Философия, биология и религия в объяснении происхождении жизни на Земле

Механизм возникновения многоклеточных организмов. Аргументированность гипотезы самопроизвольного зарождения жизни. Теория Опарина о происхождении жизни в результате биохимической эволюции. Материалистическая и религиозная гипотезы о происхождении жизни.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 10.12.2015
Размер файла 65,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Омский государственный педагогический университет»

(ФГБОУ ВПО «ОмГПУ»)

«Высшая бизнес - школа»

Контрольная работа

по дисциплине «Концепции современного естествознания»

Философия, биология и религия в объяснении происхождении жизни на Земле

Подготовил студент

Чернов Вячеслав Владимирович группа (УПЗС-14),

Преподаватель - Дементьева Евгения Викторовна

Омск 2014

Содержание

1. Теории самозарождения жизни в экспериментах

2. Аргументированность гипотезы самопроизвольного зарождения жизни

3. Материалистическая и религиозная гипотезы о происхождении жизни

1. Теории самозарождения жизни в экспериментах

Теория самозарождения жизни - химической эволюции - занимает центральное место в современной научной философии. Согласно этой теории жизнь зарождается самопроизвольно из неживой материи. Одним из главных ее пропагандистов стал биохимик Александр Опарин (1894-1980). Он изложил свои идеи в книге Происхождение жизни, опубликованной в Советском Союзе в 1924 году и переведенной на английский язык в 1938 году. Теорию Опарина горячо поддержал кембриджский профессор Хэлдейн (J.B.S. Haldane), который открыл полемику по проблеме происхождения жизни в статье, опубликованной в Rationalist Annual в 1929 году.

Хэлден выдвинул гипотезу о том, что на первобытной Земле скопились огромные количества органических соединений, образовав то, что он назвал горячим разбавленным бульоном (hot dilute soup; впоследствии прижилось название первичный бульон или протобульон - primeval soup). Современное двуединое понятие первобытного бульона и самозарождения жизни исходит из теории Опарина-Хэлдейна о происхождении жизни. Теория эта преподается в школах, однако давайте перечислим основные постулаты теории самозарождения:

1. Первобытная Земля имела лишенную кислорода атмосферу.

2. Когда на эту атмосферу стали воздействовать различные естественные источники энергии - например, грозы и извержения вулканов - то при этом начали самопроизвольно формироваться основные химические соединения, необходимые для органической жизни.

3. С течением времени молекулы органических веществ накапливались в океанах, пока не достигли консистенции горячего разбавленного бульона. Однако в некоторых районах концентрация молекул, необходимых для зарождения жизни, была особо высокой, и там образовались нуклеиновые кислоты и протеины.

4. Некоторые из этих молекул оказались способны к самовоспроизводству.

5. Взаимодействие между возникшими нуклеиновыми кислотами и протеинами в конце концов привело к возникновению генетического кода.

6. В дальнейшем эти молекулы объединились, и появилась первая живая клетка.

7. Первые клетки были гетеротрофами, они не могли воспроизводить свои компоненты самостоятельно и получали их из бульона. Но со временем многие соединения стали исчезать из бульона, и клетки были вынуждены воспроизводить их самостоятельно. Так клетки развивали собственный обмен веществ для самостоятельного воспроизводства.

8. Благодаря процессу естественного отбора из этих первых клеток появились все живые организмы, существующие на Земле.

Наибольшим успехом теории Опарина-Хэлдейна стал широко разрекламированный эксперимент, проведенный в 1953 году американским аспирантом Стэнли Миллером.

Эксперимент Миллера

Эксперимент Миллера был предельно прост. Аппарат состоял из двух стеклянных колб, соединенных в замкнутую цепь. В одну из колб помещено устройство, имитирующее грозовые эффекты - два электрода, между которыми происходит разряд при напряжении около 60 тысяч вольт; в другой колбе постоянно кипит вода. Затем аппарат заполняется атмосферой, предположительно существовавшей на древней Земле: метаном, водородом и аммиаком. Аппарат проработал неделю, после чего были исследованы продукты реакции. В основном получилась вязкое месиво случайных соединений; в растворе также было обнаружено некоторое количество органических веществ, в том числе и простейшие аминокислоты - глицин (NH2CH2COOH) и аланин (NH2CH(CH3)COOH).

Публикация данных эксперимента Миллера вызвала беспрецедентный интерес, и вскоре многие другие ученые стали повторять этот эксперимент. При этом обнаружилось, что видоизменение условий эксперимента дает возможность получать небольшое количество других аминокислот.

Сообщалось о том, что в процессе экспериментов возникли основные компоненты, необходимые для жизни. Так, в широко распространенном учебнике биохимии Ленинджера (Lehninger, 1970) говорится, что в ходе экспериментов были получены представители всех важнейших типов молекул, имеющихся в клетках. Это утверждение абсолютно неверно, так как из многих биохимических веществ, имеющихся в клетках, только два подобны тем, что получены в экспериментах типа миллеровских - это глицин и аланин. Но и они были представлены в очень малых концентрациях. К тому же в ходе экспериментов ни разу не были получены нуклеиновые кислоты, протеин, липид и полисахарид - более 90% веществ, составляющих живую клетку.

Поэтому существует множество претензий к экспериментам, подобным миллеровскому ( Подробнее>>>)

Но давайте подробнее рассмотрим Термодинамические особенности биологической системы.

Если в конкуренции за исходные ресурсы, на образование какого-либо вещества тратится меньше времени, то это вещество и становится доминирующим в конкретном пространстве. То есть, скорость реакции является признаком энергетически более выгодного молекулярного сочетания, по сравнению с другими типами химических реакций. А согласно законам энтропии, сходство биогенных и абиогенных форм материи особенно заметно в их стремлении к нахождению баланса со средой, нацеленной, как известно, на достижение максимальной неупорядоченности. Что проявляется в виде термодинамически устойчивого состояния элементов системы и одновременно в виде ее условного противостояния "агрессивным" окружающим факторам. Это становится возможным, если энергия связи между элементами системы превышает энергию внешних сил, действующих на систему со стороны среды.

Биологическая структура, как раз и является той самой открытой нелинейной системой, которая препятствует своему разрушению за счет способности к самоорганизации. Но расплатой за устойчивость и прочие преимущества живой материи, является зависимость от поступления энергии извне, как необходимого условия существования неравновесной биосистемы. Если способность системы к самоподдержанию своей структуры ослабевает, в том числе из-за неадекватного энергетического восполнения, то ее элементы становятся менее организованными и различия между ними постепенно нивелируются. Иными словами, разрушение происходит само собой, а любое созидание требует затраты энергии.

Чему же мы обязаны столь неразумным тратам энергии и ресурсов на широкий ассортимент различных форм жизни. В принципе, можно было бы ограничиться одной единственной открытой биологической системой, например, какой-нибудь клонированной биомассой, поскольку в каждой из ныне существующих популяций, как основа, так и само качество жизни, в целом одно и то же.

По всей вероятности так оно и было. Среди первых представителей жизни на Земле, или так называемых протобионтов, скорее всего особого разнообразия не наблюдалось. Впрочем, и откуда собственно ему было взяться? Разнообразие сложилось постепенно, когда в результате накопления биомассы первичных организмов стало возможным освоение географического пространства. И уже в зависимости от разных условий мест обитания, у протобионтов могли возникать зачатки внутривидовой изменчивости по морфофизиологическим показателям.

Что интересно, этот эволюционный период оказался наиболее продолжительным, занимая едва ли не 85% времени всей биологической эволюции. Так, если самые древние одноклеточные организмы появились приблизительно 3,5 млрд лет назад, а Земля образовалась за 1-1,5 млрд лет до возникновения первых устойчивых форм жизни, то все многообразие живой природы сформировалось в кембрийском периоде палеозойской эры, то есть 530-540 млн лет назад и за исторически короткий, по сравнению с предыдущими архейской и протерозойской эрами, срок в 5-10 млн лет.

Понятно, что кембрийский "скачок" был обусловлен комплексом значимых для эволюционного развития изменений биосферы. Протобионты оказались в непривычных для них условиях внешней среды - как географических и климатических, так и физико-химических. Прежде всего это было обусловлено тектоническими сдвигами и перемещениями материков, изменивших ось вращения нашей планеты на 90О, а также в связи с накоплением в земной атмосфере кислорода, что благоприятствовало переходу к более эффективному для жизнедеятельности аэробному метаболизму. Кроме того, увеличение концентрации кислорода способствовало снижению интенсивности ультрафиолетового излучения, что позволяло протобионтам заселять не только глубоководные территории, но и осваивать иные ареалы мест обитания. Подобные стрессорные воздействия, произошедшие незадолго до начала кембрийской эпохи, явились для древних форм жизни мощным стимулом в плане биологического разнообразия и дали толчок появлению новых форм.

Следует иметь в виду, что это допустимо лишь при наличии необходимого исходного " строительного" материала, накопленного точечными или хромосомными мутациями и зафиксированного в геноме. Расширению последнего могла способствовать и вставка чужих генетических текстов в ДНК с помощью транскриптазных ферментов или встраивание нуклеотидных последовательностей при проникновении в прокариотическую (без выраженного еще ядра) клетку ретровирусов.

Если бы условия существования оставались прежними, то накопленные генетические изменения никогда бы не реализовались. Поскольку биологическая структура для адекватного и рационального существования в тех или иных условиях внешнего окружения, задействует вполне определенный и наиболее оптимальный набор своего биологического потенциала и ни в каких других генетических вариациях не нуждается по определению. Да по иному, без приложения дополнительных ресурсов в виде внешних источников энергии, просто и не получится. Если для конкретных условий подобраны наиболее "удобные и правильные" химические сочетания, то все остальные пространственные расположения молекул в данной ситуации, как не соответствующие минимизации энергии, будут менее устойчивыми, то есть термодинамически невыгодными. (Сомнения )

Здесь прослеживается явная аналогия с химической эволюцией, когда феномену возникновения жизни предшествовал длительный период накопления потенциально возможных сочетаний различных химических соединений друг с другом, а также создание предпосылок к равновероятностному возникновению всех структурных элементов, необходимых для функционирования новой системы. Создается впечатление, что весь ход эволюционного развития нашей планеты определяется только сменой условий ее существования. Под них подстраивались все физические взаимодействия атомов и молекул, каждый раз в зависимости от ситуации меняя ход тех или иных химических реакций.

Можно сказать, что эволюция - это гибкий ответ природы на условия, в которых она оказалась, или адаптационные реакции с точки зрения термодинамической целесообразности, на череду происходящих событий на планете с момента ее образования. Вполне корректно представить эволюционный процесс как предварительное, за длительный срок, накопление потенциально или условно полезных химических сочетаний, которые ожидают подходящих условий, чтобы оказаться востребованными

Механизм возникновения многоклеточных организмов.

Скорее всего, необходимость в копировании клеток возникла в связи с несовпадением скорости роста поверхности и объема, то есть увеличение внутреннего содержимого клетки было лимитировано ее мембраной. При этом совершенно очевидно, что скорость накопления биомассы свидетельствует об уровне эффективности поглощения исходных ресурсов и соответственно о большей по сравнению с конкурентами интенсивности заполнения жизненного пространства. Естественно, что в подобной ситуации самоорганизующаяся система совершила вполне закономерный переход к феномену клеточного дробления. Он же, кстати, был заодно удачно использован для переноса наследственного материала от материнской особи дочерним клеткам, поскольку никакие другие способы для этого не подходят. За исключением, разве что, более затратного с точки зрения биологической целесообразности, вирусного механизма передачи генома.

Впрочем, и обретение неуязвимости, равно как и достижение конкретной биологической формой относительного бессмертия, в виде не столь уж частой в течение ее жизненного цикла, передачи генетической информации, могло быть реализовано иначе существующего митотического дробления материнской особи. Например, менее затратным способом автономного внутриклеточного обособления, по грубой аналогии с личиночными стадиями развития насекомых.

Но множество отдельных разобщенных клеток, даже адекватно приспособленных к благоприятному существованию в конкретных условиях своего местообитания, это еще не многоклеточная структура. Отсутствие значимых для эволюционного усложнения стрессорных воздействий в течение большей части докембрийской эпохи не оставляло одноклеточным организмам практически никаких шансов на выраженную специализацию, тем самым обрекая их на нахождение в узких границах своей экологической ниши и соответственно на усиление конкуренции за ресурсы. Тем не менее, ближе к концу протерозойской эры, накопление определенного генетического фонда в сочетании с некоторыми изменениями условий внешней среды, опосредованных, в том числе и поступательным увеличением концентрации атмосферного кислорода, облегчило переход к новым формам жизни.

Постепенно стали появляться разные виды автотрофов, самостоятельно синтезирующих все необходимые для себя питательные вещества и виды сапрофитных гетеротрофов, поглощающих органические остатки погибших организмов. А также и истинные гетеротрофы, существующие за счет вышеназванных особей. Что, несомненно, способствовало эволюционному оживлению, где особенно отличились представители Protozoa (тип простейшие). Поскольку до появления первых хищников - инфузорий, амеб и жгутиковых, на популяцию господствующих древних одноклеточных никто не посягал. В силу чего, возможностей для быстрого эволюционирования у них не наблюдалось.

Следовательно, новые обстоятельства несомненно благоприятствовали формированию уже многоклеточных структур, как более мобильных и лучше приспособленных к выживанию в изменившихся условиях своего существования. Им уже было легче противостоять внешней агрессии, проще и успешнее добывать ресурсы, то есть в целом они оказались гораздо устойчивее своих одноклеточных собратьев. Справедливости ради, следует отметить, что наряду с экологическими причинами, развитие многоклеточности могло быть опосредовано проявлением генетических аномалий. Так, например, нельзя однозначно исключить, что конгломерат из не полностью разошедшихся при митозе клеток, не мог послужить прообразом или быть стадией, предшествующей более организованной биологической формы в виде упорядоченной многоклеточности.

Последующее структурное усложнение предусматривало специализацию развития, недоступную для одноклеточных организмов. Хотя те же парамеции на своем уровне достигли пика дифференцировки и детализации. Но в достаточно узком диапазоне и на уровне примитивных реакций, в силу ограниченных возможностей автономной клетки. Действительно, создание сверхчувствительных органов с низким порогом восприятия многообразного окружающего мира, является прерогативой исключительно высокоорганизованных структур. Более совершенные многоклеточные организмы пришли к этому путем усовершенствования функциональных структур своих одноклеточных предшественников. Так, первые зачатки специализации можно наблюдать у вольвокса колониальной формы жгутиковых. В клетках переднего сегмента этой шарообразной структуры расположены крупные светочувствительные стигмы, тогда как на обратной стороне полюса находятся клетки, предназначенные для размножения. Таким образом, многоклеточная особь на более высоком уровне повторяет строение исходной клетки. С той лишь разницей, что ее функциональная нагрузка становится более продвинутой и переходит от отдельных структурных элементов клетки к ней самой.

К эукариотической клетке (с наличием сформированного ядра), тем самым, применимы двойные стандарты - ее вправе рассматривать и как самостоятельное целостное образование и как структурную единицу высокоорганизованной биологической системы. Подобное делегирование полномочий широко задействовано в морфогенезе, что позволяет еще недифференцированным стволовым зародышевым клеткам в итоге трансформироваться в многочисленные клетки разных типов. В эволюционном плане - это шаг вперед, но обратная сторона медали заключается в том, что каждая из специализированных клеток многоклеточного организма потеряла свою, пусть и примитивную, но универсальность.

Например, издержки специализации не допускают для многоклеточной особи способа размножения простым делением. А та же дифференцировка стволовых клеток сопровождается инактивацией или потерей определенных генных локусов. При "далеко зашедшей специализации", у одних клеток, в той или иной степени, может наблюдаться деградация ДНК, у других - полное репрессирование генома, вплоть до разрушения клеточного ядра. Поэтому, на каждой стадии специализации стволовая клетка теряет свою тотипотентность, то есть способность реализовать всю генетическую информацию заложенную в ядре, а ее дифференцировка становится необратимой. Правда, существуют и исключения - растительная клетка не расстается со способностью к универсальной трансформации, а стромальные клетки костного мозга позвоночных, не являясь тотипотентными, способны заменять погибшие специализированные клетки в разных органах. При определенных обстоятельствах в универсальные стромальные клетки можно превратить адипоциты жировой ткани. Кроме того, в экспериментах по клонированию небезызвестной овцы Долли, были подобраны условия, при которых цитоплазма ооцитов могла репрограммировать ядро соматической клетки, возвращая ей тотипотентность, то есть вновь обретенную способность стать универсальной стволовой клеткой.

Механизм размножения

Параллельно с морфологической специализацией шло усложнение и механизма размножения, основной смысл которого обеспечить открытой биологической системе устойчивость и предсказуемость ее динамики на протяжении как можно более длительного срока.

Но в открытой биологической системе, из-за сильной зависимости от начальных условий, будут постепенно накапливаться изменения, способные индуцировать сбои и нарушать оптимальное функционирование процессов жизнедеятельности. Можно сказать, что с увеличением времени существования системы у нее возрастает шанс стать искаженной многочисленными воздействиями разного происхождения, и в итоге из ранее упорядоченного состояния трансформироваться в хаотическое. Таким образом, без периодического обновления система будет изнашиваться. И чтобы избежать появления закономерных нарушений и сохранить стабильность и условно вечный порядок, природа нашла изящное решение. Она сумела закрепить все свои удачные молекулярные сочетания с помощью матричного самовоспроизведения в виде периодического копирования отдельных индивидов популяции. Что собственно и гарантирует при благоприятных обстоятельствах формальное бессмертие для такой популяции. В отличие от непосредственных участников этого процесса, существование которых лимитировано более или менее конкретным временным диапазоном.

Изначально, единственным способом возникновения новых особей являлось бесполое размножение в виде простого копирования. При этом все вегетативные клетки, никаких других, правда, еще не существовало, были гаплоидными, то есть с одинарным набором хромосом. Да собственно в двойном наборе они и не нуждались. Это стало прерогативой полового размножения, как более прогрессивного пути развития и значимой, в эволюционной иерархии, схемы выживания биологической системы.

Действительно, пока все нормально, примитивные организмы по возможности пользуются более простыми, нежели половой, способами размножения. Например, гидра, относящаяся ккишечнополостным организмам, в оптимальных условиях размножается бесполым путем - почкованием. А ее половые формы с женскими или мужскими гонадами возникают только при неблагоприятных условиях.

Но самое главное в половом размножении это возможность достичь большей морфологической и генетической устойчивости. Поскольку в гетерозиготном состоянии, доминантные гены прикрывают рецессивные и таким образом позволяют скрыть появление нежелательных признаков. Дополнительно, при слиянии наследственного материала от двух разных клеток, снижается вероятность перехода вредных рецессивных генов в гомозиготное состояние и соответственно их фенотипическое проявление.

Приблизительная схема архаичного полового процесса была следующей: при смене времен года (условно - весна/осень) одноклеточные вегетативные структуры путем митотического деления превращались в половые клетки - гаметы, по сути, мало чем отличающиеся от исходной родительской особи. При их последующем слиянии формировалась диплоидная зигота, которая в виде споры дожидалась благоприятных условий и как только это происходило, то уже за счет мейотического деления эта спора образовывала вегетативные гаплоидные клетки. У многоклеточных форм за половой процесс отвечали уже отдельные гаметообразующие клетки, с различным уровнем специализации. При этом, произошла эволюционная смена приоритетов. Прежде всего, увеличилась продолжительность диплоидной фазы зиготы в состоянии споры. Сама же спора, трансформировалась во вполне самостоятельный многоклеточный организм, сведя в итоге основную вегетативную гаплоидную стадию к образованию яйцеклеток и сперматозоидов. Последние, обрели вынужденный статус процедуры, направленной на процветание и организационное усложнение своей бывшей вспомогательной диплоидной структуры.

Иными словами, эволюционное развитие пошло в направлении перехода популяции от преимущественно гаплоидных особей к практически диплоидным организмам. Хотя исторически, диплоидная зигота, будучи даже многоклеточной, являлась лишь средством для выживания и обеспечения репродуктивных функций исходной гаплоидной вегетативной особи. Тем не менее, подобная метаморфоза, а скорее - морфологическая инверсия, благоприятствовала переходу биологических форм к адекватному наземному существованию. И по всей вероятности явилась основным пусковым механизмом кембрийского "скачка" биологической эволюции.

Разнообразие видов.

Если ход биологической эволюции попытаться объяснить только вышеприведенными причинами, то для выстраивания имеющейся иерархии и всего биологического разнообразия, потребовалось бы более 15 млрд. лет - срок, почти сопоставимый с возрастом самой Вселенной. Да и делать бы это пришлось с учетом специфики наследственного материала. В частности, принимая во внимание тот факт, что, например, геном человека отличается от такового у мышей приблизительно на 10% и практически сходен с геномом шимпанзе, за исключением разве что генов эмбриогенеза, отвечающих за ранние стадии развития зародыша. Следовательно, в морфо- и филогенезе, биологическими структурами были дополнительно задействованы какие-то более эффективные механизмы. Позволяющие проявиться видовым признакам или достичь организационного усложнения вовсе не длительным эволюционным способом, и без особого качественного геномного разнообразия.

Ближе всего к таковым механизмам, стоит комплекс регуляторных процессов. И прежде всего, это практически сходные и существующие у всех современных эукариотов регуляторные гены, последовательно управляющие развитием частей тела в процессе формирования взрослой особи из зародыша. Действие этих регуляторов основано на каскадной координации следующего иерархического уровня генов, уже непосредственно отвечающих в эмбриогенезе за создание именно тех органов, которые свойственны конкретному виду. В связи с этим, кажется вполне закономерным, что изменения, приводящие к абсолютно новому строению тела, могут быть опосредованы обычной мутацией хотя бы одного из видов регуляторных генов. В этом случае для существенной трансформации организма достаточно доминирующей мутации лишь в одной хромосоме из их парного набора.

Иными словами, незначительная мутация регуляторного гена приводит к полной реорганизации, как внешнего вида, так и метаболизма данной особи. При прочих равных условиях это значительно сокращает сроки появления новых видов и заодно особенно не требует дополнительных генетических ресурсов.

Это едва ли не один из ключевых моментов биологической эволюции, так как все ее феномены являются производными от результата регуляторных процессов реализации генетической информации. Главное, на что следует обратить внимание, это на возможность осуществления разнотипной регуляции белкового синтеза. Она может происходить по транскрипционному механизму путем изменения активности генов, через модуляцию продукции матричной (информационной) мРНК на матрице ДНК. Так и за счет изменения активности мРНК на трансляционном уровне регуляции. Кроме того, существует регуляция на уровне посттрансляционных модификаций, когда уже синтезированный продукт, например какой-либо фермент, не способен функционировать в конкретном химическом окружении. Но в иных, более подходящих условиях, у него отмечено адекватное проявление активности.

Однако каким же образом зародышевые клетки с исходно одинаковой генетической информацией приобретают в онтогенезе несхожее обличье. По всей вероятности, это связано с неоднородностью химического состава цитоплазмы в отдельных зародышевых сегментах. При попадании в конкретную химическую среду цитоплазмы, мРНК благодаря особенностям своей трехмерной организации, приобретает и соответствующую конформационную уникальность. Это приводит к открытию для трансляции вполне определенных участков полинуклеотидной цепи. Естественно, что в других условиях будет и новое пространственное расположение мРНК и закономерно иные участки для трансляции, в итоге, синтезирующие белок с измененными свойствами.

В свою очередь, другой способ регуляции активности генов, в том числе и процессов клеточной дифференцировки в морфогенезе - сплайсинг, предусматривает удаление "ненужных" участков (интроны) с последующим сращиванием между собой "нужных" (экзоны) фрагментов мРНК. Это происходит в ядре с помощью комплиментарного каталитического взаимодействия так называемых малых ядерных мяРНК с нуклеотидами предшественника мРНК. И в присутствии специальных белков с ферментативной активностью, кодируемых определенными генами и не исключено, что регуляторными. Эти белки, связываясь с мРНК, в зависимости от условий среды и пространственной конфигурации полинуклеотидов, блокируют либо активируют вырезание соответствующих интронных участков. При этом экзоны могут сшиваться в разных комбинациях, то есть какая-то нуклеотидная последовательность, являясь экзоном в одних условиях, ведет себя как интрон при других обстоятельствах.

Иными словами, экзон-интронная регуляция ответственна за поистине уникальный механизм целесообразного расширения биологических функций. Суть которого в том, что исходно однотипные мРНК, транскрибируемые с одного и того же гена, окажутся в зависимости от физико-химических обстоятельств по разному сформированными для последующей трансляции и в силу чего будут кодировать белки с разными свойствами. То есть, разнообразие белков будет обеспечено не большим количеством разных генов. А разными мРНК, но произошедшими за счет сплайсинга из одного и того же РНК-предшественника в результате транскрипции всего лишь одного гена. Благодаря чему и достигается генетический прогресс, вне всякого сомнения, свидетельствующий о реальных эволюционных достижениях самоорганизующейся биологической системы.

2. Аргументированность гипотезы самопроизвольного зарождения жизни

Гипотезы происхождения жизни

Происхождение жизни на Земле является одной из важнейших проблем естествознания. Еще в глубокой древности люди задавали себе вопросы, откуда произошла живая природа, как появилась жизнь на Земле, где грань перехода от неживого к жизни и пр. На протяжении десятков веков менялись взгляды на проблему жизни, высказывались разные идеи, гипотезы и концепции. Этот вопрос волнует человечество и по настоящее время.

Некоторые идеи и гипотезы о происхождении жизни получили широкое распространение в разные периоды истории развития естествознания. В настоящее время существует пять гипотез возникновения жизни:

1. Креационизм - гипотеза, утверждающая, что жизнь создана сверхъестественным существом в результате акта творения, то есть Богом.

2. Гипотеза стационарного состояния, согласно которой жизнь существовала всегда.

3. Гипотеза самопроизвольного зарождения жизни, которая основывается на идее многократного возникновения жизни из неживого вещества.

4. Гипотеза панспермии, согласно которой жизнь была занесена на Землю из космического пространства.

5. Гипотеза исторического происхождения жизни путем биохимической эволюции.

Согласно креационистской гипотезе, которая имеет самую длинную историю, создание жизни есть акт божественного творения. Свидетельством этому является наличие в живых организмах особой силы, «души», управляющей всеми жизненными процессами. Гипотеза креационизма навеяна религиозными воззрениями и к науке отношения не имеет.

Согласно гипотезе стационарного состояния, жизнь никогда не возникала, а существовала вечно вместе с Землей, отличаясь большим разнообразием живого. С изменением условий жизни на Земле происходило и изменение видов: одни исчезали, другие появлялись. Эта гипотеза основывается в основном на исследованиях палеонтологии. По своей сущности эта гипотеза не относится к концепциям возникновения жизни, поскольку вопрос о происхождении жизни она принципиально не затрагивает.

Гипотеза самопроизвольного зарождения жизни была выдвинута в древнем Китае и Индии как альтернатива креационизму. Представления этой гипотезы поддерживали мыслители Древней Греции (Платон, Аристотель), а также ученые периода Нового времени (Галилей, Декарт, Ламарк). Согласно этой гипотезе, живые организмы (низшие) могут появиться путем саморождения из неживого вещества, содержащего некое «активное начало». Так, например, по Аристотелю, насекомые и лягушки при определенных условиях могут заводиться в иле, сырой почве; черви и водоросли в стоячей воде, а вот личинки мух - в протухшем мясе при его гниении.

Однако уже с начала XVII в. такое понимание происхождения жизни стало подвергаться сомнению. Ощутимый удар по этой гипотезе нанес итальянский естествоиспытатель и врач Ф. Реди (1626-1698), который в 1688 г. раскрыл сущность появления жизни в гниющем мясе. Ф. Реди сформулировал свой принцип: «Все живое - от живого» и стал основоположником концепции биогенеза, утверждавшей, что жизнь может возникнуть только из предшествующей жизни.

Французский микробиолог Л. Пастер (1822-1895) своими опытами с вирусами окончательно доказал несостоятельность идеи спонтанного самозарождения жизни. Однако, опровергнув эту гипотезу, он не предложил свою, не пролил свет на вопрос о возникновении жизни.

Тем не менее опыты Л. Пастера имели большое значение в получении богатого эмпирического материала в области микробиологии его времени.

Гипотеза панспермии - о неземном происхождении жизни путем занесения «зародышей жизни» из космоса на Землю - впервые была высказана немецким биологом и врачом Г. Рихтером в конце XIX в. Концепция панспермии (от греч. pan - весь, sperma - семя) допускает возможность происхождения жизни в разное время в разных частях Вселенной и переноса ее различными путями на Землю (метеориты, астероиды, космическая пыль).

Действительно, в настоящее время получены некоторые данные, указывающие на возможность образования органических веществ химическим путем в условиях космоса. Так, в 1975 г. предшественники аминокислот были найдены в лунном грунте. В межзвездных облаках обнаружены простейшие соединения углерода, в том числе и близкие к аминокислотам. В составе метеоритов найдены альдегиды, вода, спирты, синильная кислота и т. д.

Концепцию панспермии разделяли крупнейшие ученые конца XIX - начала XX в.: немецкий химик и агроном Ю. Либих, английский физик У. Томсон, немецкий естествоиспытатель Г. Гельмгольц, шведский физико-химик С. Аррениус. С. Аррениус в 1907 г. в своих трудах даже описывал, как с других планет в космическое пространство уходят с пылинками и живые споры организмов. Носясь в бескрайних просторах космоса под действием давления звездного света, они попадали на планеты и там, где были благоприятные условия (в том числе на Земле) начинали новую жизнь. Идеи панспермии поддерживали и некоторые русские ученые: геофизик П. Лазарев, биолог Л. Берг, биолог-почвовед С. Костычев.

Существует идея о возникновении жизни на Земле почти с момента ее образования. Как известно, Земля образовалась около 5 млрд лет назад. Значит, жизнь могла зародиться во время образования Солнечной системы, то есть в космосе. Поскольку длительность эволюции Земли и жизни на ней разнится незначительно, то существует версия, что жизнь на Земле - это продолжение вечного ее существования. Эта позиция близка к теории вечного существования жизни во Вселенной. В масштабе глобального эволюционного процесса можно полагать, что возникновение жизни на Земле может, по-видимому, совпадать с образованием и существованием материи. Академик В. Вернадский разделял идею вечности жизни не в контексте ее перераспределения в космосе, а в смысле неразрывности и взаимосвязанности материи и жизни. Он писал, что «жизнь и материя неразрывны, взаимосвязаны и между ними нет временной последовательности». На эту же мысль указывает и русский биолог и генетик Тимофеев-Ресовский (19001982). В своем кратком очерке теории эволюции (1977 г.) он остроумно заметил: «Мы все такие материалисты, что нас всех безумно волнует, как возникла жизнь. При этом нас почти не волнует, как возникла материя. Тут все просто. Материя вечна, она ведь всегда была, и ненужно никаких вопросов. Всегда была. А вот жизнь, видите ли, обязательно должна возникнуть. А может быть, она тоже была всегда. И не надо вопросов, просто всегда была, и все».

Для обоснования панспермии в научно-популярной литературе приводятся «факты» о неопознанных летающих объектах, прилете инопланетян на Землю, наскальные топологические рисунки.

Однако серьезных доказательств эта концепция не имеет, а многие доводы выступают против нее. Известно, что диапазон жизненных условий для существования живого довольно узок. Поэтому вряд ли живые организмы выжили бы в космосе под действием ультрафиолетовых лучей, рентгеновского и космического излучения. Но и не исключается возможность занесения отдельных предпосылочных факторов жизни на нашу планету из космоса. Следует отметить, что это принципиального значения не имеет, поскольку концепция панспермии в корне не решает проблемы происхождения жизни, а лишь переносит ее за пределы Земли, не раскрывая самого механизма ее образования.

Таким образом, ни одна из перечисленных четырех гипотез до настоящего времени не подтверждена надежными экспериментальными исследованиями.

Наиболее доказательно с точки зрения современной науки выглядит пятая гипотеза - гипотеза происхождения жизни в историческом прошлом в результате биохимической эволюции. Ее авторами являются отечественный биохимик академик А. Опарин (1923 г.) и английский физиолог С. Холдейн (1929 г.). Об этой гипотезе мы подробно будем говорить в следующем разделе.

Гипотеза происхождения жизни в историческом прошлом в результате биохимической эволюции А. И. Опарина.

С точки зрения гипотезы А. Опарина, а также с позиций современной науки возникновение жизни из неживого вещества произошло в результате естественных процессов во Вселенной при длительной эволюции материи. Жизнь есть свойство материи, которое появилось на Земле в определенный момент ее истории. Это результат процессов, протекающих сначала многие миллиарды лет в масштабе Вселенной, а потом сотни миллионов лет на Земле. зарождение жизнь организм эволюция

А. Опарин выделил несколько этапов биохимической эволюции, конечной целью которых явилась примитивная живая клетка. Эволюция шла по схеме:

1. Геохимическая эволюция планеты Земля, синтез простейших соединений, таких как СО2,1 ч[Н320 и т. д., переход воды из парообразного состояния в жидкое в результате постепенного охлаждения Земли. Эволюция атмосферы и гидросферы.

2. Образование из неорганических соединений органических веществ - аминокислот - и их накопление в первичном океане в результате электромагнитного воздействия Солнца, космического излучения и электрических разрядов.

3. Постепенное усложнение органических соединений и образование белковых структур.

4. Выделение белковых структур из среды, образование водных комплексов и создание вокруг белков водной оболочки.

5. Слияние таких комплексов и образование коацерватов (от лат. coacervus - сгусток, куча, накопление), способных обмениваться веществом и энергией с окружающей средой.

6. Поглощение коацерватами металлов, что привело к образованию ферментов, ускоряющих биохимические процессы.

7. Образование гидрофобных липидных границ между коацерватами и внешней средой, что привело к образованию полупроницаемых мембран, что обеспечивало стабильность функционирования коацервата.

8. Выработка в ходе эволюции у этих образований процессов саморегуляции и самовоспроизведения.

Так, по гипотезе А. Опарина, появилась примитивная форма живого вещества. Такова, по его мнению, предбиологическая эволюция вещества.

3. Материалистическая и религиозная гипотезы о происхождении жизни

Cовременное общество имеет разные точки зрения на происхождение жизни, но все они лежат где-то между представлениями материалистической и религиозной философии.

В силу противоположного подхода этих двух пастырей общественного сознания к вопросам мироздания, каждое направление философии пытается убедить массы, что только ее точка зрения соответствует истине. Мы вольно или невольно следуем путями, проложенными философами, как следуют цыплята за наседкой.

Взглянув на сложившуюся ситуацию взглядом стороннего наблюдателя, не составляет большого труда понять: наседка - не обязательно мать, а существующие философские концепции могут быть далеки от истины и отражают не более чем уровень развития современной цивилизации. Тем не менее третьего нам не дано и количество сторонников того или иного направления философии зависит не только и не столько от степени интеллектуального развития личности, сколько от ее материального, духовного и, главное, физического состояния.

Молодость беспечна, но, перешагнув порог отрочества и юности, человек все чаще задается вопросом о смысле жизни и все чаще мысленно стремится заглянуть за барьер смерти. Нередко, вступив в сознательную жизнь материалистами, мы заканчиваем ее с верой в идеи, проповедуемые религией. Движущей силой изменения взглядов является слабая аргументация материалистами своей позиции, накопление человеком жизненного опыта и внутренняя неприемлемость им ухода из жизни, конечности его личностного Я. В глубинах сознания любого нормального человека рано или поздно начинает теплиться надежда на возможность жизни этого Я после гибели плоти. Христианская религия такую жизнь обещает в потустороннем мире, где одним уготован ад, а другим - рай.

В непрекращающемся противостоянии и борьбе за право быть единоличным пастырем общества тысячелетиями доминировала религиозная философия. Ее утверждение о сотворении мира в результате единовременного акта божественного творения большинством признавалось за аксиому. Казалось, ничто не сможет поколебать ее безраздельного господства. Однако она не смогла устоять перед небольшой по объему, но емкой по содержанию книгой с неброским названием. Это была книга Дарвина «О происхождении видов», отвергавшая точку зрения религии и все отдававшая на откуп природе. Ее содержание позволило по-новому взглянуть на окружающий мир, что дало толчок в развитии многих направлений науки.

Каждое научное открытие вынуждало религиозную философию отступать с занимаемых позиций. Наука убедительно доказала несостоятельность одной из важнейших догм религии о сотворении богом всего сущего в течение шести дней, чем вызвала смятение в рядах деятелей Церкви. В настоящее время благодаря эволюционной теории от безраздельного владычества религиозной философии осталось только воспоминание - бесспорным лидером в борьбе идей является материализм.

К началу третьего тысячелетия открытия в области естественных наук, физики и генетики внешне настолько упрочили положение материалистической философии, что она стала с высокомерием взирать на религию, считая ее плодом страха людей перед явлениями природы. Именно высокомерие и самомнение философов позволило Институту философии Академии наук в категоричной форме высказать совершенно абсурдную мысль о противоречиях между эволюционной теорией и библейским объяснением происхождения жизни:

«Представив современный органический мир как продукт естественного развития, длившегося многие миллионы лет, дарвинизм самым непосредственным образом противостоит библейскому мифу о сотворении».

Литература

1. Шустова О.Б., Сидоров Г.Н. Эволюционизм и креационизм: наука или философия. Омск: Изд-во ФГОУ ВПО ОмГАУ, 2009. 204 с. Размещена на сайте: http://www.scienceandapologetics.com/pdf/evoljucionizm_i_kreacionizm.pdf.

2. Найдыш В.М. Концепции современного естествознания: М.: Гардарики, 2008. 476 с.

3. Самыгин С.И. Басаков М.И. и др. Концепции современного естествознания. Ростов на дону: Феникс, 2005. 576 с.

Размещено на Allbest.ru

...

Подобные документы

  • Природа жизни, ее происхождение, разнообразие живых существ и объединяющая их структурная и функциональная близость. Причины доминирования теории эволюции. Естественнонаучные гипотезы о происхождении жизни. Христианские взгляды на происхождение человека.

    курсовая работа [76,0 K], добавлен 12.06.2013

  • Содержание креационизма - философско-методологической концепции возникновения жизни. Основные идеи гипотез стационарного состояния, самопроизвольного зарождения и панспермии. Этапы появление живых организмов по концепции биохимической эволюции Опарина.

    реферат [26,0 K], добавлен 19.11.2010

  • Вопрос о возникновении жизни на Земле - борьба религии и науки, идеализма и материализма. Проблема отличия живого от неживого. Современное двуединое понятие первобытного бульона и самозарождения жизни - теория Опарина-Холдейна о происхождении жизни.

    реферат [32,0 K], добавлен 09.05.2009

  • Тайна появления жизни на Земле. Эволюция зарождения жизни на Земле и сущность концепций эволюционной химии. Анализ биохимической эволюции теории академика Опарина. Этапы процесса, приведшего к возникновению жизни на Земле. Проблемы в теории эволюции.

    реферат [55,9 K], добавлен 23.03.2012

  • Первая теория о жизни на земле, которую создал советский биохимик А.И. Опарин, ее содержание. Этапы развития жизни на Земле по гипотезе Опарина—Холдейна. Искусственный синтез биологических мономеров. Мировоззренческое значение эволюционного учения.

    презентация [864,2 K], добавлен 13.03.2017

  • Проблема происхождения жизни на Земле. Возможности существования жизни в других областях Вселенной. Креационизм. Теория стационарного состояния, самопроизвольного самозарождения, панспермии. Современные возрения на происхождение жизни на Земле.

    реферат [2,5 M], добавлен 04.10.2008

  • Определение понятия жизни, живых и неживых тел. Безжизненность первого периода развития планеты. Донаучные представления о происхождении жизни, научные исследования ее происхождения, невозможности самопроизвольного зарождения в современную эпоху.

    реферат [27,1 K], добавлен 07.10.2009

  • Гипотезы о зарождении жизни на Земле. Изучение биохимической деятельности микроорганизмов, их роли в природе, жизни человека и животных в работах Л. Пастера. Генетические исследования бактерий и вирусов, их фенотипическая и генотипическая изменчивость.

    реферат [40,9 K], добавлен 26.12.2013

  • Ранние представления о происхождении жизни, подходы к решению проблемы: идеи спонтанного зарождения, теория биогенеза. Биохимическая революция по Опарину: формирование геосферных оболочки Земли, появление гидросферы, возникновение органических соединений.

    контрольная работа [18,6 K], добавлен 08.03.2011

  • Характеристика основных гипотез о происхождении жизни: креационизм, абиогенез, гипотеза стационарного состояния (этернизм), панспермия, биохимическая эволюция (гипотеза Опарина). Спорные доказательства абиогенного механизма возникновения жизни (РНК-мира).

    презентация [2,0 M], добавлен 08.06.2011

  • История представлений о возникновении жизни на Земле. Гипотезы возникновения жизни на Земле. Образование первичных органических соединений. Что считать жизнью? Эволюция жизни на Земле. Появление высокоорганизованных форм жизни.

    реферат [1,1 M], добавлен 17.05.2003

  • Земля как планета, современные представления о ее происхождении. Форма и скорость вращения Земли, ее геометрические и физические характеристики. Особенности магнитосферы, атмосферы и гидросферы Земли. Гипотезы зарождения и развития жизни на Земле.

    реферат [44,8 K], добавлен 10.11.2010

  • История формирования эмпирического знания. Математика, астрономия египтян и вавилонян. Древние китайские сочинения по точным наукам, зарождение письменности. Открытие понятия энтропии, принцип возрастания. Теория Опарина о происхождении жизни на Земле.

    контрольная работа [32,6 K], добавлен 09.05.2010

  • Характеристика общих представлений об эволюции и основных свойствах живого, которые важны для понимания закономерностей эволюции органического мира на Земле. Обобщение гипотез и теорий происхождения жизни и этапы эволюции биологических форм и видов.

    курсовая работа [38,6 K], добавлен 27.01.2010

  • Содержание и отличительные признаки теорий возникновения и развития жизни на Земле: самозарождения, биохимической эволюции, панспермии, стационарного состояния жизни, креационизма. Преимущества и недостатки каждой теории, история их становления.

    презентация [224,2 K], добавлен 17.12.2013

  • Библейские представления и развитие естествознания. Взаимоотношение времени и вечности в теории сотворения. Концепции возникновения жизни, их разновидности и особенности. Основные положения естественнонаучной теории, этапы зарождения жизни на Земле.

    курсовая работа [48,9 K], добавлен 11.11.2010

  • Взгляды на происхождение жизни и ее развитие. Естественнонаучные представления о жизни и ее эволюции. Теория самопроизвольного зарождения. Теория панспермии. Жизнь - одна из форм бытия и одна из высших форм движения.

    курсовая работа [29,8 K], добавлен 28.02.2004

  • Гипотеза Опарина о постепенном возникновении жизни на Земле из неорганических веществ путем длительной абиогенной (небиологической) молекулярной эволюции. Роль появления коацерватов и химической эволюции в развитии клетки и ходе биологической эволюции.

    статья [12,4 K], добавлен 18.05.2009

  • Взгляд мировых религий и философий на происхождение человека на Земле. Научный ответ на вопрос о происхождении человека. Столкновение науки и религии в вопросе о происхождении человека. Противопоставление эволюционной биологии и религиозной антропологии.

    реферат [24,1 K], добавлен 31.05.2012

  • Проблема происхождения жизни. Гипотеза А.И. Опарина о коацерватной стадии в процессе возникновения жизни. Этапы химической и предбиологической эволюции на пути к жизни. Гипотеза о роли малых молекул в первичном зарождении белково-нуклеиновых систем.

    реферат [26,0 K], добавлен 02.01.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.