Определение и виды мейоза

Основные разновидности редукционного деления клетки. Главные стадии профазы первого разделения. Характеристика последовательности нуклеотидов в цепях. Определение и виды генетической рекомбинации. Производство генотипически неоднородного потомства.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 30.11.2015
Размер файла 29,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

АО «Медицинский университет Астана»

Кафедра молекулярной биологии и медицинской генетики

Астана 2015

Практическая работа

На тему: Мейоз. Рекомбинация генетического материала

Выполнил:

Акишев А.

Проверила:

Мироедова Э. П.

План

1. Определение и виды мейоза

2. Определение и виды генетической рекомбинации

3. Значение генетической рекомбинации

Литература

1. Определение и виды мейоза

Мейомз (от др.-греч. меЯщуйт -- уменьшение) или редукционное деление клетки -- деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом -- образованием специализированных половых клеток, или гамет, из недифференцированных стволовых.

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса.

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов. Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет (основным средством борьбы с этой проблемой является применение полиплоидных хромосомных наборов, поскольку в данном случае каждая хромосома конъюгирует с соответствующей хромосомой своего набора) . Определённые ограничения на конъюгацию хромосом накладывают и хромосомные перестройки (масштабные делеции, дупликации, инверсии или транслокации).

При мейозе происходит не только редукция числа хромосом до гаплоидного их числа, но происходит чрезвычайно важный генетический процесс - обмен участками между гомологичными хромосомами, процесс, получивший название кроссинговера.

Существует несколько разновидностей мейоза. При зиготном (характерном для аскомицетов, базимицетов, некоторых водорослей, споровиков и др.), для которых в жизненном цикле преобладает гаплоидная фаза, две клетки - гаметы сливаются, образуя зиготу с двойным (диплоидным) набором хромосом. В таком виде диплоидная зигота (покоящаяся спора) приступает к мейозу, дважды делиться, и образуется четыре гаплоидные клетки, которые продолжают размножаться.

Споровый тип мейоза встречается у высших растений, клетки которых имеют диплоидный набор хромосом. В данном случае в органах размножения растений, образовавшиеся после мейоза гаплоидные клетки еще несколько раз делятся. Другой тип мейоза, гаметный, происходит во время созревания гамет - предшественников зрелых половых клеток. Он встречается у многоклеточных животных, среди некоторых низших растений.

В случае гаметного мейоза характерно при развитии организма выделение клонов герминативных клеток, которые впоследствии будут дифференцироваться в половые клетки. И только клетки этих клонов будут при созревании подвергаться мейозу и превращаться в половые клетки. Следовательно, все клетки развивающихся многоклеточных животных организмов можно разделить на две группы: соматические - из которых будут образовываться клетки всех тканей и органов, и герминативные, которые дадут начало половым клеткам.

Такое выделение герминативных клеток (гоноцитов) обычно происходит на ранних стадиях эмбрионального развития. Так, детерминация гоноцитов у рачка циклопа происходит уже на первом делении зиготы: одна из двух клеток дает начало герминальным клеткам. У аскариды герминативные клетки или клетки "зародышевого пути" (А.Вейсман) выделяются на стадии 16 бластомеров, у дрозофилы - на стадии бластоцисты, у человека - первичные половые клетки (гонобласты) появляются на 3-ей неделе эмбрионального развития в стенке желточного мешка в каудальном отделе эмбриона.

Фазы мейоза

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

· Профаза I -- профаза первого деления очень сложная и состоит из 5 стадий:

· Лептотена или лептонема -- упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).

· Зиготена или зигонема -- происходит конъюгация -- соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.

· Пахитена или пахинема -- (самая длительная стадия) -- в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы. В них происходит кроссинговер -- обмен участками между гомологичными хромосомами.

· Диплотена или диплонема -- происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.

· Диакинез -- ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

· Метафаза I -- бивалентные хромосомы выстраиваются вдоль экватора клетки.

· Анафаза I -- микротрубочки сокращаются, биваленты делятся, и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.

· Телофаза I -- хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

· Профаза II -- происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.

· Метафаза II -- унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

· Анафаза II -- униваленты делятся и хроматиды расходятся к полюсам.

· Телофаза II -- хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).

2. Определение и виды генетической рекомбинации

Генетическая рекомбинация - это перераспределение генетического материала (ДНК), приводящее к возникновению новых комбинаций генов. Рекомбинация может происходить путем обмена клеточными ядрами, целыми молекулами ДНК или частями молекул. В то время как процессы репликации и репарации ДНК обеспечивают воспроизведение и сохранение генетического материала, рекомбинация приводит к генетической изменчивости. Биологическое значение рекомбинации столь велико, что она получила развитие у всех живых организмов. Она может происходить у эукариот (как при образовании половых клеток - гамет, так и в соматических клетках), у бактерий и даже при размножении вирусов, в том числе таких, генетический материал которых состоит из РНК. Перетасовка хромосом в мейозе, приводящая к огромному разнообразию гамет, случайность слияния гамет при оплодотворении, обмен частями между гомологичными хромосомами - все это (и далеко не только это) относится к рекомбинации.

Понятно, что из широкого круга рекомбинационных явлений интерес молекулярных биологов в первую очередь вызывает рекомбинация, заключающаяся в обменах частями между молекулами ДНК, ведь здесь можно применять весь арсенал методов генетики и молекулярной биологии, и эти исследования перекрываются с изучением других важных генетических процессов, прежде всего репликации и репарации ДНК. Но даже в таком виде, суженном до обменов частями молекул ДНК, понятие "рекомбинация" включает большой набор разных по своей природе явлений. При этом для всех рекомбинационных процессов общим является этап, на котором молекулы ДНК вступают в контакт в участке, где произойдет обмен полинуклеотидными цепями. Этот этап получил название "синапсис". Однако механизм синапсиса при разных типах рекомбинации принципиально различен. Более того, он является одним из критериев при классификации рекомбинационных явлений.

Прежде чем перейти к их рассмотрению, напомним некоторые термины и понятия, которыми мы будем пользоваться. Молекула ДНК представляет собой дуплекс - структуру из двух закрученных в спираль полинуклеотидных цепей. Последовательность нуклеотидов в цепях определяет специфичность ДНК и несет генетическую информацию. Молекулы, имеющие общее происхождение и состоящие из одинаковых нуклеотидных последовательностей, называют гомологичными. Однако их идентичность нарушается из-за мутаций, накапливающихся в течение поколений. По большей части мутации приводят к заменам единичных нуклеотидов, реже к выпадениям и вставкам отдельных нуклеотидов. Поэтому нарушения гомологии в результате мутаций не очень существенны по сравнению с основной массой идентичных нуклеотидов, и в таких случаях можно говорить об общей гомологии молекул. Каждая новая мутация приводит к образованию нового аллеля в том гене, где она возникла. Следовательно, новые аллели обычно отличаются от исходной формы одним нуклеотидом. Если мутация приводит к изменению фенотипа у исходной формы, то к ней можно применять также термин "генетический маркер".

Две цепи, составляющие дуплекс ДНК, антипараллельны, то есть имеют разную полярность: одна цепь имеет направление 5'-3', другая - 3'-5'. Цепи удерживаются вместе водородными связями между парами комплементарных оснований А-Т и G-C. Поэтому обе цепи в дуплексе являются также комплементарными. Процесс расхождения цепей в результате разрыва водородных связей есть денатурация, обратная реакция - ренатурация. Все это сказано для того, чтобы подвести читателя к отправной идее статьи: поскольку отдельные цепи ДНК, полученные от разных родителей, гомологичны и, следовательно, комплементарны, они могут ренатурировать, формируя новый дуплекс. Иными словами, гомологичные ДНК могут узнавать друг друга по комплементарности их нуклеотидной последовательности. Новый дуплекс, состоящий из цепей от разных молекул, называется гетеродуплексом.

А теперь можно дать классификацию основных типов рекомбинации. Все, что говорилось о гомологии ДНК и комплементарности полинуклеотидных цепей, относится к гомологичной, или общей, рекомбинации (она же кроссинговер), основанной на спаривании комплементарных цепей ДНК. От других типов рекомбинационных процессов ее отличают необходимость в общей (по всей длине молекул) гомологии между рекомбинирующими ДНК и участие большого набора специальных белков. Гомологичная рекомбинация начинается с возникновения в одном или обоих дуплексах участков из одиночных цепей ДНК, которые затем с помощью специальных белков находят комплементарные последовательности в гомологичном дуплексе и образуют с ними гетеродуплекс - ключевой промежуточный продукт (интермедиат) рекомбинации. Конечным результатом рекомбинации будет обмен равными частями гомологичных молекул (рис. 1).

Из общей рекомбинации можно выделить как частный случай так называемую эктопическую рекомбинацию. Она заключается в обменах (кроссинговерах) между отдельными участками гомологичной ДНК, разбросанными по геному. К ним относятся разнообразные подвижные элементы, названные так за способность перемещаться по геному, гены транспортных и рибосомных РНК, гистонов и многие другие повторяющиеся последовательности (повторы) ДНК. Такая локальная гомологичная рекомбинация интересна прежде всего тем, что она может приводить к хромосомным перестройкам, хотя ее биологическая роль этим не исчерпывается. На рис. 2 в качестве примера приведены схемы возникновения инверсий (поворотов внутренних участков хромосом на 180?), утрат (делеций) и удвоений (дупликаций) частей хромосом в результате эктопической рекомбинации. Это только часть возможных перестроек хромосом. Другие их типы могут возникать в зависимости от того, какова ориентация повторов ДНК по отношению друг к другу (прямая или обратная), и от того, где они расположены: внутри одной хромосомы, в сестринских хроматидах или разных хромосомах. Несмотря на то, что обмены происходят между локальными участками гомологии, эктопическая рекомбинация осуществляется в основном теми же белками, что и гомологичная. Принципиально иными являются три других типа рекомбинации, которые основаны не на взаимодействии комплементарных цепей ДНК, а на совершенно иных механизмах и участии иных белков.

Биологическое значение гомологичной рекомбинации огромно. Прежде всего она вносит большой вклад в лежащую в основе эволюции генетическую изменчивость, позволяющую организмам постоянно приспосабливаться к среде обитания. Преимущества перекомбинаций генов настолько велики, что рекомбинационные системы появились у вирусов и бактерий, которые размножаются вегетативно. У эукариот они достигли большего разнообразия и сложности, особенно в соматических клетках. Эктопическая рекомбинация приводит к перестройкам хромосом, с которыми (прежде всего с дупликациями) связывают эволюцию генетического аппарата. Считается, что дупликации участков хромосом обеспечили материал для дивергенции нуклеотидных последовательностей, приводящей к возникновению новых генов.

Однако биологическое значение гомологичной, и в том числе эктопической, рекомбинации нельзя свести к их роли в эволюции. Большую роль они играют и в разнообразных онтогенетических перестройках генетического материала, участвующих в регуляции работы генов. Например, конверсия гена (коррекция гетеродуплекса), которая в мейотических клетках является одним из этапов общего процесса кроссинговера, в соматических клетках эукариот и клетках бактерий может не сопровождаться кроссинговером по внешним генам и выступать как самостоятельное явление. Такая конверсия выполняет важные функции в онтогенезе бактерий, дрожжей, животных. Известно много примеров, когда определенный ген расположен в локусе, где он имеет собственный промотор и может функционировать, в то время как в других локусах находятся последовательности, в основном гомологичные этому гену, но заметно отличающиеся по нуклеотидному составу из-за накопившихся в них мутаций. Они лишены промотора и не могут выполнять функции генов. Эти "молчащие" последовательности могут вступать в синапсис с работающим геном и служить матрицей для его конверсии. Таким образом, работающий ген может менять свою нуклеотидную последовательность. Подобным способом клетки гомоталличных штаммов дрожжей меняют свой половой тип. У некоторых патогенных микроорганизмов этот же механизм, позволяющий их клеткам менять свои поверхностные антигены, участвует в процессах, описанных ниже. Так, многие патогенные бактерии (спирохета Borrelia bormsei, гонококки и др.) и простейшие (африканские трипаносомы), с одной стороны, и животные, в которых они паразитируют, - с другой, используют в борьбе друг против друга в сущности сходные приемы. Животные продуцируют в огромном ассортименте антитела, обеспечивающие им иммунитет, а патогенные микроорганизмы в ответ на это образуют на своей поверхности все новые и новые антигены, позволяющие им уходить от иммунного ответа хозяйского организма. В основе данных процессов лежат рекомбинационные перестройки в локусах, кодирующих антигены (или антитела). Рекомбинационные перестройки включают одни и выключают другие гены либо создают новые гены. В этих сложных процессах участвуют разные типы рекомбинации, но гомологичная и эктопическая рекомбинации (и в том числе конверсия гена) играют здесь не последнюю роль.

3. Значение генетической рекомбинации

Очевидным результатом рекомбинации генетического материала в мейозе и полового размножения в целом является производство генотипически неоднородного потомства. Нередко подразумевается, что в этом и заключается функция генетических рекомбинаций. Согласно такому взгляду, половое размножение - адаптация к вариабельности внешних условий в последовательных поколениях.

Это объяснение значения рекомбинации было подвергнуто всестороннему анализу Мейнардом Смитом. Главный результат этого анализа - вывод, что естественный отбор мог бы обеспечить преимущество половому размножению только в случае весьма маловероятных постоянных перемен в условиях внешней среды, когда в каждом поколении требовались бы новые генотипы, характеризующиеся высокой приспособленностью.

Считающееся классическим объяснение функции генетических рекомбинаций, данное Фишером и независимо от него Меллером, указывает на значение не генотипического разнообразия вообще, а объединения в одном геноме каких-либо двух независимо возникших благоприятных мутаций. редукционный клетка профаза генетический

Установлено, что для выявления преимуществ генетических рекомбинаций в концепции Фишера-Меллера большое значение могли бы иметь периодические сокращения численности популяции, т. е. условия генетического дрейфа. В этом случае рекомбинация обеспечивает объединение благоприятных аллелей разного происхождения на фоне пониженной (в условиях дрейфа) вероятности возникновения двух или нескольких благоприятных мутаций в одном геноме.

Очевидно, что объединение полезных мутаций, возникающих в разных особях популяции, в отсутствие рекомбинаций невозможно. Фелсенстейн трактует эту ситуацию, как рекомбинационный дисбаланс, или неравновесность «по сцеплению». Таким образом, генетические рекомбинации устраняют неравновесность «по сцеплению» (точнее по комбинированию) благоприятных мутаций, возникающих у разных особей популяции.

Аналогичное рассуждение Фелсенстейн применил также к процессу «бесконечного» накопления вредных мутаций в бесполых генерациях, известному как «храповик Меллера». Генетические рекомбинации останавливают «обороты» храповика Меллера, тоже как бы устраняя рекомбинационный дисбаланс, но на этот раз в отношении неблагоприятных мутаций: если в популяции в результате дрейфа каждая особь содержит хотя бы одну неблагоприятную мутацию, то подобная «неравновесность» устраняется в результате появления рекомбинантных форм, не содержащих неблагоприятных мутаций.

В концепции Фишера-Меллера преимущество полового размножения реализуется через так называемый групповой отбор, который проявляется как выживание в эволюции популяций и видов, обладающих половым размножением, и соответственно как вымирание видов, теряющих способность к половому размножению.

Но в рамках изложенного выше представления о том, что генетические рекомбинации могли бы способствовать объединению благоприятных мутаций и препятствовать распространению вредных мутаций, устраняя неравновесность популяции «по сцеплению», были предложены модели, в которых индивидуальный отбор также направлен на повышение частоты рекомбинаций. В этих моделях две сцепленные благоприятные мутации препятствуют отбору друг друга в соответствии с эффектом Хилла-Робертсона. В том случае, если имеется третий сцепленный ген, обусловливающий рекомбинацию благоприятных аллелей, этот ген с высокой вероятностью наследуется рекомбинантами, у которых происходит объединение благоприятных аллелей.

Подобный механизм отбора в отношении гена, влияющего на рекомбинацию, известен под названием «попутного транспорта» или «бесплатного проезда». Как отмечает Мейнард Смит, модели, основанные на механизме «попутного транспорта», объясняя полезность какого-то уровня рекомбинации, не объясняют, почему реально в природе наблюдается высокий уровень частоты рекомбинаций.

Следует заметить, что большинство популяционно-генетических работ еще находится на уровне представлений об эволюционном процессе, сложившихся в 20-е годы нашего века. Согласно этим представлениям, эволюция (прогрессивная) представляет собой непрерывный процесс накопления благоприятных мутаций, повышающих приспособленность организмов. В подобном представлении об эволюции генетическим рекомбинациям, очевидно, вообще нет места, что, собственно, и объясняет не очень успешные попытки отыскать им «применение».

Между тем, рекомбинациям принадлежит центральная роль в прогрессивной эволюции, по ходу прогрессивной эволюции принципиально различные виды отбора закономерно сменяют друг друга.

В основе упомянутой модели лежит представление о цикличности эволюционных преобразований. В следующих друг за другом эволюционных циклах каждый очередной цикл инициируется появлением «перспективной» гибридной формы, характеризующейся, тем не менее, понижением общей приспособленности (плодовитости и жизнеспособности) из-за физиологического дисбаланса, вызванного аутбридингом. Отсюда отбор на первой стадии эволюционного цикла в самом деле направлен на повышение приспособленности и на «приобретение» соответствующих мутаций в каждом поколении.

Однако если в результате отбора на повышение общей приспособленности будет превзойден некоторый пороговый уровень, то возникают условия внутривидовой конкуренции за источники питания. На этом этапе отбор на более эффективную утилизацию пищевых ресурсов неизбежно сопряжен с постепенным сужением экологического потенциала в отдельных подвидах и расах, что ведет к их дивергенции. Особенностью действия отбора на данном этапе является то, что каждый шаг на пути дальнейшей специализации подвидов или рас инициируется выживанием определенной мутантной формы, характеризующейся общим понижением приспособленности

Литература

1. Слюсарев А.А., Жукова С.В. Биология - Киев. Вища школа. 1987

2. Лобашов М.Е. Генетика - Л. Изд. Ленинградского унив., 1967

3. Биология.: Учебник для мед. спец. ВУЗ-ов. Под ред. В.Н. Ярыгина М., Высшая Школа, 1997

4. Албертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки: Пер. с англ. М.: Мир, 1994. Т. 1, ч. 2. С. 301-310.

5. Инге-Вечтомов С.Г. Введение в молекулярную генетику. М.: Высш. шк., 1983. С. 120-136.

6. Льюин Б. Гены. Пер. с англ. М.: Мир, 1987. С. 443-453.

7. Бабынин Э. В. Молекулярный механизм гомологичной рекомбинации в мейозе: происхождение и биологическое значение. 2007 год

8. Александр Марков. На пути к разгадке тайны мейоза

9. Биология :Пособия для поступающих в вузы: В 2 т. Т.1.-Б63 2-е изд., испр. и доп.-М.:РИА «Новая волна»: Издатель Умеренков,2011.-500с.

Размещено на Allbest.ru

...

Подобные документы

  • Характеристика жизненного цикла клетки, особенности периодов ее существования от деления до следующего деления или смерти. Стадии митоза, их продолжительность, сущность и роль амитоза. Биологическое значение мейоза, его основные этапы и разновидности.

    лекция [169,6 K], добавлен 27.07.2013

  • Основные фазы клеточного цикла: интерфаза и митоз. Определение понятия "митоз" как непрямого деления клетки, наиболее распространенного способа репродукции эукариотических клеток. Характеристика и особенности процессов деления: амитоза и мейоза.

    презентация [799,4 K], добавлен 25.10.2011

  • Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.

    презентация [1,1 M], добавлен 07.12.2014

  • Характеристика редукционного деления, его биологическое значение. Образование мегаспор и формирование зародышего мешка в семязачатке цветкового растения. Жизненный цикл сосны обыкновенной. Типы и строение сочных плодов. Характеристика семейства Капустные.

    контрольная работа [992,3 K], добавлен 01.02.2012

  • Виды повреждения клетки. Стадии хронического повреждения клетки. Виды гибели клетки. Некроз и апоптоз. Патогенез повреждения клеточных мембран. Высокоспециализированные клетки с высоким уровнем внутриклеточной регенерации. Состояния соединительной ткани.

    презентация [12,3 M], добавлен 03.11.2013

  • Система зашифровки наследственной информации в молекулах нуклеиновых кислот в виде генетического кода. Сущность процессов деления клеток: митоза и мейоза, их фазы. Передача генетической информации. Строение хромосом ДНК, РНК. Хромосомные заболевания.

    контрольная работа [28,4 K], добавлен 23.04.2013

  • Характеристика клетки - элементарной генетической и структурно-функциональной единицы многоклеточных организмов. Особенности первого закона Менделя - закона единообразия гибридов первого поколения. Основы генетики пола. Типы онтогенеза: прямой и непрямой.

    контрольная работа [69,6 K], добавлен 08.02.2011

  • История открытия основных свойств генетических систем: репликации, рекомбинации и репарации. Биохимические исследования экспрессии и регуляции эукариотических генов. Введение новой генетической информации в клетки. Основные принципы клонирования.

    реферат [22,1 K], добавлен 27.07.2009

  • Структура ДНК. Образование связей в молекуле ДНК. Открытие хромосом эукариот. Понятие, фазы и роль митоза. Понятие и стадии мейоза. Понятие и элементы кариотипа. Наследственность и изменчивость. Передача генетической информации от родителей к потомкам.

    реферат [31,4 K], добавлен 23.10.2008

  • Основные механизмы клеточного деления. Микротрубочки, образование веретена деления и метафаза. Правильное присоединение микротрубочек к кинетохорам. Обзор противоопухолевых препаратов. Использование особенностей механизма деления клетки в медицине.

    курсовая работа [1,7 M], добавлен 15.02.2016

  • Изучение процесса митоза как непрямого деления клетки и распространенного способа репродукции эукариотических клеток, его биологическое значение. Мейоз как редукционное деление клетки. Интерфаза, профаза, метафаза, анафаза и телофаза мейоза и митоза.

    презентация [7,6 M], добавлен 21.02.2013

  • Понятие и структура генетического кода как способа записи информации о последовательности аминокислот белков через последовательность нуклеотидов ДНК и РНК. История и способы его расшифровки, главные свойства. Использование синонимичных кодонов.

    презентация [2,2 M], добавлен 14.04.2014

  • Мейоз - способ деления клеток, приводящий к уменьшению в них числа хромосом вдвое. Биологическое и генетическое значение мейоза. Строение и значение пищеварительной системы. Экологическая система и потоки энергии и вещества в ней. Трофические сети и цепи.

    контрольная работа [594,5 K], добавлен 15.02.2011

  • Описания гибридологического метода исследования характера наследования признака. Подготовка питательной среды. Проведение прямого и обратного скрещивания мух. Определение типа взаимодействия между генами. Анализ первого и второго поколения гибридов.

    лабораторная работа [85,7 K], добавлен 26.05.2013

  • Сущность клеточного цикла - периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.

    презентация [823,0 K], добавлен 28.10.2014

  • Строение животной клетки. Основные положения клеточной теории, понятие про прокариоты и эукариоты. Структура цитоплазмы и эндоплазматический ретикулум. Хромосомный набор человека. Способы деления клетки (амитоз, митоз и мейоз) и ее химический состав.

    презентация [3,1 M], добавлен 09.10.2013

  • Возможность развития отдельного признака клетки или организма. Основное свойство гена. Строение и химическая организация гена. Строение и виды азотистых оснований нуклеотидов. Структура молекулы ДНК. Спирализация и суперспирализация молекулы ДНК.

    презентация [3,3 M], добавлен 17.06.2013

  • Генный и хромосомный уровни организации наследственного материала. Способ записи информации о последовательности аминокислот в белке с помощью последовательности нуклеотидов ДНК. Характеристика ядерного генома человека. Строение метафазных хромосом.

    контрольная работа [917,6 K], добавлен 09.08.2013

  • Ядро эукариотической клетки. Клетки, имеющие более двух наборов хромосом. Процесс деления у эукариот. Объединенные пары гомологичных хромосом. Онтогенез растительной клетки. Процесс разъединения клеток в результате разрушения срединной пластинки.

    реферат [759,3 K], добавлен 28.01.2011

  • Определение цитокинов, их свойства, функции, особенности, виды. Регуляторная роль цитокинов в организме. Механизм действия на клетки. Образование "микроэндокринной системы" (взаимодействие клеток иммунной, кроветворной, нервной и эндокринной систем).

    презентация [1,9 M], добавлен 18.09.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.