов с АБА. Методы выделения и изучения лимфоцитов.
курсовая работа [480,8 K], добавлен 07.12.2013Иммунитет – способ защиты организма от болезнетворных микроорганизмов за счет выработки антител. Обзор схемы клеточного и гуморального иммунитета. Нарушения фагоцитарной системы. Методы оценки иммунитета. Реакция иммунного гемолиза и цитотоксический тест.
презентация [1,1 M], добавлен 11.11.2014Общая характеристика B-лимфоцитов. Характеристика субпопуляций, рецепторы и маркеры В-лимфоцитов. Антигенраспознающие рецепторы B-клеток: общая характеристика. Субпопуляции В-лимфоцитов, распознание антигенов рецепторами иммуноглобулиновой природы.
реферат [495,4 K], добавлен 02.10.2014Вирусы как группа живых существ, не имеющих клеточного строения, их формы, генетические связи с представителями флоры и фауны Земли. Заражение системы клеточного иммунитета человека и сущность СПИДа. Происхождение и размножение вирусов, их вред и польза.
творческая работа [2,7 M], добавлен 24.02.2010Последовательность образования антител. Дентдритные клетки и их классификация. Клетки Лангерганса, их происхождение и функции, методы выявления. Презентация антигена. Роль клеток в формировании клеточного и гуморального антивирусного иммунитета.
реферат [896,5 K], добавлен 09.02.2012Понятие и виды иммунитета, назначение иммунной системы. Факторы и признаки ослабления иммунитета, методы его повышения. Механизм действия иммунитета: макрофаги, Т-хэлперы, В-лимфоциты, выработка иммуноглобулинов (антител), Т-супрессоры, клетки-киллеры.
реферат [15,0 K], добавлен 09.02.2009Понятие и внутренняя структура цитокинов как важного элемента при взаимодействии разных лимфоцитов между собой и с фагоцитами. Оценка их биологической роли, характеристика и значение в организме. Варианты проявления действия цитокинов, иммунный ответ.
презентация [168,9 K], добавлен 22.10.2015Специфичность и ее значение, взаимодействие антигена и антитела. Основные элементы иммунной системы организма, селекция антител, структура белковой молекулы. Теория "клональной селекции", возникновение разнообразия лимфоцитов или их предшественников.
реферат [21,8 K], добавлен 05.06.2010Основные функции иммунной системы. Генез Т- и В-лимфоцитов. Общие закономерности нарушений иммунной системы. Способность организма отвечать на действие антигена клеточными и гуморальными реакциями. Процессы развития патологических процессов в организме.
реферат [391,2 K], добавлен 23.09.2014Кровь и ее состав, основные функции в организме. Назначение, жизненный цикл и нормы содержания эритроцитов и лейкоцитов (соответственно красных и белых кровяных телец) в организме. Группы лимфоцитов, их размеры, структура и функциональные особенности.
реферат [12,8 K], добавлен 02.12.2011Функции первичных и вторичных лимфоидных органов: селезенка, белая и красная пульпа, лимфоузлы, лимфоциты слизистых оболочек. Тимус как место размножения и созревания Т-клеток, участки размножения и созревания В-клеток, схема циркуляции лимфоцитов.
реферат [18,9 K], добавлен 26.09.2009Сущность клеточного цикла - периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.
презентация [823,0 K], добавлен 28.10.2014Метод пульс-электрофореза для разделения ДНК индивидуальных хромосом. Выделение ДНК из клеток, лишенных клеточной стенки и измерение конечной концентрации ДНК. Выделение ДНК из культивируемых клеток: лимфоцитов, прокариот, грибов и растительных клеток.
контрольная работа [576,0 K], добавлен 11.08.2009Понятие, классификация и причины возникновения хромосомных заболеваний. Технология выявления аномального хромосомного набора. Установление кариотипа ядер лимфоцитов периферической крови с помощью микроскопа Leica DM2500 и программы Видео-Карио-Тест.
научная работа [821,8 K], добавлен 24.02.2015Анализ регуляторной, терморегуляторной, дыхательной, гомеостатической, питательной и защитной функций крови. Исследование форменных элементов крови. Химический состав тромбоцитов. Характеристика сферы действия лейкоцитов. Место лимфоцитов в системе крови.
презентация [630,7 K], добавлен 27.01.2016Гетерогенность клеточного состава нервной ткани как одна из ее морфологических особенностей. Роль нейроглиальных клеток в функциональной активности ЦНС. Состав и особенности метаболизма нуклеиновых кислот, аминокислот и белков, нейроглиальных клеток.
реферат [23,7 K], добавлен 26.08.2009Морфологическая разнообразность лимфоцитов, экспрессирование ими особых у каждой субпопуляции поверхностных маркеров. Различие Т-клеток по своим антигенраспознающим рецепторам. Дифференцировка В-клеток, активация Т и В-клеток, вызывающая синтез маркеров.
реферат [17,0 K], добавлен 26.09.2009Система иммунитета организма и ее функции. Виды клеток иммунной системы (лимфоциты, фагоциты, гранулярные лейкоциты, тучные клетки, некоторые эпителиальные и ретикулярные клетки). Селезенка как фильтр крови. Клетки-убийцы как мощное оружие иммунитета.
презентация [4,1 M], добавлен 13.12.2015Понятие и функции в организме хромосомы как комплекса ДНК с белками (гистоновыми и негистоновыми). История разработки и содержание хромосомной теории наследственности. Типы хромосом в клетке в зависимости от фазы клеточного цикла, уровни организации.
презентация [5,8 M], добавлен 11.11.2014