История возникновения, направления и методы биотехнологии
Биотехнология - дисциплина, изучающая возможности создания живых организмов с необходимыми свойствами методом генной инженерии. Исследование специфических особенностей технологического процесса микробного синтеза жизненно важных для человека веществ.
Рубрика | Биология и естествознание |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 11.12.2015 |
Размер файла | 27,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Введение
Возможности, открываемые биотехнологией перед человечеством, как в области фундаментальной науки, так и во многих других областях, весьма велики и нередко даже революционны.
Так, она позволяет осуществлять индустриальное массовое производство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации - энзимов и аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека.
Генная инженерия и биотехнология, будучи одними из магистральных направлений научно-технического прогресса, активно способствуют ускорению решения многих задач, таких, как продовольственная, сельскохозяйственная, энергетическая, экологическая.
Но особенно большие возможности биотехнология открывает перед медициной и фармацевтикой, поскольку ее применение может привести к коренным преобразованиям медицины.
Многие болезни, для которых в настоящее время не существует адекватных методов диагностики и лечения (раковые, сердечнососудистые, вирусные и паразитные инфекции, нервные и умственные расстройства), с помощью генной инженерии и биотехнологии станут доступны и диагностике, и лечению.
Под влиянием биотехнологии медицина может превратиться в дисциплину с ясным пониманием происходящих в организме молекулярных и генетических процессов.
1. История возникновения биотехнологии
Биотехнология - дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.
Биотехнологией часто называют применение генной инженерии в XX--XXI веках, но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и животных путём искусственного отбора и гибридизации. С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов.
Биотехнология - это производственное использование биологических агентов или их систем для получения ценных продуктов и осуществления целевых превращений.
Биологические агенты в данном случае - микроорганизмы, растительные или животные клетки, клеточные компоненты (мембраны клеток, рибосомы, митохондрии, хлоропласты), а также биологические макромолекулы (ДНК, РНК, белки - чаще всего ферменты). Биотехнология использует также вирусную ДНК или РНК для переноса чужеродных генов в клетки.
Человек использовал биотехнологию многие тысячи лет: люди пекли хлеб, варили пиво, делали сыр, используя различные микроорганизмы, при этом, даже не подозревая об их существовании.
Собственно сам термин появился в нашем языке не так давно, вместо него употреблялись слова «промышленная микробиология», «техническая биохимия» и др.
Вероятно, древнейшим биотехнологическим процессом было сбраживание с помощью микроорганизмов. В пользу этого свидетельствует описание процесса приготовления пива, обнаруженное в 1981г. при раскопках Вавилона на дощечке, которая датируется примерно 6-м тысячелетием до н. э.
В 3-м тысячелетии до н. э. шумеры изготовляли до двух десятков видов пива. Не менее древними биотехнологическими процессами являются виноделие, хлебопечение, и получение молочнокислых продуктов.
В традиционном, классическом, понимании биотехнология - это наука о методах и технологиях производства различных веществ и продуктов с использованием природных биологических объектов и процессов.
Термин «новая» биотехнология в противоположность «старой» биотехнологии применяют для разделения биопроцессов, использующих методы генной инженерии и более традиционные формы биопроцессов.
Так, обычное производство спирта в процессе брожения - «старая» биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта - «новая» биотехнология.
Биотехнология как наука является важнейшим разделом современной биологии, которая, как и физика, стала в конце XX в. одним из ведущих приоритетов в мировой науке и экономике.
Всплеск исследований по биотехнологии в мировой науке произошел в 80-х годах, но, несмотря на столь короткий срок своего существования, биотехнология привлекла пристальное внимание, как ученых, так и широкой общественности.
Что касается более современных биотехнологических процессов, то они основаны на методах рекомбинантных ДНК, а также на использовании иммобилизованных ферментов, клеток или клеточных органелл.
Современная биотехнология - это наука о генно-инженерных и клеточных методах создания и использования генетически трансформированных биологических объектов для улучшения производства или получения новых видов продуктов различного назначения.
Биотехнология - междисциплинарная область научно-технического прогресса, возникшая на стыке биологических, химических и технических наук.
Биотехнологический процесс включает ряд этапов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование продуктов. Многоэтапность процесса обусловливает необходимость привлечения к его осуществлению самых различных специалистов: генетиков и молекулярных биологов, биохимиков и биооргаников, вирусологов и т.д.
В Комплексной программе научно-технического прогресса стран членов СЭВ в качестве первоочередных задач биотехнологии определены создание и широкое народнохозяйственное освоение:
- новых биологически активных веществ и лекарственных препаратов для медицины (интерферонов, инсулина, гормонов роста человека, моноклональных антител и т.д.), позволяющих осуществить в здравоохранении раннюю диагностику и лечение тяжелых заболеваний, сердечно-сосудистых, злокачественных, наследственных, инфекционных, в том числе вирусных;
- микробиологических средств защиты растений от болезней и вредителей, бактериальных удобрений и регуляторов роста растений;
- ценных кормовых добавок и биологически активных веществ (кормового белка, аминокислот, ферментов, витаминов, ветеринарных препаратов и др.) для повышения продуктивности животноводства; новых методов биоинженерии для эффективной профилактики, диагностики и терапии основных болезней сельскохозяйственных животных;
- новых технологий получения хозяйственно ценных продуктов для использования в пищевой, химической, микробиологической и других отраслях промышленности;
- технологий глубокой и эффективной переработки сельскохозяйственных, промышленных и бытовых отходов, использования сточных вод и газовоздушных выбросов для получения биогаза и высококачественных удобрений.
2. Основные направления и методы биотехнологии
2.1 Виды биотехнологии и методы, лежащие в основе современной биотехнологии
Условно можно выделить следующие основные направления биотехнологии:
· биотехнология пищевых продуктов;
· биотехнология препаратов для сельского хозяйства;
· биотехнология препаратов и продуктов для промышленного и бытового использования;
· биотехнология лекарственных препаратов;
· биотехнология средств диагностики и реактивов.
Биотехнология также включает выщелачивание и концентрирование металлов, защиту окружающей среды от загрязнения, деградацию токсических отходов и увеличение добычи нефти.
Генная и клеточная инженерия - являются важнейшими методами (инструментами), лежащими в основе современной биотехнологии. Методы клеточной инженерии направлены на конструирование клеток нового типа. Они могут быть использованы для воссоздания жизнеспособной клетки из отдельных фрагментов разных клеток, для объединения целых клеток, принадлежавших различным видам с образованием клетки, несущей генетический материал обеих исходных клеток, и других операций. Генно-инженерные методы направлены на конструирование новых, не существующих в природе сочетаний генов. Генная инженерия позволяет получать заданные (желаемые) качества изменяемых или генетически модифицированных организмов или так называемых «трансгенных» растений и животных. Наибольшее применение генная инженерия нашла в сельском хозяйстве и в медицине.
Люди всегда задумывались над тем, как можно научиться управлять природой, и искали способы получения, например, растений с улучшенными качествами: с высокой урожайностью, более крупными и вкусными плодами или с повышенной холодостойкостью. С давних времен основным методом, который использовался в этих целях, была селекция. Она широко применяется до настоящего времени и направлена на создание новых и улучшение уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для человека признаками и свойствами.
Селекция строится на отборе растений (животных) с выраженными благоприятными признаками и дальнейшем скрещивании таких организмов, в то время как генная инженерия позволяет непосредственно вмешиваться в генетический аппарат клетки. Важно отметить, что в ходе традиционной селекции получить гибриды с искомой комбинацией полезных признаков весьма сложно, поскольку к потомству передаются очень большие фрагменты геномов каждого из родителей, в то время как генно-инженерные методы позволяют работать чаще всего с одним или несколькими генами, причем их модификации не затрагивают работу других генов. В результате, не теряя других полезных свойств растения, удается добавить еще один или несколько полезных признаков, что весьма ценно для создания новых сортов и новых форм растений. Стало возможным изменять у растений, например, устойчивость к климату и стрессам, или их чувствительность к насекомым или болезням, распространённым в определённых регионах, к засухе и т.д. Учёные надеются даже получить такие породы деревьев, которые были бы устойчивы к пожарам. Ведутся широкие исследования по улучшению пищевой ценности различных сельскохозяйственных культур, таких как кукуруза, соя, картофель, томаты, горох и др.
Исторически, выделяют «три волны» в создании генномодифицированных растений:
Первая волна - конец 1980-х годов - создание растений с новыми свойствами устойчивости к вирусам, паразитам или гербицидам. В растениях «первой волны» дополнительно вводили всего один ген и заставляли его «работать», то есть синтезировать один дополнительный белок. «Полезные» гены «брали» либо у вирусов растений (для формирования устойчивости к данному вирусу), либо у почвенных бактерий (для формирования устойчивости к насекомым, гербицидам).
Вторая волна - начало 2000-х годов - создание растений с новыми потребительскими свойствами: масличные культуры с повышенным содержанием и измененным составом масел, фрукты и овощи с большим содержанием витаминов, более питательные зерновые и т.д.
В наши дни ученые создают растения «третьей волны», которые в ближайшие 10 лет появятся на рынке: растения-вакцины, растения- биореакторы для производства промышленных продуктов (компонентов для различных видов пластика, красителей, технических масел и т.д.), растения - фабрики лекарств и т.д.
Генно-инженерные работы в животноводстве имеют другую задачу. Вполне достижимой целью при современном уровне технологии является создание трансгенных животных с определённым целевым геном. Например, ген какого-нибудь ценного гормона животного (например, гормона роста) искусственно внедряется в бактерию, которая начинает продуцировать его в больших количествах. Еще один пример: трансгенные козы, в результате введения соответствующего гена, могут вырабатывать специфический белок, фактор VIII, который препятствует кровотечению у больных, страдающих гемофилией, или фермент, тромбокиназу, способствующий рассасыванию тромба в кровеносных сосудах, что актуально для профилактики и терапии тромбофлебита у людей. Трансгенные животные вырабатывают эти белки намного быстрее, а сам способ значительно дешевле традиционного.
В конце 90-х годов XX в. учёные США вплотную подошли к получению сельскохозяйственных животных методом клонирования клеток эмбрионов, хотя это направление нуждается еще в дальнейших серьезных исследованиях. А вот в ксенотрансплантации - пересадке органов от одного вида живых организмов другому, - достигнуты несомненные результаты. Наибольшие успехи получены при использовании свиней, имеющих в генотипе перенесенные гены человека, в качестве доноров различных органов. В этом случае наблюдается минимальный риск отторжения органа.
В настоящее время все больше приобретают популярность идеи экологизации и в более широком смысле биологизации всей хозяйственной и производственной деятельности. Под экологизацией, как начальным этапом биологизации, можно понимать сокращение вредных выбросов производства в окружающую среду, создание малоотходных и безотходных промышленных комплексов с замкнутым циклом и т. п.
Биологизацию же следует понимать более широко, как радикальное преобразование производственной деятельности на основе биологических законов биотического круговорота биосферы. Целью подобного преобразования должно быть встраивание всей хозяйственно-производственной деятельности в биотический круговорот. Особенно наглядно эта необходимость видна на феномене стратегической беспомощности химической защиты растений. Дело в том, что в настоящее время нет в мире ни одного пестицида, к которому бы не приспособились вредители растений. Более того, теперь отчетливо выявилась закономерность подобного приспособления: если в 1917г. появился один вид насекомых, приспособившихся к ДДТ, то в 1980г. таких видов стало 432. Применяемые пестициды и гербициды крайне вредны не только для всего животного мира, но и для человека.
Точно так же в настоящее время становится понятной и стратегическая бесперспективность применения химических удобрений. В этих условиях совершенно естествен переход к биологической защите растений и биоорганической технологии с минимумом химических удобрений.
Решавшую роль в процессе биологизации сельского хозяйства может сыграть биотехнология. Можно и нужно говорить о биологизации техники, промышленного производства и энергетики.
Активно развивающаяся биоэнергетика обещает революционные преобразования, поскольку она ориентирована на возобновляемые источники энергии и сырья.
2.2 Биомедицина (Медицинские биотехнологии)
Медицинские биотехнологии подразделяются на диагностические и лечебные. Диагностические медицинские биотехнологии в свою очередь разделяют на химические (определение диагностических веществ и параметров их обмена) и физические (определение особенностей физических процессов организма).
Химические диагностические биотехнологии используются в медицине давно. Но, если раньше они сводились к определению в тканях и органах веществ, имеющих диагностическое значение (статический подход), то сейчас развивается и динамический подход, позволяющий определять скорости образования и распада, представляющих интерес веществ, активность ферментов, осуществляющих синтез или деградацию этих веществ, и др. Кроме того, современная диагностика разрабатывает методы функционального подхода, с помощью которого можно отставать влияние функциональных воздействий на изменение диагностических веществ, а следовательно, выявлять резервные возможности. В будущем возрастет роль физической диагностики, которая дешевле и быстрее, чем химическая, и состоит в определении физико-химических процессов, лежащих в основе жизнедеятельности клетки, а также физических процессов (тепловых, акустических, электромагнитных и др.) на тканевом уровне, уровне органов и организма в целом. На базе такого рода анализа в рамках биофизики сложных биологических систем будут развиваться новые методы физиотерапии, выяснится смысл многих так называемых нетрадиционных методов лечения, приемов народной медицины т.д.
Биотехнологии широко используются в фармакологии. В древности для лечения больных применяли животные, растительные и минеральные вещества. Начиная с XIX в, в фармакологии получают распространение синтетические химические препараты, а с середины XX в. и антибиотики - особые химические вещества, которые образуются микроорганизмами и способны оказывать избирательно токсическое воздействие на другие микроорганизмы. В конце XX в. фармакологи обратились к индивидуальным биологически активным соединениям и стали составлять их оптимальные композиции, а также использовать специфические активаторы и ингибиторы определенных ферментов ,суть действия которых - в вытеснении патогенной микрофлоры невредной для здоровья людей микрофлорой (использование микробного антагонизма).
Биотехнологии помогают в борьбе современной медицины сердечнососудистыми заболеваниями (прежде всего с атеросклерозом), с онкологическими заболеваниями, с аллергиями как патологическим нарушением иммунитета (способность организма защищать свою целостность и биологическую индивидуальность), старением и вирусными инфекциями (в том числе со СПИДом).
Так, развитие иммунологии (науки, изучающей защитные свойства организма) способствует лечению аллергии. При аллергии организм отвечает на воздействие некоторого специфического аллергена чрезмерной реакцией, повреждающей его собственные клетки и ткани в результате отека, воспаления, спазма, нарушений микроциркуляции, гемодинамики я др. Иммунология, изучая клетки, осуществляющие иммунный ответ (иммуноциты), позволяет создавать новые подходы к лечению иммунологических, онкологических и инфекционных заболеваний.Человек пока не умеет лечить СПИД и плохо лечит вирусные инфекции. Химиотерапия и антибиотики, эффективные в борьбе с бактериальной инфекцией, неэффективны в отношении вирусов (например, возбудителей атипичной пневмонии). Предполагается, что здесь существенный прогресс будет достигнут благодаря развитию иммунологии, молекулярной биологии вирусов, в частности изучению взаимодействия вирусов со специфическими для них клеточными рецепторами.
Биотехнологическими способами производят витамины, диагностические средства для клинических исследований (тест-системы на наркотики, лекарства, гормоны и т.п.), биоразлагаемые пластмассы, антибиотики, биосовместимые материалы. Новая область биоиндустрии -- производство пищевых добавок.
2.3 Биоинженерия
Биоинженерия или биологическая инженерия -- направление науки и техники, развивающее применение инженерных принципов в биологии и медицине.
Биоинженерия (включая инженерию биологических систем) -- это применение понятий и методов биологии (и, во вторую очередь, физики, химии, математики и информатики) для решения актуальных проблем связанных с науками о живых организмах и/или их приложениями, с использованием аналитических и синтетических методологий инженерного дела, а также его традиционной чувствительности к стоимости и практичности найденных решений. В этой связи, в то время как традиционное инженерное дело применяет физику и математику для анализа, проектирования и изготовления неживых инструментов, структур и процессов, биологическая инженерия использует, в основном, быстро развивающуюся сферу молекулярной биологии для изучения и развития применения живых организмов.
Сфера деятельности биоинженерии простирается от создания искусственных органов с помощью технических средств или поиска способов выращивания органов и тканей методами регенеративной медицины для компенсации пониженных либо утраченных физиологических функций (биомедицинская инженерия) и до разработки генетически модифицированных организмов, например, сельскохозяйственных растений и животных (генетическая инженерия), а также молекулярного конструирования соединений с заданными свойствами (белковая инженерия, инженерная энзимология). В немедицинских аспектах биоинженерия тесно соприкасается с биотехнологией.
Особенно важным приложением биоинженерии является анализ и эффективное (в рамках затрат) решение проблем, связанных со здоровьем людей, однако, оно не единственное: биологическая инженерия охватывает намного большую сферу знаний. Например, биомиметику -- ветвь биоинженерии, ищущую пути использования структур и функций живых организмов как моделей для разработки и изготовления машин и материалов. Системная биология, с другой стороны, занимается приложением инженерных представлений о сложных искусственных системах (возможно, также и понятий, используемых в «обратной разработке») для облегчения понимания структур и функций сложных биологических систем.
Отличить биологическую инженерию от биомедицинской инженерии бывает сложно, так как многие университеты свободно заменяют термины «биоинженерия» и «биомедицинская инженерия» друг на друга. Биомедицинские инженеры заинтересованы в применении биологии и других наук в медицинских инновациях, тогда как биологические инженеры сосредоточены на приложении биологии в общем смысле, не обязательно для медицинских нужд.
2.4 Генная инженерия
Важнейшим ответвлением биотехнологии, открывающим самые ошеломляющие перспективы перед человечеством, является генная инженерия. Она возникла в 1970-е гг. как раздел молекулярной биологии, связанный с целенаправленным созданием новых комбинаций генетического материала, способного размножаться (в клетке) и синтезировать конечные продукты. Решающую роль в создании новых комбинаций генетического материала играют особые ферменты (рестриктазы, ДНК-литазы), позволяющие рассекать молекулу ДНК на фрагменты в строго определенных местах, а затем «сшивать» фрагменты ДНК в единое целое. Только после выделения таких ферментов стало практически возможным создание искусственных гибридных генетических структур--рекомбинантных ДНК. Рекомбинантная молекула ДНК содержит искусственный гибридный ген (или набор генов) и «вектор фрагмент» ДНК, обеспечивающий размножение рекомбинированной ДНК и синтез ее конечных продуктов -- белков.
Методами генной инженерии сначала были получены трансгенные микроорганизмы, несущие гены бактерии и гены онкогенного вируса обезьяны, а затем - микроорганизмы, несущие в себе гены мушки дрозофилы, кролика, человека и т.д. Впоследствии удалось осуществить микробный синтез многих биологически активных веществ, присутствующих в тканях животных и растений в весьма низких концентрациях: инсулина, интерферона человека, гормона ростa человек ,вакцины против гепатита, а также ферментов, гормональных препаратов, клеточных гибридов, синтезирующих антитела желаемой специфичности, и т.п.
Генная инженерия открыла перспективы конструирования новых биологических организмов - трансгвнных растений и животных с заранее запланированными свойствами. По сути, непреодолимых природных ограничений для синтеза генов нет (так, существуют программы по созданию трансгенной овцы, покрытой вместо шерсти шелком; трансгенной козы, молоко которой содержит ценный для человека интерферон; трансгенного шпината, который вырабатывает белок, подавляющий ВИЧ-инфекции,и др.). Возникла новая отрасль промышленности -- трансгенная биотехнология, занимающаяся конструированием и применением трансгенных организмов. (Сейчас в США функционирует уже около 2500 генно-инженерных фирм.)
Геном - это совокупность генов, характерных для гаплоидного, т.е. одинарного набора хромосом данного вида организмов .В отличие от генотипа геном представляет собой характеристику вида, а не отдельной особи. Огромное значение имеет изучение генома человека. В рамках одного из самых трудоемких и дорогостоящих в истории науки международного проекта «Геном человека» (начат c 1988 г., задействовано несколько тысяч ученых и более чем 20 стран; стоимость - до 9 млрд.долл.) была поставлена задача -- выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и локализовать их, т.е. полностью картировать все гены человека. Ожидается, что затем исследователи определят все функции генов и разработают технологические способы использования этих данных.
К настоящему времени удалось установить, что геном человека состоит из 3 млрд. нуклеотидов, 30 млн. из которых (около 10% всей хромосомной ДНК) объединяется в 40 тысяч генов. Интересно, что различия между двумя людьми на уровне ДНК составляют в среднем один нуклеотид на тысячу, они и обусловливают наследственные индивидуальные особенности каждого человека.
По последовательностям ДНК можно устанавливать степень родства людей. Разработан метод «генетической дактилоскопии», который с успехом применяется в криминалистике. Сходные подходы можно использовать в антропологии, палеонтологии, этнографии, археологии.
Вместе с тем, как говорят специалисты, изучение генома человека прояснило гораздо меньше загадок, чем ожидалось. Удалось только «поставить указатели» для дальнейших исследований. Прочтение генома - это лишь первый этап в понимании его функционирования.
3. Развитие биотехнологии
3.1 Практические достижения и перспективы биотехнологии
С помощью биотехнологии получено множество продуктов для здравоохранения, сельского хозяйства, продовольственной и химической промышленности. Причем важно то, что многие из них не могли быть получены без применения биотехнологических способов. Особенно большие надежды связываются с попытками использования микроорганизмов и культур клеток для уменьшения загрязнения среды и производства энергии.
В молекулярной биологии использование биотехнологических методов позволяет определить структуру генома, понять механизм экспрессии генов, смоделировать клеточные мембраны с целью изучения их функций и т.д. Конструирование нужных генов методами генной и клеточной инженерии позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе.
Одной из бурно развивающихся отраслей биотехнологии считается технология микробного синтеза ценных для человека веществ. По прогнозам, дальнейшее развитие этой отрасли повлечет за собой перераспределение ролей в формировании продовольственной базы человечества растениеводства и животноводства с одной стороны, и микробного синтеза - с другой.
Все это свидетельствует о том, что биотехнология станет источником не только новых продуктов питания и медицинских препаратов, но и получения энергии и новых химических веществ, а также организмов с заданными свойствами. Если говорить о перспективах развития биотехнологии, то центральной проблемой биотехнологии остается интенсификация биопроцессов как за счет повышения потенциала биологических агентов и их систем, так и за счет усовершенствования оборудования, применения биокатализаторов (иммобилизованных ферментов и клеток) в промышленности, аналитической химии, медицине. В основе промышленного использования достижений биологии лежит техника создания рекомбинантных молекул ДНК. Конструирование нужных генов позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми свойствами. В частности, возможно управление процессом фиксации атмосферного азота и перенос соответствующих генов из клеток микроорганизмов в геном растительной клетки. В качестве источников сырья для биотехнологии все большее значение будут приобретать воспроизводимые ресурсы не пищевых растительных материалов, отходов сельского хозяйства, которые служат дополнительным источником как кормовых веществ, так и вторичного топлива (биогаза) и органических удобрений.
Не менее важным аспектом современной микробиологической технологии является изучения участия микроорганизмов в биосферных процессах и направленная регуляция их жизнедеятельности с целью решения проблемы охраны окружающей среды от техногенных, сельскохозяйственных и бытовых загрязнений. С этой проблемой тесно связаны исследования по выявлению роли микроорганизмов в плодородии почв (гумусообразовании и пополнении запасов биологического азота), борьбе с вредителями и болезнями сельскохозяйственных культур, утилизации пестицидов и других химических соединений в почве. Имеющиеся в этой области знания, свидетельствуют о том, что изменение стратегии хозяйственной деятельности человека от химизации к биологизации земледелия оправдывается, как с экономической, так и с экологической точек зрения. В данном направлении перед биотехнологией может быть поставлена цель регенерации ландшафтов.
Ведутся работы по созданию биополимеров, которые будут способны заменить современные пластмассы. Эти биополимеры имеют существенное преимущество перед традиционными материалами, так как нетоксичны и подвержены биодеградации, то есть легко разлагаются после их использования, не загрязняя окружающую среду. Биотехнологии, основанные на достижениях микробиологии, наиболее экономически эффективны при комплексном их применении и создании безотходных производств, не нарушающих экологического равновесия. Их развитие позволит заменить многие огромные заводы химической промышленности экологически чистыми компактными производствами.
Важным и перспективным направлением биотехнологии является разработка способов получения экологически чистой энергии. Получение биогаза и этанола были рассмотрены выше, но есть и принципиально новые экспериментальные подходы в этом направлении. Одним из них является получение фотоводорода: «Если из хлоропластов выделить мембраны, содержащие фотосистему 2, то на свету происходит фотолиз воды - разложение ее на кислород и водород. Моделирование процессов фотосинтеза, происходящих в хлоропластах, позволило бы запасать энергию Солнца в ценном топливе - водороде».
Некоторые очевидные преимущества такого способа получения энергии:
* наличие избытка субстрата, воды;
* нелимитируемый источник энергии - Солнце;
* продукт (водород) можно хранить, не загрязняя атмосферу;
* процесс идет при нормальной температуре без образования токсических промежуточных продуктов;
* процесс циклический, так как при потреблении водорода регенерируется субстрат - вода.
Хочется отметить биотехнология сельскохозяйственных растений. Так, начиная с каменного века люди отбирали растения с удовлетворяющими их характеристиками и сохраняли их семена на следующий год. Отбирая лучшие семена, первые агрономы осуществили первичное генетическое модифицирование растений и таким образом одомашнили их задолго до того, как были открыты основные генетические закономерности. Сотни лет фермеры и селекционеры растений пользовались перекрестным скрещиванием, гибридизацией и другими подходами к модификации генома, приводящими к увеличению урожайности, улучшению качества продукции и повышению устойчивости растений к насекомым-вредителям, болезнетворным микроорганизмам и неблагоприятным условиям среды.
Биотехнологические подходы позволяют современным селекционерам выделять отдельные гены, отвечающие за желаемые признаки, и перемещать их из генома одного растения в геном другого. Этот процесс гораздо более точен и избирателен, чем традиционное скрещивание, в ходе которого тысячи генов, обладающих неизвестными функциями, перемещаются из одного сорта или вида растений в другой. Биотехнология позволяет и то, что не под силу природе - перемещение генов между растениями, животными и микроорганизмами. Это открывает огромные возможности для улучшения качества урожая. Например, мы можем взять бактериальный ген, токсичный для болезнетворного грибка, и встроить его в геном растения. Растение при этом начинает синтезировать фунгицидный белок и в борьбе с грибком не нуждается в помощи извне.
3.2 Многообразие сфер применения биотехнологий
Биотехнологии успешно применяются в некоторых «экзотических» отраслях. Так, во многих странах микробная биотехнология используется для повышения нефтеотдачи. Микробиологические технологии исключительно эффективны и при получении цветных и благородных металлов. Если традиционная технология включает в себя обжиг, при котором в атмосферу выбрасывается большое количество вредных серосодержащих газов, то при микробной технологии руда переводится в раствор (микробное окисление), а затем путем электролиза из него получают ценные металлы. Использование метанотрофных бактерий позволяет снизить концентрацию метана в шахтах. А для отечественной угледобычи проблема шахтного метана всегда была одной из самых острых: по статистике, из-за взрывов метана в шахтах каждый добытый 1 млн т угля уносит жизнь одного шахтера. Созданные биотехнологическими методами ферментные препараты находят широкое применение в производстве стиральных порошков, в текстильной и кожевенной промышленности. В ветеринарии широко используются такие биотехнологические методы, как культура клеток и зародышей, овогенез in vitro, искусственное оплодотворение.
Космическая биология и медицина изучают закономерности функционирования живых организмов, прежде всего человеческого, в условиях космоса, космического полета, пребывания на других планетах и телах Солнечной системы. Одним из важных направлений в этой области является разработка космических биотехнологий - замкнутых биосистем, предназначенных для функционирования в условиях длительного космического полета. Созданная отечественной наукой система такого рода способна обеспечить жизнедеятельность космонавтов в течение 14 лет. Этого вполне достаточно для реализации космической мечты человечества - полета к ближайшим планетам Солнечной системы, прежде всего к Марсу.
Заключение
биотехнология генный микробный
Таким образом, современные биотехнологии исключительно разнообразны. Не случайно XXI век нередко называют веком биотехнологии. Широкое использование микроорганизмов не может не порождать новых взаимоотношений с живой природой, что вполне естественно ведет желанию осмыслить сами эти взаимоотношения и соотнести их со сложившимися представлениями, с одной стороны, о роли живой природы в жизнедеятельности человека, а с другой - о роли человека в биотическом круговороте биосферы. Имеющийся пока не слишком богатый опыт развития биотехнологии все-таки содержит в себе много непривычного и вместе с тем многообещающего для возможной оптимизации человеческой жизнедеятельности, а остро вставшая перед Homo sapiens (человек разумный) проблема самосохранения вынуждает его к лихорадочным поискам возможных вариантов стратегии своей жизнедеятельности. Этому привлечению природы, причем именно мира микроорганизмов, и положила начало новая биотехнология.
Можно сказать, что биотехнология в совокупности с другими научными направлениями открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы. Явившись прямым результатом научных разработок, биотехнология оказывается непосредственным единением науки и производства, еще одной ступенькой к единству познания, еще одним шагом, приближающим человека к преодолению внешней и к постижению внутренней целесообразности.
Весьма существенное значение приобретает проблема выбора стратегии взаимодействия человека и природы: или это самонадеянное управление природой или же сознательное и целенаправленное приспособление всей жизнедеятельной деятельности, к существующему биотическому круговороту биосферы.
Литература
1. Егоров Н.С. Биотехнология проблемы и перспективы. - М., 1994.
2. Калашникова Е.А., Шевелуха В.С., Воронин Е.С. Биотехнология. М: Высшая школа, 2005.
3. Найдыш В.М. Концепции Современного Естествознания. - М., 2005.
Размещено на Allbest.ru
...Подобные документы
Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.
реферат [32,4 K], добавлен 23.07.2008Основные методы биотехнологии. Размножение организмов с интересующими человека свойствами с помощью метода культуры клеток. Особенности применения методов генной инженерии. Перспективы метода клонирования. Технические трудности применения методов.
презентация [616,1 K], добавлен 04.12.2013Использование генной инженерии как инструмента биотехнологии с целью управления наследственностью живых организмов. Особенности основных методов и достижений генной инженерии в медицине и сельском хозяйстве, связанные с ней опасности и перспективы.
доклад [15,1 K], добавлен 10.05.2011Основные задачи, разделы и направления современной биотехнологии. Производство необходимых человеку продуктов и биологически активных соединений с помощью живых организмов. Изучение генетической, клеточной и биологической инженерии. Объекты биотехнологии.
презентация [2,1 M], добавлен 06.03.2014История развития Биотехнологии. Генетическая инженерия как важная составная часть биотехнологии. Осуществление манипуляций с генами и введение их в другие организмы. Основные задачи генной инженерии. Генная инженерия человека. Искусственная экспрессия.
презентация [604,9 K], добавлен 19.04.2011Изучение биотехнологии - науки об использовании живых организмов, биологических процессов и систем в производстве, включая превращение различных видов сырья в продукты. Клонирование и биотехнология в животноводстве, перспективы генетической инженерии.
реферат [39,2 K], добавлен 04.03.2010Оценка возможных опасностей генно-модифицированных продуктов или организмов, мировые достижения. Исследование генома человека и клонирование. Роль интерферона в лечении вирусных инфекций. История генетики и первые опыты по клонированию живых организмов.
реферат [169,5 K], добавлен 15.08.2014Биотехнология как наука о методах и технологиях производства. Понятие генной и клеточной инженерии. Биотехнология сельскохозяйственных растений. Повышение урожайности и естественная защита растений. Устойчивость к гербицидам и неблагоприятным факторам.
реферат [34,6 K], добавлен 14.11.2010Генная инженерия - метод биотехнологии, который занимается исследованиями по перестройке генотипов. Возможности генной инженерии. Перспективы генной инженерии. Уменьшение риска, связанного с генными технологиями.
реферат [17,3 K], добавлен 04.09.2007Общие понятия, основные вехи и задачи биотехнологии. Рассмотрение применения методов генной инженерии в животноводстве, их практическое значение и перспективы. Клонирование животных с помощью переноса ядер из дифференцированных тотипотентных клеток.
реферат [35,7 K], добавлен 13.07.2014Понятие и сущность биотехнологии, история ее возникновения. Основные направления и методы биотехнологии. Генная и клеточная инженерия. "Три волны" в создании генно-модифицированных растений. Трансгенные животные. Методы иммобилизации ферментов и клеток.
реферат [25,0 K], добавлен 11.01.2013Явление наследственности. Современная медицинская генетика. Генетика человека на этапе становления и ее проблемы. Ген цветовой слепоты (дальтонизм). Методы генетической инженерии и биотехнологии по конструированию микроорганизмов с заданными свойствами.
реферат [32,7 K], добавлен 31.10.2008Естествознание как основа научно-технического прогресса, направления и сферы использования его современных достижений. Принципы биотехнологии, генной инженерии. Использование информационных и навигационных технологий, математического моделирования.
реферат [43,0 K], добавлен 16.12.2015Исследование сущности и предназначения генной инженерии - метода биотехнологии, который занимается исследованиями по перестройке генотипов. Метод получения рекомбинантных, то есть содержащих чужеродный ген, плазмид - кольцевых двухцепочных молекул ДНК.
презентация [264,8 K], добавлен 19.02.2012Сущность генной и клеточной инженерии. Основные задачи генной модификации растений, анализ вредности их употребления в пищу. Особенности гибридизации растительных и животных клеток. Механизм получения лекарственных веществ с помощью генной инженерии.
презентация [615,8 K], добавлен 26.01.2014- Биотехнологии: понятие, сущность, история возникновения. Основные направления и методы биотехнологии
Промышленное использование биологических процессов на основе микроорганизмов, культуры клеток, тканей и их частей. История возникновения и этапы становления биотехнологии. Основные направления, задачи и методы: клонирование, генная и клеточная инженерия.
презентация [1,5 M], добавлен 22.10.2016 Характеристики, методы получения и использования глутамата натрия, который применяют для усиления природных вкусовых свойств пищевых продуктов. Состав питательной среды и условия биосинтеза. Активаторы и ингибиторы процесса. Возможности генной инженерии.
курсовая работа [1,6 M], добавлен 09.11.2010Возможности генной инженерии растений. Создание гербицидоустойчивых растений. Повышение эффективности фотосинтеза, биологической азотфиксации. Улучшение качества запасных белков. Экологические, медицинские и социально-экономические риски генной инженерии.
контрольная работа [47,1 K], добавлен 15.12.2011Генная инженерия: история возникновения, общая характеристика, преимущества и недостатки. Знакомство с новейшими методами генной инженерии, их использование в медицине. Разработка генной инженерии в области животноводства и птицеводства. Опыты на крысах.
курсовая работа [2,5 M], добавлен 11.07.2012Суть и задачи генной инженерии, история ее развития. Цели создания генетически модифицированных организмов. Химическое загрязнение как следствие ГМО. Получение человеческого инсулина как важнейшее достижение в сфере генно-модифицированных организмов.
реферат [69,1 K], добавлен 18.04.2013