Адаптации организмов к факторам среды

Адаптации организмов и растений к свету, воде и температуре. Биологические ритмы, часы, морфологические и физиологические адаптации организма к сезонным изменениям и неблагоприятным условиям. Жизненные формы. Характерные структурные черты гигрофитов.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 17.11.2015
Размер файла 26,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Адаптации организмов к факторам среды

1. Понятие адаптации

Адаптация - это процесс приспособления живых организмов к определённым условиям внешней среды. Существуют следующие виды адаптации:

1. Адаптация к климатическим и другим абиотическим факторам (опадение листвы, холодостойкость хвойных деревьев).

2. Адаптация к добыванию пищи и воды (длинные корни растений в пустыне).

3. Адаптация, направленная на защиту от хищников и устойчивость к заболеваниям и паразитам (комочки у растений).

4. Адаптация, обеспечивающая поиск и привлечение партнёра у животных и опыление у растений (запах, яркий цвет у цветков).

5. Адаптация к миграциям у животных и распространение семян у растений (крылья у семян для переноса ветром, колючки у семян).

2. Адаптации организмов к свету, адаптации растений к свету

Экологические группы растений по отношению к свету:

а) адаптации животных к свету

б) Зеленым растениям свет нужен для образования хлорофилла, формирования гранильной структуры хлоропластов; он регулирует работу устричного аппарата, влияет на газообмен и транспирацию, активизирует ряд ферментов, стимулирует биосинтез белков и нуклеиновых кислот.

Свет влияет на деление и растяжение клеток, ростовые процессы и на развитие растений, определяет сроки цветения и плодоношения, оказывает формообразующее воздействие. Но самое большое значение имеет свет в воздушном питании растений, в использовании ими солнечной энергии в процессе фотосинтеза. С этим связаны основные адаптации растений по отношению к свету. Об этом свидетельствует весь ход эволюции наземных высших растений.

Фотоавтотрофы способны ассимилировать СО2, используя лучистую энергию Солнца и преобразуя ее в энергию химических связей в органических соединениях. Пурпурные и зеленые бактерии, имеющие бактериохлорофиллы, способны поглощать свет в длинноволновой части (максимумы в области 800--1100 нм). Это позволяет им существовать даже при наличии только невидимых инфракрасных лучей. Водоросли и высшие зеленые растения -- хлорофиллсодержащие организмы, распространение которых зависит от солнечного света.

На суше для высших фотоавтотрофных растений условия освещения практически везде благоприятны, и они растут повсюду, где позволяют климатические и почвенные условия, приспосабливаясь к световому режиму данного местообитания.

Водоросли обитают в водоемах, но встречаются и на суше, на поверхности разных предметов -- на стволах деревьев, на заборах, на скалах, на снегу, на поверхности почвы и в ее толще.

Световой режим любого местообитания определяется интенсивностью прямого и рассеянного света, количеством света (годовой суммарной радиацией), его спектральным составом, а также альбедо -- отражательной способностью поверхности, на которую падает свет. Перечисленные элементы светового режима очень переменчивы и зависят от географического положения, высоты над уровнем моря, от рельефа, состояния атмосферы, характера земной поверхности, растительности, от времени суток, сезона года, солнечной активности и глобальных изменений в атмосфера.

У растений возникают различные морфологические и физиологические адаптации к световому режиму местообитаний.

По требованию к условиям освещения принято делить растения на следующие экологические группы:

1) светолюбивые (световые), или гелиофиты,-- растения открытых, постоянно хорошо освещаемых местообитаний;

2) тенелюбивые (теневые), или сциофиты,-- растения нижних ярусов тенистых лесов, пещер и глубоководные растения; они плохо переносят сильное освещение прямыми солнечными лучами;

3) теневыносливые, или факультативные гелиофиты,-- могут переносить большее или меньшее затенение, но хорошо растут и на свету; они легче других растений перестраиваются под влиянием изменяющихся условий освещения.

Б) Свет для животных необходимое условие видения, зрительной ориентации в пространстве. Рассеянные, отраженные от окружающих предметов лучи, воспринимаемые органами зрения животных, дают им значительную часть информации о внешнем мире. Развитие зрения у животных шло параллельно с развитием нервной системы.

Полнота зрительного восприятия окружающей среды зависит у животных в первую очередь от степени эволюционного развития. Примитивные глазки многих беспозвоночных -- это просто светочувствительные клетки, окруженные пигментом, а у одноклеточных -- светочувствительный участок цитоплазмы. Процесс восприятия света начинается с фотохимических изменений молекул зрительных пигментов, после чего возникает электрический импульс. Органы зрения из отдельных глазков не дают изображения предметов, а воспринимают только колебания освещенности, чередование света и тени, свидетельствующие об изменениях в окружающей среде. Образное видение возможно только при достаточно сложном устройстве глаза. Пауки, например, могут различать контуры движущихся предметов на расстоянии 1--2 см. Наиболее совершенные органы зрения -- глаза позвоночных, головоногих моллюсков и насекомых. Они позволяют воспринимать форму и размеры предметов, их цвет, определять расстояние. Способносгь к объемному видению зависит от угла расположения глаз и от степени перекрывания их полей зрения. Объемное зрение, например, характерно для человека, приматов, ряда птиц -- сов, соколов, орлов, грифов. Животные, у которых глаза расположены по бокам головы, имеют монокулярное, плоскостное зрение.

Предельная чувствительность высокоразвитого глаза огромна. Привыкший к темноте человек может различить свет, интенсивность которого определяется энергией всего пяти квантов, что близко к физически возможному пределу.

Понятие видимого света в некоторой мере условно, так как отдельные виды животных сильно различаются по способности воспринимать разные лучи солнечного спектра. Для человека область видимых лучей -- от фиолетовых до темно-красных.

Некоторые животные, например гремучие змеи, видят инфракрасную часть спектра и ловят добычу в темноте, ориентируясь при помощи органов зрения. Для пчел видимая часть спектра сдвинута в более коротковолновую область. Они воспринимают как цветовые значительную часть ультрафиолетовых лучей, но не различают красных.

Кроме эволюционного уровня группы, развитие зрения и его особенности зависят от экологической обстановки и образа жизни конкретных видов. У постоянных обитателей пещер, куда не проникает солнечный свет, глаза могут быть полностью или частично редуцированы, как, например, у слепых жуков жужелиц, протеев среди амфибий и др.

Способность к различению цвета в значительной мере зависит и от того, при каком спектральном составе излучения существует или активен вид. Большинство млекопитающих, ведущих происхождение от предков с сумеречной и ночной активностью, плохо различают цвета и видят все в черно-белом изображении (собачьи, кошачьи, хомяки и др.). Такое же зрение характерно для ночных птиц (совы, козодои). Дневные птицы имеют хорошо развитое цветовое зрение.

Жизнь при сумеречном освещении приводит часто к гипертрофии глаз. Огромные глаза, способные улавливать ничтожные доли света, свойственны ведущим ночной образ жизни лемурам, обезьянам лори, долгопятам, совам и др.

Животные ориентируются с помощью зрения во время дальних перелетов и миграций. Птицы, например, с поразительной точностью выбирают направление полета, преодолевая иногда многие тысячи километров от гнездовий до мест зимовок.

Доказано, что при таких дальних перелетах птицы хотя бы частично ориентируются по Солнцу и звездам, т. е. астрономическим источникам света. При вынужденном отклонении от курса они способны к навигации, т. е. к изменению ориентации, чтобы попасть в нужную точку Земли. При неполной облачности ориентация сохраняется, если видна, хотя бы часть неба. В сплошной туман птицы не летят или, если он застает их в пути, продолжают лететь вслепую и часто сбиваются с курса. Способность птиц к навигации доказана многими опытами.

Птицы, сидящие в клетках, в состоянии предмиграционного беспокойства всегда ориентируются в сторону зимовок, если она могут наблюдать за положением Солнца или звезд. Например, когда чечевиц перевезли с побережья Балтийского моря в Хабаровск, они изменили свою ориентацию в клетках с юго-восточной на юго-западную. Зимуют эти птицы в Индии. Таким образом, они способны правильно выбирать направление полета на зимовку из любой точки Земли. Днем птицы учитывают не только положение Солнца, но и смещение его в связи с широтой местности и временем суток. Опыты в планетарии показали, что ориентация птиц в клетках меняется, если менять перед ними картину звездного неба в соответствии с направлением предполагаемого перелета.

Навигационная способность птиц врожденная. Она не приобретается за счет жизненного опыта, а создается естественным отбором как система инстинктов. Точные механизмы такой ориентации еще плохо изучены. Гипотеза ориентации птиц в перелетах по астрономическим источникам света в настоящее время подкреплена материалами опытов и наблюдений.

Способность к подобного рода ориентации свойственна и другим группам животных. Среди насекомых она особенно развита у пчел. Пчелы, нашедшие нектар, передают другим информацию о том, куда лететь за взятком, используя в качестве ориентира положение Солнца. Пчела-разведчица, открывшая источник корма, возвращается в улей и начинает на сотах танец, совершая быстрые повороты. При этом она описывает фигуру в виде восьмерки, поперечная ось которой наклонена по отношению к вертикали. Угол наклона соответствует углу между направлениями на Солнце и на источник корма. Когда медосбор очень обилен, разведчицы сильно возбуждены и могут танцевать долго, в течение многих часов, указывая сборщицам путь к нектару. За время их танца угол наклона восьмерки постепенно смещается в соответствии с движением Солнца по небу, хотя пчелы в темном улье и не видят его. Если Солнце скрывается за облаками, пчелы ориентируются на поляризованный свет свободного участка неба. Плоскость поляризации света зависит от положения Солнца.

3. Адаптации организмов к температуре

Функциональная деятельность живых биологических систем существенно зависит от температурного уровня окружающей среды. В первую очередь это касается организмов, не способных поддерживать постоянную температуру тела (все растения и многие животные). Именно у таких организмов (пойкилотермных) повышение температуры до определенного предела значительно ускоряет физиологические процессы: темпы роста и развития (у насекомых, пресмыкающихся), прорастание семян, рост листьев и побегов, цветение и т.д.

Чрезмерное повышение температуры вызывает гибель организмов вследствие тепловой денатурации белковых молекул, необратимых изменений структуры биологических коллоидов клетки, нарушения деятельности ферментов, резкого усиления гидролитических процессов, дыхания и др. С другой стороны, заметное снижение температуры ниже О °С может вызвать гибель клеток и всего организма.

В природных условиях температура очень редко держится на уровне, благоприятном для жизни. Ответом на это является возникновение у растений и животных специальных приспособлений, которые ослабляют вредное действие колебаний температуры. Это, в частности, комплекс свойств и адаптивных приспособлений, которые формируют соответствующий уровень зимостойкости и морозоустойчивости растений.

Зимостойкость - стойкость растений к комплексу неблагоприятных факторов зимнего периода (чередования морозов и оттепелей, ледяной корки, выпревания и др.). Обусловливается и обеспечивается переходом растений в состояние органического покоя, размещением почек в защищенных местах, накоплением энергетического материала (крахмала, жиров), сбрасыванием листьев, адаптивными реакциями организмов.

Морозоустойчивость - способность клеток, тканей и целых растений без повреждений переносить действие морозов. Благодаря многим физиолого-биохимическим приспособлениям и свойствам у морозоустойчивых растений образование льда происходит при более низкой температуре, чем у менее морозоустойчивых, и сопровождается меньшими повреждениями.

Холодостойкость - свойство ранневесенних растений (эфемеров и эфемероидов) успешно произрастать при низких плюсовых температурах. Этот термин используется также для характеристики теплолюбивых растений (кукуруза, огурцы, арбузы).

Зимо- и морозоустойчивость характерны для растений только в зимний период, когда они успели закалиться и перейти в состояние покоя. В период же вегетации (летом) все растения не способны выдерживать даже кратковременное воздействие небольших морозов.

Закаливание растений - формирование у растений способности успешно выдерживать неблагоприятные условия под влиянием специфических условий осеннего времени года. Имеет двухфазный характер. Во время первой происходит накопление углеводов, перераспределение питательных веществ между органами, чему способствует относительно теплая и солнечная погода. Во второй фазе при постепенном снижении температуры увеличивается количество осмотически активных веществ в вакуолях, уменьшается количество воды, изменяется состояние цитоплазмы - растения переходят в состояние покоя.

Состояние покоя - качественно новый этап растительного организма, в который переходят зимующие растения с наступлением неблагоприятных условий. Характеризуется прекращением видимого роста и сведением к минимуму жизнедеятельности, отмиранием и опадением листьев и надземных органов травянистых многолетников, образованием чешуек на почках, толстого слоя кутикулы и коры на стеблях. В тканях и клетках накопляются ингибиторы, которые тормозят ростовые и формообразовательные процессы, что делает растения неспособными к прорастанию даже в самых благоприятных искусственно созданных условиях, а также во время случайных осенних и раннезимних потеплений.

Различают период (состояние) глубокого, или органического покоя, обусловленного соответствующей подготовкой и внутренним ритмом развития растительного организма, и период вынужденного покоя, в котором растения пребывают после глубокого покоя, когда их рост вынужденно сдерживается еще неблагоприятными условиями - низкой температурой, недостатком питательных веществ. Вынужденный покой легко прервать, создав растению благоприятные условия.

Из состояния глубокого покоя растения выходят с трудом, так как длительность его у большинства из них значительна - до конца января - февраля. Выход растений из этого состояния возможен только после его окончания и свершения в организме соответствующих биохимических и физиологических превращений, вызванных влиянием периода минусовых температур определенной длительности. После окончания периода покоя в растениях заметно увеличивается количество нуклеиновых кислот, исчезают ингибиторы роста и появляются ауксины - стимуляторы ростовых процессов.

Способность переходить в состояние покоя - необходимый этап онтогенеза растений, внутренне обусловленный ритмичностью физиолого-биохимических процессов. Это свойство возникло у растений в процессе эволюции как приспособительная реакция в ответ на периодические изменения температурных условий внешней среды.

Многие растения переходят в состояние покоя не только зимой, но и в летнее время. Это ранневесенние цветущие растения (тюльпаны, крокусы, пролески). Большое количество растений тропических районов, пустынь и полупустынь также переходит в состояние летнего покоя. Состояние покоя разной длительности характерно и для свежесобранных семян и плодов, клубней, луковиц, корнеплодов.

Существуют методы и приемы, с помощью которых можно вывести растения из состояния глубокого покоя. Это теплые ванны (37-39° С), обработка парами эфира, накалывание основы почек иглой и др.

По сравнению с растениями животные обладают более разнообразными возможностями регулировать температуру тела, а именно:

путем химической терморегуляции - активным изменением величины теплопродукции повышением метаболизма;

путем физической терморегуляции - изменением уровня теплоотдачи на основе развития теплозащитных покровов, особыми устройствами кровеносной системы, распределением жировых запасов, особенно в бурой жировой ткани и т.п.

Кроме того, некоторые особенности поведения животных также способствуют существованию их в изменчивых условиях среды: выбор места с благоприятными микроклиматическими условиями - зарывание в песок, в норки, под камни (животные жарких степей и пустынь), активность в определенный период суток (змеи, тушканчики, суслики), сооружение хранилищ, гнезд и др.

Одно из самых важных прогрессивных приспособлений - способность к терморегуляции организма у млекопитающих и птиц, их теплокровность. Благодаря этому экологически важному приспособлению высшие животные относительно независимы от температурных условий среды.

Важное значение для поддержания температурного баланса имеет отношение поверхности тела к его объему, так как количество выработанного тепла зависит от массы тела, а теплообмен осуществляется через покровы.

На связь размеров и пропорций тела животных с температурно-климатическими условиями указывает правило Бергмана, согласно которому из двух близких видов теплокровных, отличающихся размерами, более крупный обитает в более холодном климате, а также правило Аллепа, по которому у многих млекопитающих и птиц северного полушария относительные размеры конечностей и других выступающих частей (ушей, клювов, хвостов) увеличиваются к югу и уменьшаются к северу (для уменьшения теплоотдачи в холодном климате).

4. Адаптации организмов к воде (влажности)

а) Экологические группы водных организмов (гидробионтов). Толща воды заселена организмами, которые обладают способностью плавать или удерживаться в определенных слоях. В связи с этим, водные организмы подразделяются на группы.

Нектон (nektos - плавающий) - это совокупность пелагических активно передвигающихся животных, не имеющих непосредственной связи с дном. Это главным образом крупные животные, которые способны преодолевать большие расстояния и сильные течения воды. Они имеют обтекаемую форму тела и хорошо развитые органы движения. К типичным нектонным организмам относятся рыбы, кальмары, киты, ластоногие. К нектону в пресных водах кроме рыб относятся земноводные и активно перемещающиеся насекомые.

Планктон (planktos - блуждающий, парящий) - это совокупность пелагических организмов, которые не обладают способностью к быстрым активным передвижениям. Как правило, это мелкие животные -зоопланктон и растения - фитопланктон, которые не могут противостоять течениям. В состав планктона включают и «парящие» в толще воды личинки многих животных.

Плейстон (от греч. pleusis - плавание) - организмы, которые пассивно плавают на поверхности воды или ведут полупогруженный образ жизни получили название. Часто они используют как опору пленку поверхностного натяжения или образуют воздушные полости и другие поплавки. Типичными плейстонными животными являются сифонофоры, некоторые моллюски и др. Из растительных организмов к плейстону относятся саргассовые водоросли, ряски.

Бентос (benthos - глубина) - это совокупность организмов, обитающих на дне (на грунте и в грунте) водоемов. Он подразделяется на зообентос и фитобентос. Большей частью представлен прикрепленными, или медленно передвигающимися, или роющими в грунте животными. На мелководье он состоит из организмов, синтезирующих органическое вещество (продуценты), потребляющих его (консументы) и разрушающих (ре-дуценты). На глубинах, где нет света, фитобентос (продуценты) отсутствует. В морском зообентосе доминируют фораминифоры, губки, кишечно-полостные, черви, плеченогие, моллюски, асцидии, рыбы и др. Более многочисленны бентосные формы на мелководьях. Их общая биомасса здесь может достигать десятков килограммов на 1 м2.

Нейстон (от греч. neustos - плавающий) - сообщество организмов, обитающих у поверхностной пленки воды. Организмы, обитающие сверху поверхностной пленки - эпинейстон, снизу - гипонейстон. К нейстону относят также обитателей верхнего пятисантиметрового слоя воды. Нейстон составляют некоторые простейшие, одноклеточные водоросли, мелкие легочные моллюски, водомерки, вертячки, личинки комаров и др.

Перифитон (от греч. peri - около и phyton - растение). Обрастатели, совокупность организмов, которые поселяются на подводных предметах или растениях и образуют так называемые обрастания на природных или искусственных твердых поверхностях - камнях, скалах, подводных частях судов, сваях, гидротехнических сооружениях (водоросли, усоногие раки, моллюски, мшанки, губки и др.).б) Экологические группы наземных организмов. По отношению к водному режиму среди наземных растений выделяются:

Гигрофиты - обитающие на влажных местах (тропические растения, росянка, злаки, осоки).

Мезофиты - растения умеренно увлажненных местообитаний (многие лесные травы, лиственные деревья, большинство сельскохозяйственных культур).

Ксерофиты - растения сухих местообитаний, способные хорошо переносить засухи. Разделяются насуккулентов (способных накапливать в тканях большое количество воды - кактусы, алоэ, очиток молодило) и склерофитов (сухие, жесткие кустарники или травы - саксаул, верблюжья колючка, ковыли).

Среди наземных животных по отношению к водному режиму можно также выделить три экологические группы:

Гигрофилы - влаголюбивые, нуждаются в высокой влажности (мокрицы, комары, наземные моллюски, амфибии).

Ксерофилы - сухолюбивые животные, не переносящие высокой влажности (верблюды, пустынные пресмыкающиеся).

Мезофилы - животные, предпочитающие умеренную влажность (многие птицы, млекопитающие).

Вода в жизни растений. Вода расходуется на фотосинтез, всего около 0,5% всасывается клетками, а 97--99% ее уходит на испарение через листья. При достатке воды и питательных веществ рост растений пропорционален испарению, а ее эффективность будет наивысшей. Основная форма адаптации к засушливым условиям - не снижение испарения воды, а прекращение роста в период засухи.

в) Экологические группы растений по отношению к воде.В зависимости от способов адаптации растений к влажности окружающей среды выделяют несколько экологических групп:

гигрофиты - наземные растения, живущие в очень влажных почвах и в условиях повышенной влажности. Для гигрофитов характерно отсутствие приспособлений, ограничивающих расход воды, и неспособность переносить даже незначительную ее потерю. Характерные структурные черты гигрофитов - тонкие листовые пластинки, рыхлое сложение тканей листа, слабое развитие водопроводящей системы, тонкие слаборазветвленные корни.

Ксерофиты - растения сухих степей и пустынь. Делятся на:

o суккуленты (алоэ, кактусы и др.) - растения, способные накапливать влагу в мясистых листьях и стеблях;

o склерофиты - обладающие большой всасывающей силой корней и способные снижать испарение с узкими мелкими листьями;

Структурные и физиологические особенности ксерофитов нацелены на преодоление недостатка влаги в почве или воздухе. Решение данной проблемы осуществляется следующими способами:

1. эффективным добыванием (всасыванием) воды

2. экономным ее расходованием

3. способностью переносить большие потери воды. Интенсивное добывание воды из почвы достигается ксерофитами благодаря хорошо развитой корневой системе. Экономное расходование влаги обеспечивается тем, что листья у них мелкие, узкие, жесткие, поэтому даже при большой потере воды листья не теряют упругости. Высокая водоудерживающая способность клеток и тканей позволяет переносить глубокое обезвоживание без потери жизнеспособности.

4. мезофиты - занимают промежуточное положение между гигрофитами и ксерофитами. Способны переносить незначительную засуху (древесные растения различных климатических зон, травянистые растения дубрав, большинство культурных растений и др.). Распространены в умеренно влажных зонах с умеренно теплым режимом и достаточно хорошей обеспеченностью минеральным питанием.

адаптация растение биологический температура

5. Биологические ритмы, биологические часы, адаптации организма к сезонным изменениям. Жизненные формы

В процессе исторического развития у растений выработались различные морфологические и биологические приспособления к условиям среды обитания. Эти приспособительные особенности придают растениям определенный вид. В систематике растений исследователь имеет дело с видами растений, а в экологии -- с отдельными жизненными формами. Каждая жизненная форма характеризуется не только определенным внешним видом, но и определенным ритмом развития. К одной и той же жизненной форме могут относится виды разных родов и даже разных семейств.

Жизненная форма -- это внешний облик растительного организма, возникающий исторически при воздействии окружающей среды. Таким образом, жизненная форма -- понятие экологическое. На формирование жизненной формы растения, прежде всего, влияют такие факторы, как температура и осадки. Существует несколько классификаций жизненных форм растений. Первые классификации основывались на внешнем виде растений, определяющем ландшафт местности. Это так называемые физиономические классификации.

б) классификация жизненных форм растений по И.Г Серебрякову. Использовав и обобщив предложенные в разное время классификации, отечественный ботаник И.Г. Серебряков предложил называть жизненной формой своеобразный габитус определенных групп растений, возникающий в результате роста и развития в определенных условиях - как выражение приспособленности к этим условиям.

В основу своей классификации И.Г. Серебряков положил признак продолжительности жизни всего растения и его скелетных осей. Он выделил следующие жизненные формы растений:

А. Древесные растения

Б. Полудревесные растения

В. Наземные травы

Поликарпические травы (многолетние травы, цветут много раз). Монокарпические травы (живут несколько лет, цветут один раз и отмирают)

Г. Водные травы

Различие между деревьями, кустарниками, кустарничками, полукустарниками, полукустарничками и травянистыми растениями состоит, помимо разной степени одревеснения их стеблей, в продолжительности жизни и характере смены скелетных побегов в общей побеговой системе.

В) Классификация жизненных форм растений по К. Раукнеру. Жизненные формы растений можно классифицировать по самым разным морфологическим признакам. В качестве примера можно привести приведем классификацию жизненных форм растений, предложенную в 1905 г. датским ботаником К. Раункиером.

В основу своей классификации Раункиер положил один единственный, но экологически значимый признак, - высоту залегания почек возобновления над поверхностью субстрата. На его основе Раункиер выделил пять крупных групп жизненных форм растений.

Фанеровиты - почки расположены достаточно высоко над поверхностью и в лучшем случае защищены почечными чешуями. К этой группе относят деревья и кустарники. Хамефиты - почки располагаются на незначительной высоте (20-30 см) над поверхностью. В эту группу входят кустарнички, полукустарники, стелющиеся растения, растения-подушки. Гемикриптифы - почки возобновления находятся на уровне субстрата (дерновинные, розеточные и др. формы травянистых растений). Геофиты - почки возобновления расположены в почве или другом твердом субстрате на некоторой глубине (корневищные, клубневые, луковичные растения). Гидрофиты - почки возобновления размещаются в воде. Терофиты - особая группа. Это однолетние растения, вегетативные части которых отмирают к концу вегетационного сезона, а зимующие почки вообще не образуются.

Г) Классификация жизненных форм животных по Д.Н. Кашкарову

Среди приспособлений животных и растений к среде немаловажную роль играют морфологические адаптации, т.е. такие особенности внешнего строения, которые способствуют выживанию и успешной жизнедеятельности организмов в обычных для них условиях. Морфологический тип приспособлений животного или растения к основным факторам местообитания и определенному образу жизни называют жизненной формой организма.

Жизненные формы животных.

Классификация жизненных ферм животных так же разнообразна, как и классификация жизненных форм растений, и зависит от принципов, положенных в ее основу.

Приведем основные группы жизненных форм животных (по Д.Н. Кашкарову. 1945).

I. Плавающие формы.

1. Чисто водные: а) нектон; б) планктон; в) бентос.

2. Полуводные:

а) ныряющие; б) не ныряющие; в) лишь добывающие из воды пищу.

II. Роющие формы.

1. Абсолютные землерои (всю жизнь проводящие под землей).

2. Относительные землерои (выходящие на поверхность).

III. Наземные формы.

1. Не делающие нор:

а) бегающие; б) прыгающие; в) ползающие.

2. Делающие норы:

а) бегающие; б) прыгающие; в) ползающие.

3. Животные скал.

IV. Древесные лазающие формы.

1. Не сходящие с деревьев.

2. Лишь лазающие по деревьям.

V. Воздушные формы.

1. Добывающие пищу в воздухе.

2. Выискивающие пищу с воздуха.

В пределах каждой группы особенности поступательного движения и образа жизни формируют особенности приспособления. Жизненные формы отчетливо выделяются в пределах любой крупной таксономической группы животных, характеризующейся экологическим разнообразием видов. Во внешнем облике птиц в значительной мере проявляются приуроченность их к определенным типам местообитаний и характер передвижения при добывании пищи. В связи с этим различают птиц: 1) древесной растительности; 2) открытых пространств суши; 3) болот и отмелей; 4) водных пространств.

В каждой из данных групп выделяют специфические формы:

а) добывающие пищу с помощью лазания (многие голуби, попугаи, дятловые, воробьиные и др.);

б) добывающие пищу в полете (длиннокрылые, в лесах - совы, козодои, над водой - трубконосые);

в) кормящееся при передвижении и о земле (на открытых пространствах - журавлиные, страусы; лесные - большинство куриных; на болотах и отмелях - некоторые воробьиные, фламинго);

г) добывающие пищу с помощью плавания и ныряния (гагары, веслоногие, гусиные, пингвины).

У насекомых В.В. Яхонтов (1969) выделяет жизненные формы:

1. Геобионты - обитатели почвы.

2. Эпигеобионты обитатели более или менее открытых участков почвы.

3. Герпебионты - живущие среди органических остатков на поверхности почвы, под опавшей листвой.

4. Хортобионты - обитатели травяного покрова.

5. Тамнобионты и дендробионты - обитатели деревьев и кустарников.

6. Ксилобиояты - обитатели древесины.

7. Гидробионты - водные насекомые.

Сходные формы встречаются в сходных условиях в разных зоогеографических областях и на разных материалах. Таким образом, жизненные формы наглядно свидетельствуют об образе жизни вида.

Размещено на Allbest.ru

...

Подобные документы

  • Определение понятий "засуха" и "засухоустойчивость". Рассмотрение реакции растений на засуху. Изучение типов растений по отношению к водному режиму: ксерофитов, гигрофитов и мезофитов. Описание механизма приспособления растений к условиям внешней среды.

    реферат [998,2 K], добавлен 07.05.2015

  • Характеристика основных групп растений по отношению к воде. Анатомо-морфологические приспособления растений к водному режиму. Физиологические адаптации растений, приуроченных к местообитаниям разной увлажненности.

    курсовая работа [20,2 K], добавлен 01.03.2002

  • Общая характеристика водной среды. Анализ адаптации организмов к различным факторам - плотности воды, солевому, температурному, световому и газовому режимам. Особенности адаптации растений и животных к водной среде, экологические группы гидробионтов.

    курсовая работа [4,8 M], добавлен 29.12.2012

  • Адаптация как приспособление организма к среде обитания, к условиям его существования. Особенности условий жизни спортсмена. Биохимические и физиологические механизмы адаптации к физическим нагрузкам. Биологические принципы спортивной тренировки.

    реферат [69,5 K], добавлен 06.09.2009

  • Виды адаптации живых организмов к окружающей среде. Маскировочная, покровительственная и предупреждающая окраска. Особенности поведения и строения тела животных для приспособления к образу жизни. Мимикрия и забота о потомстве. Физиологические адаптации.

    презентация [1,7 M], добавлен 20.12.2010

  • Жизнеспособность, конкурентоспособность и фертильность - основные критерии адаптации организмов. Аккомодации и эволюционные адаптации. Механизм маскировки и мимикрии незащищенных животных. Инадаптивная, преадаптивная и постадаптивная фазы адаптациогенеза.

    курсовая работа [33,9 K], добавлен 10.12.2010

  • Перекрестная адаптация организма к одному фактору среды, ее способствование приспособлению к другим факторам. Молекулярные основы адаптации человека и ее практическое значение. Приспосабливаемость живого организма к повреждающим факторам внешней среды.

    реферат [198,3 K], добавлен 20.09.2009

  • Ритмичность всех процессов живых организмов и надорганизменнных систем, подчинение периодическим ритмам, отражающим реакции биосистем на ритмы природы и всей Вселенной. Синхронизация биохимических процессов в организме, классификация и природа биоритмов.

    реферат [138,6 K], добавлен 23.05.2010

  • Характеристика процессов адаптации человека к условиям окружающей среды. Исследование основных механизмов адаптации. Изучение общих мер повышения устойчивости организма. Законы и закономерности гигиены. Описания принципов гигиенического нормирования.

    презентация [8,5 M], добавлен 11.03.2014

  • Адаптация как одно из ключевых понятий в экологии человека. Основные механизмы адаптации человека. Физиологические и биохимические основы адаптации. Адаптация организма к физическим нагрузкам. Снижение возбудимости при развитии запредельного торможения.

    реферат [22,8 K], добавлен 25.06.2011

  • Изучение морфологических, физиологических и поведенческих адаптаций живых организмов. Принцип противотени у водных животных. Чередование пятен у млекопитающих. Расчленяющая окраска. Коллективная, агрессивная мимикрия и мимезия. Подражание у насекомых.

    презентация [5,9 M], добавлен 20.10.2013

  • Понятие адаптации - приспособительного процесса, возникающего в ходе индивидуальной жизни человека. Физиологические аспекты повышения устойчивости организма к действию факторов новых условий существования. Стрессорные факторы при ослаблении организма.

    презентация [144,6 K], добавлен 29.05.2019

  • Сущность процесса адаптации. Стресс как неспецифический стимулятор. Резервы продуктивности биологических систем. Использование резервов организма в спорте, медицине. Построение модели адаптации организма к факторам, выводящим его из состояния равновесия.

    курсовая работа [261,7 K], добавлен 25.11.2013

  • Особенности галофильных бактерий, строение клеточной стенки и бескислородный фотосинтез. Механизмы адаптации к регуляции осмотического давления у водных организмов. Биохимические особенности растений-галофитов для функционирования в условиях засоления.

    презентация [1012,0 K], добавлен 29.08.2015

  • Опыление как способ размножения покрытосеменных растений. Автогамия обоеполых цветков. Формы и способы осуществления аллогамии. Морфологические адаптации цветковых растений к перекрестному опылению: ветром, водой, птицами, насекомыми и летучими мышами.

    курсовая работа [334,8 K], добавлен 21.01.2015

  • Растения-индикаторы почвенно-грунтовых условий. Индикация почвенного плодородия, кислотности и засоления почвы. Адаптации организмов к обитанию на известняках. Экологические группы почвенных организмов. Растения-кальцефилы северо-западной части Кавказа.

    курсовая работа [62,6 K], добавлен 17.07.2012

  • Периодически повторяющиеся изменения в ходе биологических процессов в организме или явлений природы. Эндогенные, экологические, физиологические, циркадианные, приливные, лунные и низкочастотные ритмы. Значение биологических часов в жизни живых существ.

    презентация [4,4 M], добавлен 14.03.2011

  • Общая характеристика растений как фотоавтотрофных организмов. Дифференциация тела растений, простые и сложные ткани. Первичные и вторичные меристемы. Ситовидные клетки и трубки как важнейшие части флоэмы. Виды паренхимы основных выделительных тканей.

    презентация [15,0 M], добавлен 28.01.2013

  • Сообщается о методе, который заключается в многоступенчатой адаптации бактерий к дейтерию путём рассева их на средах, содержащих возрастающие концентрации 2Н2O и с последующей селекцией отдельных колоний, выросших на этих средах.

    статья [556,6 K], добавлен 23.10.2006

  • Понятие жизненной формы в отношении растений, роль внешней среды в ее становлении. Габитус групп растений, возникающий в результате роста и развития в определенных условиях. Отличительные черты дерева, кустарника, цветковых и травянистых растений.

    реферат [18,9 K], добавлен 07.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.