Пассивные механические свойства биологических тканей
Механические модели биообъектов. Закон Гука при деформации тканей, сущность модели Максвелла. Механические свойства мышц и костей: растяжение, сжатие, изгиб и кручение. Эластические свойства сосудов и вен. Молекулярные основы упругих свойств биообъектов.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 30.11.2015 |
Размер файла | 27,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
[Введите текст]
АО "Медицинский университет Астана"
Кафедра медицинской биофизики и основ безопасности жизнедеятельности
Реферат
Тема: "Пассивные механические свойства биологических тканей"
Астана 2014
План
1. Механические модели биообъектов. Закон Гука при деформации тканей
2. Механические свойства мышц и костей
3. Механические свойства стенки кровеносных сосудов
4. Механические процессы в легких
5. Молекулярные основы упругих свойств биообъектов
Литература
1. Механические модели биообъектов. Закон Гука при деформации тканей
Под механическими свойствами биотканей понимают две разновидности:
Первая (активная) связана с процессами биологической подвижности: сокращение мышц, рост клеток, движение хромосом в клетках, их деления и т.д. Эти процессы обусловлены химическими процессами и энергетически обеспечиваются АТФ. Другая разновидность - пассивные механические свойства биосистем обусловленные внешними воздействиями.
Биологическая ткань - композиционный материал, образованный объемным сочетанием химически разнородных элементов и обладающий реологическими свойствами, отличающимися от свойств отдельных компонентов биоткани. Основу биотканей составляют коллаген, эластин и связующее вещество.
Механические воздействие на биоткани вызывают в них деформации и напряжения, появляется механическое движение, распространяются волны. Физиологическая реакция на эти факторы зависит от механических свойств биотканей. Знать, как меняются эти реакции и свойства тканей очень важно для профилактики, защиты организма, для применения искусственных тканей и органов, а также для понимания их физиологии и патологии.
В биомеханике все ткани человека подразделяются по плотности и типу пространственной структуры на твердые (кость, эмаль и дентин зубов), мягкие (мышцы, эпителий, эндотелий, соединительная ткань, паренхима), жидкие (кровь, лимфа, ликвор, слюна, сперма).
Упругие и вязкие свойства тел удобно моделировать. В качестве модели упругого тела можно выбрать пружину, Малая деформация которой соответствует закону Гука:
у = F/S или у = з,
где з - коэффициент вязкости, - скорость вязкой деформации.
Моделью вязкого тела является поршень с отверстиями, движущийся в цилиндре с вязкой жидкостью.
Вязкоупругие свойства тел моделируются системами, состоящими из различных комбинаций двух простых моделей: пружина и поршень.
Наиболее простой системой, сочетающей упругие и вязкие свойства, является модель Максвелла, в которой последовательно соединены упругий и вязкий элемент. При воздействии постоянной силой пружина упруго мгновенно удлиняется до значения, определяемого законом Гука, а поршень движется с постоянной скоростью до тех пор, пока действует сила (напряжение). Так реализуется на модели ползучесть материала (деформация тела под действием постоянной нагрузки):
,
где Е - модуль Юнга, у - деформация, еупр - упругая часть общей деформации в модели Максвелла.
Также используется модель Кельвина - Фойхта, состоящая из параллельно соединенных пружины и поршня, нечто вроде амортизатора в автомашине.
Если создать в такой системе напряжение, приложив постоянную силу, то деформация системы будет возрастать:
у = уупр + увязк или у = Eу + з
В рамках модели Кельвина - Фойхта деформация экспоненциально возрастает со временем. При снятии нагрузки деформация начнет экспоненциально убывать.
В полимерах реализуются разные виды деформации: упругая обратимая (модель - пружина), вязкоупругая обратимая (модель Кельвина - Фойхта) и необратимая вязкая (модель - поршень). Сочетание этих 3 элементов позволяет создавать модели, наиболее полно отражающие механические свойства тел и, в частности, биологических объектов.
2. Механические свойства мышц и костей
Основная функция мышц состоит в преобразовании химической энергии в механическую работу или силу. Главными биомеханическими показателями, характеризующими деятельность мышцы, являются: а) сила, регистрируемая на ее конце (эту силу называют натяжением или силой тяги мышцы) и б) скорость изменения длины.
При возбуждении мышцы изменяется ее механическое состояние; эти изменения называют сокращением. Оно проявляется в изменении натяжения и длины мышцы, а также других ее механических свойств (упругости, твердости и др.).
Механические свойства мышц сложны и зависят от механических свойств элементов, образующих мышцу (мышечные волокна, соединительные образования и т.п.), и состояния мышцы (возбуждения, утомления и пр.).
Понять многие из механических свойств мышцы помогает упрощенная модель ее строения - в виде комбинации упругих и сократительных компонентов. Упругие компоненты по механическим свойствам аналогичны пружинам: чтобы их растянуть, нужно приложить силу. Работа силы равна энергии упругой деформации, которая может в следующей фазе движения перейти в механическую работу. Различают: а) параллельные упругие компоненты (ПарК) - соединительнотканные образования, составляющие оболочку мышечных волокон и их пучков, и б) последовательные упругие компоненты (ПосК) - сухожилия мышцы, места перехода миофибрилл в соединительную ткань, а также отдельные участки саркомеров, точная локализация которых в настоящее время неизвестна.
Сократительные (контрактильные) компоненты соответствуют тем участкам саркомеров мышцы, где актиновые и миозиновые миофиламенты перекрывают друг друга. В этих участках при возбуждении мышцы происходит механическое взаимодействие между актиновыми и миозиновыми филаментами, приводящее к изменению натяжения и длины мышцы.
Поскольку каждая миофибрилла состоит из большого числа (n) последовательно расположенных саркомеров, то величина и скорость изменения длины миофибриллы в п раз больше, чем у одного саркомера. Сила, развиваемая каждым из них, одинакова и равна силе, регистрируемой на конце миофибриллы (подобно тому, как равны силы в каждом из звеньев цепи, к концам которой приложены растягивающие силы). Эти же самые n саркомеров, соединенные параллельно (что соответствует большему числу миофибрилл), дали бы кратное увеличение в силе, но при этом скорость изменения длины мышцы была бы той же, что и скорость одного саркомера. Поэтому при прочих равных условиях увеличение физиологического поперечника мышцы привело бы к увеличению ее силы, но не изменило бы скорости укорочения, и наоборот, увеличение длины мышцы сказалось бы положительно на скорости сокращения, но не повлияло бы на ее силу.
Покоящаяся мышца обладает упругими свойствами: если к ее концу приложена внешняя сила, мышца растягивается (ее длина увеличивается), а после снятия внешней нагрузки восстанавливает свою исходную длину. Зависимость между величиной нагрузки и удлинением мышцы непропорциональна (не подчиняется закону Гука)
Сначала мышца растягивается легко, а затем даже для небольшого удлинения надо прикладывать все большую силу (иногда мышцу в этом отношении сравнивают с вязаными вещами: если растягивать, скажем, трикотажный шарф, то вначале он легко изменяет свою длину, а затем становится практически нерастяжимым).
Если мышцу растягивать повторно через небольшие интервалы Времени, то ее длина увеличится больше, чем при однократном «содействии. Это свойство мышц широко используется в практике при выполнении упражнений на гибкость (пружинистые движения, повторные махи и т.п.).
Длина, которую стремится принять мышца, будучи освобожденной от всякой нагрузки, называется равновесной (или свободной). При такой длине мышцы ее упругие силы равны нулю. В живом организме длина мышцы всегда несколько больше равновесной и поэтому даже расслабленные мышцы сохраняют некоторое натяжение.
Для мышц характерно также такое свойство, как релаксация - снижение силы упругой деформации с течением времени. При отталкивании в прыжках с места сразу после быстрого приседания прыжок будет выше, чем при отталкивании после паузы в низшей точке подседа: после паузы упругие силы, возникшие при быстром приседании, вследствие релаксации не используются.
Костная ткань. Кость - основной материал опорно-двигательного аппарата
Механические свойства костей определяются их разнообразными функциями; кроме двигательной, они выполняют защитную и опорную функции. Так кости черепа и грудной клетки защищают внутренние органы, а кости позвоночника и конечностей выполняют опорную функцию.
Выделяют 4 вида механического воздействия на кость: растяжение, сжатие, изгиб и кручение.
Установлено, что прочность кости на растяжение почти равна прочности чугуна. При сжатии прочность костей еще выше. Самая массивная кость - большеберцовая (основная кость бедра) выдерживает силу сжатия в 16-18 кН.
Менее прочны кости на изгиб и кручение. Однако регулярные тренировки приводят к гипертрофии костей. Так, у штангистов утолщаются кости ног и позвоночника, у теннисистов - кости предплечья и т.п.
3. Механические свойства стенки кровеносных сосудов
Артерии и вены вносят лишь незначительный вклад в общее сопротивление кровотоку, который осуществляется через сосудистое русло. Поэтому мы обычно не придаем большого значения тому влиянию, которое оказывает изменение их диаметра на кровоток через системные органы. В то же время эластические свойства артерий и вен являются весьма важным фактором, влияющим на деятельность сердечно-сосудистой системы, так как эти сосуды могут функционировать как резервуары, и в них могут быть накоплены существенные количества крови.
Эластические свойства сосудов или отделов сосудистой системы часто характеризуются такой величиной, как растяжимость, которая отражает, насколько изменяется их объем в ответ на определенное изменение трансмурального давления.
Трансмуральное давление представляет собой разность между внутренним и внешним давлением на сосудистую стенку.
Эластические свойства вен важны для их функции по депонированию крови. Вены более растяжимы, чем артерии. Так как вены столь растяжимы, что даже небольшие изменения периферического венозного давления могут вызвать перемещение существенного объема циркулирующей крови в периферический венозный пул или из него. Переход в вертикаль - нос положение тела, например, увеличивает венозное давление в нижних конечностях и способствует накоплению крови (создание пула) в этих сосудах.
К счастью, данный процесс может быть уравновешен активным сужением вен. В суженных венах объем крови может соответствовать норме или даже быть ниже нормы, несмотря на более высокое, чем венозное давление. Сужение периферических вен само по себе способно повышать периферическое венозное давление и перемещать кровь из венозного резервуара.
Эластические свойства артерий позволяют им функционировать в качестве резервуара в промежутке между сокращениями сердца. Артерии играют важную роль в превращении пульсирующего потока крови, изгоняемого из сердца, в постоянный поток через сосудистое русло системных органов. С этой точки зрения, артерии выполняют функцию буфера. В начале фазы быстрого изгнания объем артериальной крови увеличивается, так как кровь поступает в 1 аорту быстрее, чем она проходит в просвет системных артериол. Таким образом, часть той работы, которую сердце выполняет при выбросе крови, уходит на растяжение эластических стенок артерий. Ближе к концу систолы и на протяжении диастолы, артериальный объем уменьшается, поскольку кровоток, выходящий из артерий, превышает кровоток, поступающий в аорту. Находящаяся в растянутом состоянии артериальная стенка сокращается и при этом утрачивает накопленную потенциальную энергию. Данная энергия, перешедшая из одной формы в другую, и обеспечивает работу по продвижению крови через периферическое сосудистое русло во время диастолы. Если бы артерии представляли собой жесткие трубки, не способные аккумулировать энергию за счет эластического растяжения, артериальное давлением немедленно падало бы до нуля при окончании процесса каждого сердечного выброса.
4. Механические процессы в легких
биообъект мышца гук закон
Вдох совершается в результате увеличения объема грудной полости, происходящем при подъеме ребер и опускании диафрагмы. Увеличение объема грудной полости приводит к уменьшению давления в плевральной полости; в результате увеличения разности давления между давлением воздуха и давлением плевральной полости легкие расправляются.
При выдохе расслабляются мышцы, под давлением перепада давления легкие сжимаются.
Атмосферное давление (р) на грудную клетку уравновешивается давлением плевральной полости и эластичной тягой грудной клетки:
Ратм = Рпл + Рэл.гк (1)
Ратм - атмосферное давление
Рпл - давление в плевральной полости
Рэл.гк - эластичная тяга грудной клетки
Ратм - Рпл < 9 мм.рт.ст.
Давление в альвеолах уравновешивается давлением в плевральной полости и эластичной тяги легких:
Рал = Рпл + Рэл.л (2)
Рал - давление в альвеолах
Рэл.л - эластичная тяга легких.
Транспульманальным давлением называется разность между давлением Рал и Рпл:
Р = Рал - Рпл = Рэл.л (3)
(в соответствии с (2) обеспечивается эластичной тягой легких).
Эластичная тяга легких развивается за счет 2-х факторов:
- упругость тканей легких;
- сила поверхностного натяжения жидкости, выстилающей внутреннюю поверхность альвеол.
При вдохе межреберные мышцы сокращаются, оттягивая передние концы ребер вверх и вперед; такое движение возможно благодаря как бы «шарнирному» соединению ребер с позвоночником. В это же время диафрагма, образующая дно грудной полости, сокращается и становится менее выпуклой в своей верхней части, что тоже увеличивает пространство полости. Поскольку пространство грудной полости замкнуто, это увеличение объема приводит к уменьшению давления в легких, и, когда давление становится ниже атмосферного, наружный воздух устремляется через трахею и бронхи в альвеолярные мешочки и альвеолы.
При выдохе воздух выталкивается из легких благодаря эластичности самих легких и тяжести стенок грудной клетки. Во время вдоха легкие по мере наполнения их воздухом растягиваются. После расслабления межреберных мышц ребра получают возможность вернуться в первоначальное положение, а одновременное расслабление диафрагмы ведет к тому, что под давлением органов, расположенных в брюшной полости, она вновь принимает прежнюю куполообразную форму. В результате объем грудной полости уменьшается, что позволяет растянутой упругой ткани легких сжаться и вытолкнуть воздух, вошедший в легкие при вдохе.
Во время мышечной работы пассивное расслабление межреберных мышц и диафрагмы происходит недостаточно быстро для того, чтобы воздух успел выйти из легких до начала следующего вдоха, и это уменьшение объема грудной полости производится путем сокращения мышц. Кроме мышц, поднимающих ребра при вдохе, имеется вторая группа мышц, волокна которых идут под прямым углом к первым; эти мышцы опускают передние концы ребер, уменьшая тем самым объем грудной клетки. Мышцы брюшной стенки тоже сокращаются, заставляя органы брюшной полости давить вверх на диафрагму и этим дополнительно ускорять эластическое сжатие легких. При дыхании стенки грудной полости никогда не давят на легкие и не выжимают из них воздух; уменьшение объема грудной полости лишь позволяет легким сжиматься благодаря их собственной упругости. Кашель и чихание представляют собой формы усиленного выдоха, при котором вследствие энергичного сокращения мышц брюшной стенки органы, лежащие в брюшной полости, давят на диафрагму, резко уменьшая объем грудной полости и быстро выталкивая воздух из легких.
Трахея, глотка и другие дыхательные пути не выполняют никакой активной мышечной функции в дыхании; они служат лишь проводящими каналами. В некоторых случаях при закрытии просвета гортани приходится создавать искусственное отверстие в области шеи для прохождения воздуха в трахею; дыхательные движения после этого происходят нормально.
Давление воздуха в легких изменяется при каждом дыхательном движении. В промежутках между выдохом и последующим вдохом оно равно атмосферному, так как наружный воздух и воздух в легких свободно сообщаются между собой. Когда начинается вдох, давление воздуха в легких слегка понижается (на 1--2 мм рпг. ст. ниже атмосферного), что заставляет воздух входить в легкие. К концу вдоха вошедший воздух уравнивает давление. В начале выдоха сила упругости легких сжимает содержащийся в них воздух, давление его становится на 2--3 мм рт. ст. выше атмосферного и вследствие этого воздух выходит из легких. К концу выдоха давление, конечно, возвращается к уровню атмосферного.
5. Молекулярные основы упругих свойств биообъектов
Упругие свойства биообъектов прежде всего обоснованы их молекулярным строением и составом их составляющих веществ. Костная ткань образована неорганическими и органическими веществами. Две трети массы компактной костной ткани составляет гидроксилопатит. Это вещество представлено в форме микроскопических кристалликов. В остальном кость состоит в основном из коллагена (высокомолекулярное соединение, волокнистый белок, обладающий высокоэластичностью). Кристаллики гидроксилопатита расположены между коллагеновыми волокнами. Плотность костной ткани 2400 кг/м3. Ее механические свойства зависят от многих факторов, в том числе от возраста, индивидуальных условий роста организма и, конечно, от участка организма. Композиционное строение кости придает ей нужные механические свойства: твердость, упругость и прочность.
Кожа состоит из волокон коллагена, эластина (так же, как и коллаген, волокнистый белок) и основной ткани - матрицы. Коллаген составляет 75% сухой массы, а эластин - около 4%. Эластин растягивается очень сильно (до 200-300%), примерно, как резина. Коллаген может растягиваться до 10%, что соответствует капроновому волокну. Следовательно, кожа является вязкоупругим материалом с высокоэластичными свойствами, она хорошо растягивается и удлиняется.
В состав мышц входит соединительная ткань, состоящая из волокон коллагена и эластина. Поэтому механические свойства мышц подобны механическим свойствам полимеров.
Ткань кровеносных сосудов состоит из коллагена и эластина. Поэтому механические свойства сосудов зависят от свойств эластина, коллагена, а также гладких мышечных волокон. Содержание этих составляющих сосудистой ткани изменяется по ходу кровеносной системы: отношение коллагена к эластину в общей сонной артерии 2:1, а в бедренной артерии 1:2. С удалением от сердца увеличивается доля гладких мышечных волокон, в артериолах они уже являются основной составляющей сосудистой ткани.
Литература
1. А.Н. Ремизов, А.Г. Максина, А.Я. Потапенко. Учебник по медицинской и биологической физике.
2. Волькенштейн М.В. Общая биофизика: Монография.
Размещено на Allbest.ru
...Подобные документы
Механические модели биообъектов. Закон Гука при деформации тканей. Механические свойства мышц и костей, стенки кровеносных сосудов. Основные механические процессы в легких. Молекулярные основы упругих свойств биообъектов. Движение хромосом в клетках.
презентация [4,7 M], добавлен 14.03.2015Вязкоупругие, упруговязкие и вязкопластичные системы. Механические свойства мышц, костей, кровеносных сосудов, легких. Задачи и объекты биомеханики. Сочленения и рычаги в опорно-двигательном аппарате человека. Механические свойства тканей организма.
реферат [163,5 K], добавлен 25.02.2011Характеристика и природа важнейших механических свойств биологических тканей, благодаря которым осуществляются разнообразные механические явления. Структура кожи и особенности ее механических свойств. Эластические и химические свойства сосудов, крови.
реферат [29,1 K], добавлен 18.01.2010Общее понятие и разновидности колебаний. Характеристика процессов растяжения (сжатия), сдвига, изгиба, кручения. Механические свойства костной и сосудистой тканей. Специфика мышечной ткани, основные режимы работы мышц – изометрический и изотонический.
контрольная работа [461,1 K], добавлен 19.03.2014Основные характеристики и виды деформаций тела под воздействием внешних сил. Реологическое моделирование биотканей: упругой пружины, вязкой жидкости и системы Максвелла. Пассивные и активные механические свойства костной ткани и кровеносных сосудов.
курсовая работа [53,2 K], добавлен 12.05.2011Преобразование химической энергии в механическую работу или силу как основная функции мышц, их механические свойства. Применение закона Гука в отношении малых напряжений и деформаций. Механизм мышечного сокращения. Ферментативные свойства актомиозина.
презентация [3,0 M], добавлен 23.02.2013Возбудимые ткани и их свойства. Структура и функции биологических мембран, транспорт веществ через них. Электрические явления возбудимых тканей, их характер и обоснование. Рефрактерные периоды. Законы раздражения в возбудимых тканях, их применение.
презентация [1,8 M], добавлен 05.03.2015Способы расчета смещения максимума спектра флюоресценции, если потеря энергии кванта флюоресценции от поглощения составляет 50 %. Определение роли вязкости крови, если "общая" длина сосудистого русла снизилась в полтора раза. Расчет импеданса ткани.
контрольная работа [17,1 K], добавлен 23.10.2010Исследование структуры и функционального значения мышц. Анализ современных представлений о мышечном сокращении и расслаблении. Виды мышечной ткани. Скорость проведения возбуждения в скелетных мышцах. Физиологические свойства мышц. Мышечное утомление.
презентация [1,3 M], добавлен 27.04.2015Опорно-трофические (соединительные) ткани - клетки и межклеточное вещество организма человека, их морфология и функции: опорная, защитная, трофическая (питательная). Виды тканей: жировая, пигментная, слизистая, хрящевая, костная; специальные свойства.
реферат [20,9 K], добавлен 04.12.2011Класификация тканей, виды эпителиальных тканей, их строение и функции. Опорная, трофическая и защитная функция соединительных тканей. Функции нервной и мышечной тканей. Понятие об органах и системах органов, их индивидуальные, половые, возрастные отличия.
реферат [6,0 M], добавлен 11.09.2009История систематического изучения закономерностей эволюции тканей. Теория параллелизма гистологических структур. Теория дивергентной эволюции тканей. Теория филэмбриогенеза в гистологии. Эпителиальная, производные мезенхимы, мышечная и нервная ткань.
презентация [890,0 K], добавлен 12.11.2015Механические ткани – опорные ткани. Прочность органов растений для сопротивления статическим и динамическим нагрузкам. Развитие механических тканей и условия обитания. Колленхима – простая первичная опорная ткань. Функции арматурной ткани колленхима.
контрольная работа [26,7 K], добавлен 01.04.2009Свойства возбудимых тканей. Рефлекторные функции продолговатого мозга. Функции ядер гипоталамуса и сенсорных систем. Стадии свертывания крови. Фазы работы сердца. Свойства желез внутренней секреции. Функции промежуточного мозга, осуществляющие их отделы.
реферат [47,0 K], добавлен 18.05.2015Исследование отличительных свойств эпителиальных тканей. Изучение особенностей развития, строения и жизнедеятельности тканей организмов животных и человека. Анализ основных видов однослойного эпителия. Защитная и всасывающая функции эпителиальной ткани.
презентация [721,1 K], добавлен 23.02.2013Слизи как обволакивающие, противовоспалительные средства и защитные коллоиды. Виды растений, содержащих слизи. Провоцирующая роль растений, травмирующих слизистую оболочку пищеварительного тракта. Ботанические сведения о семействах Злаковых и Зонтичных.
контрольная работа [21,3 K], добавлен 07.10.2010Структура биологических мембран и строение их основы - билипидного слоя. Молекулярная масса мембранных белков, их различие по прочности связывания с мембраной. Динамические свойства биологических мембран и значение организации для биологических систем.
реферат [19,1 K], добавлен 20.12.2009Составляющие растительной клетки. Плазматическая мембрана, ее функции. Компоненты клеточной стенки. Типы митоза эукариот. Образовательные ткани в теле растений и их расположение. Механические свойства растительных клеток. Наружные выделительные ткани.
учебное пособие [76,4 K], добавлен 12.12.2009Морфология растений: их жизненные формы; органы. Характеристика основных групп растительных тканей. Сроение образовательных тканей, латеральных меристем. Основные виды проводящих тканей флоэмы, ксилемы. Виды покровных, основных, выделительных тканей.
презентация [14,0 M], добавлен 15.04.2011Первичная, вторичная и третичная структуры ДНК. Свойства генетического кода. История открытия нуклеиновых кислот, их биохимические и физико-химические свойства. Матричная, рибосомальная, транспортная РНК. Процесс репликации, транскрипции и трансляции.
реферат [4,1 M], добавлен 19.05.2015