Биология клетки, методы подбора микробов продуцентов
Биология клетки, ее структура: мембрана, цитоплазма и ядро. Принципа ее деления, митоз и мейоз. Прокариоты и методы изучения клетки. Подбор форм микроорганизмов с заданными свойствами. Методы синтетической активности: селекция и генетическая инженерия.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 06.12.2015 |
Размер файла | 22,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
ГБОУ ВПО «НИЖЕГОРОДСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»
РЕФЕРАТ
по дисциплине «Вирусология и биотехнология»
на тему «Биология клетки, методы подбора микробов продуцентов»
Выполнил:
Студент 3 курса, гр. 73А
Шотин Андрей Романович
Проверила:
Фадеева А.Н.
Нижний Новгород 2015
ВВЕДЕНИЕ
Как известно, все организмы состоят из клеток, либо из одной клетки. Клетка отграничена от других клеток или от внешней среды специальной мембраной, имеет ядро или его эквивалент, в котором сосредоточена основная часть химической информации, контролирующей наследственность, а так же из цитоплазмы, в которой находятся различные органеллы. Все структуры клеток строго специфичны для определенных организмов, так как они выполняют различные функции. Главным объектом биотехнологического процесса является клетка. В ней синтезируется целевой продукт. По сути, клетка представляет собой миниатюр ный химический завод, где синтезируются сотни сложнейших соединений. Основа современного биотехнологического производства -- синтез различных веществ с помощью клеток микроорганизмов. Клетки высших растений и животных еще не нашли широкого применения, ввиду их высокой требовательности к условиям культивирования.
1. БИОЛОГИЯ КЛЕТКИ
1.1 Структура клетки
Одно время клетка рассматривалась как более или менее гомогенная капелька органического вещества, которую называли протоплазмой или живой субстанцией. Этот термин устарел после того, как выяснилось, что клетка состоит из множества четко обособленных структур, получивших название клеточных органелл («маленьких органов»). Химический состав. Обычно 70-80 % массы клетки составляет вода, в которой растворены разнообразные соли и органические соединения. Часто клетки содержат некоторое количество запасных веществ, служащих пищевым резервом.
Главные части клетки. Некоторые клетки, в основном растительные и бактериальные, имеют наружную клеточную стенку. У высших растений она состоит из целлюлозы. Стенка окружает собственно клетку, защищая ее от механических воздействий. Клетки, в особенности бактериальные, могут также секретировать слизистые вещества, образуя тем самым вокруг себя капсулу, которая, как и клеточная стенка, выполняет защитную функцию. Клеточные стенки и капсулы не участвуют в метаболизме, и часто их удается отделить, не убивая клетку. Таким образом, их можно считать наружными вспомогательными частями клетки. У животных клеточные стенки и капсулы отсутствуют.
Собственно клетка состоит из трех основных частей. Под клеточной стенкой, если она имеется, находится клеточная мембрана. Мембрана окружает гетерогенный материал, называемый цитоплазмой. В цитоплазму погружено круглое или овальное ядро.
Клеточная мембрана - очень важная часть клетки. Она удерживает вместе все клеточные компоненты и разграничивает внутреннюю и наружную среду. Кроме того, модифицированные складки клеточной мембраны образуют многие органеллы клетки. Клеточная мембрана представляет собой двойной слой молекул (бимолекулярный слой, или бислой). В основном это молекулы фосфолипидов и других близких к ним веществ. Основная функция клеточной мембраны заключается в регуляции переноса веществ в клетку и из клетки. В то же время мембрана практически непроницаема для большинства водорастворимых веществ, в частности для сахаров и солей. Благодаря этим свойствам она способна поддерживать внутри клетки химическую среду, отличающуюся от наружной.
Цитоплазма. В цитоплазме имеются внутренние мембраны, образующие органеллы различного типа. Эти мембраны можно рассматривать как складки наружной мембраны; иногда внутренние мембраны составляют единое целое с наружной, но часто внутренняя складка отшнуровывается, и контакт с наружной мембраной прерывается. Эндоплазматический ретикулум. Состоящая из канальцев и пузырьков сеть внутренних мембран тянется от поверхности клетки до ядра. Играет роль микроциркуляторного аппарата, через который внешняя среда может непосредственно взаимодействовать со всем содержимым клетки. Рибосомы покрывают поверхность эндоплазматического ретикулума, особенно вблизи ядра. Они состоят наполовину из белков, наполовину из рибонуклеиновых кислот. Их основная функция - синтез белков; к их поверхности прикрепляются матричная РНК и аминокислоты, связанные с тРНК. Аппарат Гольджи - это специализированная часть эндоплазматического ретикулума, состоящая из собранных в стопки плоских мембранных мешочков. Он участвует в секреции клеткой белков и поэтому особенно развит в клетках, выполняющих секреторную функцию. К важным функциям аппарата Гольджи относится также присоединение углеводных групп к белкам и использование этих белков для построения клеточной мембраны и мембраны лизосом. У некоторых водорослей в аппарате Гольджи осуществляется синтез волокон целлюлозы. Лизосомы - это маленькие, окруженные одинарной мембраной пузырьки. Они отпочковываются от аппарата Гольджи. Лизосомы содержат ферменты, которые расщепляют крупные молекулы, в частности белковые. Митохондрии - относительно крупные образования с довольно сложной структурой. Они состоят из матрикса, окруженного внутренней мембраной, межмембранного пространства и наружной мембраны. Внутренняя мембрана сложена в складки, называемые кристами. На кристах размещаются скопления белков. Многие из них - ферменты, катализирующие окисление продуктов распада углеводов; другие катализируют реакции синтеза и окисления жиров. Хлоропласты, подобно митохондриям, имеют внутреннюю и наружную мембраны. Из выростов внутренней мембраны в процессе развития хлоропластов возникают тилакоидные мембраны; последние образуют уплощенные мешочки, собранные в стопки наподобие столбика монет; эти стопки, называемые гранами, содержат хлорофилл. Кроме хлорофилла, в хлоропластах имеются и все другие компоненты, необходимые для фотосинтеза. Митохондрии и хлоропласты содержат определенное количество собственного генетического материала, который кодирует часть их структуры. Если эта ДНК утрачивается, что и происходит при подавлении образования органелл, то структура не может быть воссоздана. ДНК органелл ответственна за основную часть внехромосомной, или цитоплазматической, наследственности. Внехромосомная наследственность не подчиняется менделевским законам, так как при делении клетки ДНК органелл передается дочерним клеткам иным путем, нежели хромосомы. Изучение мутаций, которые происходят в ДНК органелл и ДНК хромосом, показало, что ДНК органелл отвечает лишь за малую часть структуры органелл; большинство их белков закодированы в генах, расположенных в хромосомах. Фибриллярные структуры. Многие простейшие имеют плотные покровы или оболочки, которые придают клетке определенную, несферическую форму. Тем не менее, даже без оболочки клетки могут поддерживать несферическую форму из-за того, что цитоплазма структурируется с помощью многочисленных, довольно жестких, параллельно расположенных волокон. Последние образованы полыми микротрубочками, состоящими из белковых единиц, организованных в виде спирали. Некоторые простейшие образуют псевдоподии - длинные тонкие цитоплазматические выросты, которыми они захватывают пищу. Псевдоподии сохраняют свою форму благодаря жесткости микротрубочек.
Ядро. окружено двойной мембраной. Основная часть генетического материала находится в хромосомах клеточного ядра. Хромосомы состоят из длинных цепей двуспиральной ДНК, к которой прикрепляются основные белки. Число хромосом у разных видов неодинаково. Диплоидные клетки тела человека содержат 46 хромосом, или 23 пары.
1.2 Деление клетки
Митоз. Клетке свойствен цикл, состоящий из двух основных стадий: интерфазы и митоза. Сама интерфаза состоит из трех фаз: G1, S и G2. G1 (4-8 ч). Это фаза начинается сразу после рождения клетки. На протяжении фазы G1 клетка, за исключением хромосом, увеличивает свою массу. S (6-9 ч). Масса клетки продолжает увеличиваться, и происходит удвоение (дупликация) хромосомной ДНК. G2. Масса клетки продолжает увеличиваться до тех пор, пока она приблизительно вдвое не превысит начальную, а затем наступает митоз. После того как хромосомы удвоились, каждая из дочерних клеток должна получить полный набор хромосом. Простое деление клетки не может этого обеспечить - такой результат достигается посредством процесса, называемого митозом, который делится на 4 фазы: профаза, метафаза, анафаза и телофаза. Размножение с помощью митоза называют бесполым размножением, вегетативным размножением или клонированием. Его наиболее важный аспект - генетический: при таком размножении не происходит расхождения наследственных факторов у потомства. Образующиеся дочерние клетки генетически в точности такие же, как и материнская.
Мейоз. Половое размножение организмов осуществляется с помощью специализированных клеток, гамет. Гаметы, сливаясь, образуют одну клетку - зиготу. Каждая гамета гаплоидна, т.е. имеет по одному набору хромосом. Внутри набора все хромосомы разные, однако каждой хромосоме яйцеклетки соответствует одна из хромосом спермия. Зигота, таким образом, содержит уже пару таких соответствующих друг другу хромосом, которые называют гомологичными. В результате многократных митотических делений из образовавшейся зиготы возникает либо многоклеточный организм, либо многочисленные свободноживущие клетки, как это происходит у обладающих половым размножением простейших и у одноклеточных водорослей.
1.3 Прокариоты
Эукариоты эволюционировали из более простой формы - прокариотов, которые в настоящее время представлены бактериями, включая архебактерий и цианобактерий (последних раньше называли сине-зелеными водорослями). В сравнении с клетками эукариотов прокариотические клетки мельче и имеют меньше клеточных органелл. У них есть клеточная мембрана, но отсутствует эндоплазматический ретикулум, а рибосомы свободно плавают в цитоплазме. Митохондрии отсутствуют, но окислительные ферменты обычно прикреплены к клеточной мембране, которая таким образом становится эквивалентом митохондрий. Прокариоты лишены также хлоропластов, а хлорофилл, если он имеется, присутствует в виде очень мелких гранул. Прокариоты не имеют окруженного мембраной ядра, хотя место расположения ДНК можно выявить по его оптической плотности. Эквивалентом хромосомы служит цепочка ДНК, обычно кольцевая, с намного меньшим количеством прикрепленных белков. Цепочка ДНК в одной точке прикрепляется к клеточной мембране. Митоз у прокариотов отсутствует. Его заменяет следующий процесс: ДНК удваивается, после чего клеточная мембрана начинает расти между соседними точками прикрепления двух копий молекулы ДНК, которые в результате этого постепенно расходятся. В конечном итоге клетка делится между точками прикрепления молекул ДНК, образуя две клетки, каждая со своей копией ДНК.
1.4 Методы изучения клетки
Световой микроскоп. В изучении клеточной формы и структуры первым инструментом был световой микроскоп. Его разрешающая способность ограничена размерами, сравнимыми с длиной световой волны (0,4-0,7 мкм для видимого света). Однако многие элементы клеточной структуры значительно меньше по размерам. Другая трудность состоит в том, что большинство клеточных компонентов прозрачны и коэффициент преломления у них почти такой же, как у воды. Для улучшения видимости часто используют красители, имеющие разное сродство к различным клеточным компонентам. Электронный микроскоп. Электронный микроскоп имеет разрешающую способность ок. 1-2 нм. Этого достаточно для изучения крупных белковых молекул. Обычно необходимо окрашивание и контрастирование объекта солями металлов или металлами. По этой причине, а также потому, что объекты исследуются в вакууме, с помощью электронного микроскопа можно изучать только убитые клетки. Авторадиография. Если добавить в среду радиоактивный изотоп, поглощаемый клетками в процессе метаболизма, то его внутриклеточную локализацию можно затем выявить с помощью авторадиографии. При использовании этого метода тонкие срезы клеток помещают на пленку. Пленка темнеет под теми местами, где находятся радиоактивные изотопы. Центрифугирование. Для биохимического изучения клеточных компонентов клетки необходимо разрушить - механически, химически или ультразвуком. Высвобожденные компоненты оказываются в жидкости во взвешенном состоянии и могут быть выделены и очищены с помощью центрифугирования (чаще всего - в градиенте плотности). Обычно такие очищенные компоненты сохраняют высокую биохимическую активность. Клеточные культуры. Некоторые ткани удается разделить на отдельные клетки так, что клетки при этом остаются живыми и часто способны к размножению. Микрохирургия. С помощью микроманипулятора отдельные части клетки можно удалять, добавлять или каким-то образом видоизменять. Крупную клетку амебы удается разделить на три основных компонента - клеточную мембрану, цитоплазму и ядро, а затем эти компоненты можно вновь собрать и получить живую клетку.
2. МЕТОДЫ ПОДБОРА МИКРОБОВ ПРОДУЦЕНТОВ
2.1 Подбор форм микроорганизмов с заданными свойствами
Подбор необходимых для культивирования форм микроорганизмов с за данными свойствами включает несколько этапов. Выделение микроорганизмов. Отбираются пробы из мест обитания микроорганизмов (почва, растительные остатки и т.д.). Применительно к углеводородокисляющим микроорганизмам таким местом может быть почва возле бензоколонок, винные дрожжи обильно встречаются на винограде, анаэробные целлюлозаразлагающие и метанобразующие микроорганизмы в больших количест вах обитают в рубце жвачных животных. Получение накопительных культур. Образцы вносят в жидкие питательные среды специального состава, создают благоприятные условия для развития продуцента (температура, РН, источники энергии, углерода, азота и т.д.). Для накопления продуцента холестериноксидазы используют среды с холестерином в качестве единственного источника углерода; углеводородокисляющих микроор ганизмов -- среды с парафинами; продуцентов протеолитических или липолитических ферментов -- среды, содержащие белки или липиды. Выделение чистых культур. На плотные питательные среды засевают образцы проб из накопительных культур. Отдельные клетки микроорганизмов на плотных питательных средах образуют изолированные колонии или клоны, при их пересеве получаются чистые культуры, состоящие из клеток одного вида про дуцента.
2.2 Определение способности синтезировать целевой продукт -- главный критерий при отборе продуцентов
Микроорганизмы должны соответство вать следующим требованиям: - обладать высокой скоростью роста; - использовать для жизнедеятельности дешевые субстраты; - быть устойчивыми к заражению посторонней микрофлорой.
2.3 Методы увеличения синтетической активности
В биотехнологии для получения высокоактивных продуктов используют методы селекции и генной инженерии. С их помощью получены промышленные штаммы микроорганизмов, син тетическая активность которых превышает активность исходных штаммов в де сятки и сотни раз.
Селекция -- направленный отбор мутантов (организмов, наследственность которых претерпела скачкообразное изменение). Генеральный путь селекции - переход от простого отбора продуцентов к сознательному конструированию их геномов. На каждом из этапов из популяции микроорганизмов отбираются наи более высокоэффективные клоны. Таким путем за длительное время были ото браны штаммы пивных, винных, пекарских, уксуснокислых дрожжей и других. Применяется ступенчатый отбор: на каждом из этапов из популяции микроорганизмов отбираются наиболее высокоэффективные кло ны. Ограниченность метода селекции, основанного на спонтанных мутациях, свя зана с их низкой частотой, что значительно затрудняет интенсификацию процес са. Изменения в структуре ДНК происходят редко. Примером отбора наиболее продуктив ных мутантов при культивировании в непрерывном режиме является отбор дрожжей по признаку устойчивости к этанолу, продукту жизнедеятельности дрожжей. К значительному ускорению селекции ведет индуцированный мутагенез -- резкое увеличение частоты мутаций биообъекта при искусственном повреждении генома. Мутагенным действием обладают ультрафиолетовое, рентгеновское или у-излучение, некоторые химические соединения, вызывающие изменения пер вичной структуры ДНК. Проводят тотальную проверку (скрининг) полученных клонов. Отобрав наиболее продуктивные клоны, повторяют обработку тем же или другим мутагеном, вновь отбирают наиболее продуктивный вариант. Трудоемкость -- основной недостаток метода индуцированного мутагенеза и последующего ступенчатого отбора. Недостатком метода является также от сутствие сведений о характере мутаций, исследователь проводит отбор по конеч ному результату.
Генетическая инженерия - направленная модификация биообъектов в ре зультате введения искусственно созданных генетических программ. Уровни генетической инженерии: -генная - прямое манипулирование рекомбинантными ДНК, отдельными генами; -хромосомная - манипулирование с группами генов или отдельными хромосомами; -геномная (клеточная) - перенос всего или большей части генетического материала от одной клетки к другой (клеточная инженерия). Работа в области генетической инженерии включает 4 этапа: 1) полу чение нужного гена; 2) встраивание его в вектор, способный к репликации; 3) введение гена с помощью вектора в организм; 4) питание и селекция клеток, ко торые приобрели желаемый ген. Основой клеточной инженерии является гибридизация соматических кле ток - слияние неполовых клеток с образованием единого целого. Слияние клеток может быть полным или с введением их отдельных частей (митохондрий, хлоропластов и т.д.). Соматическая гибридизация позволяет скрещивать генетически отдален ные организмы. Растительные, грибные и бактериальные клетки перед слиянием освобождают от клеточной стенки и получают протопласты.
ЗАКЛЮЧЕНИЕ
Основной целью биотехнологии является -- промышленное использование биологи ческих процессов и агентов на основе получения высокоэффективных форм мик роорганизмов, культур клеток и тканей растений и животных с заданными свой ствами. А главными методами - селекция и генная инженерия, которые основываются на знаниях о биологии клетки. Следовательно, и для достижения наибольших успехов в этой области необходимо иметь высокие знания о строении, генетики и биохимии клетки, ведь чем больше мы знаем, тем больших успехов можно достичь в биотехнологии.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Альберт Б., Брейд Д. Молекулярная биология клетки. - М.: «Мир», 1994г.
2. Н.А. Войнов, Т.Г. Волова Современные проблемы и методы биотехнологии. -Красноярск: ИПК СФУ, 2009г.
Размещено на Allbest.ru
...Подобные документы
Основные фазы клеточного цикла: интерфаза и митоз. Определение понятия "митоз" как непрямого деления клетки, наиболее распространенного способа репродукции эукариотических клеток. Характеристика и особенности процессов деления: амитоза и мейоза.
презентация [799,4 K], добавлен 25.10.2011Строение животной клетки. Основные положения клеточной теории, понятие про прокариоты и эукариоты. Структура цитоплазмы и эндоплазматический ретикулум. Хромосомный набор человека. Способы деления клетки (амитоз, митоз и мейоз) и ее химический состав.
презентация [3,1 M], добавлен 09.10.2013Митоз как непрямое деление клетки, в результате которого образуются соматические клетки. Стадии клеточного цикла. Подготовка к делению эукариотических организмов. Основные этапы кариокинеза. Разделение цитоплазмы с органоидами между дочерними клетками.
презентация [2,3 M], добавлен 06.11.2013Изучение процесса митоза как непрямого деления клетки и распространенного способа репродукции эукариотических клеток, его биологическое значение. Мейоз как редукционное деление клетки. Интерфаза, профаза, метафаза, анафаза и телофаза мейоза и митоза.
презентация [7,6 M], добавлен 21.02.2013Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.
презентация [1,1 M], добавлен 07.12.2014История изучения клетки. Открытие и основные положения клеточной теории. Основные положения теории Шванна-Шлейдена. Методы изучения клетки. Прокариоты и эукариоты, их сравнительная характеристика. Принцип компартментации и поверхность клетки.
презентация [10,3 M], добавлен 10.09.2015Методы изучения клетки: микроспектромериз, цитофотометрия, флуоресцентная и ультрафиолетовая микроскопия. Способы деления клеток, их сходство и различия. Функции биологических мембран, диффузия (пассивная и облегченная) и активный транспорт молекул.
контрольная работа [39,9 K], добавлен 01.06.2010Строение и функции оболочки клетки. Химический состав клетки. Содержание химических элементов. Биология опухолевой клетки. Клонирование клеток животных. А была ли Долли? Клонирование - ключ к вечной молодости? Культивирование клеток растений.
реферат [27,3 K], добавлен 16.01.2005Ядро эукариотической клетки. Клетки, имеющие более двух наборов хромосом. Процесс деления у эукариот. Объединенные пары гомологичных хромосом. Онтогенез растительной клетки. Процесс разъединения клеток в результате разрушения срединной пластинки.
реферат [759,3 K], добавлен 28.01.2011Элементарная генетическая и структурно-функциональная биологическая система. Клеточная теория. Типы клеточной организации. Особенности строения прокариотической клетки. Принципы организации эукариотической клетки. Наследственный аппарат клеток.
контрольная работа [47,7 K], добавлен 22.12.2014Исследование основных видов размножения: воспроизведения себе подобных, обеспечивающего непрерывность жизни. Понятие митоза – такого деления клеточного ядра, при котором образуется два дочерних ядра с набором хромосом, идентичных родительской клетки.
презентация [2,5 M], добавлен 19.01.2011Изобретение Захарием Янсеном примитивного микроскопа. Исследование срезов растительных и животных тканей Робертом Гуком. Обнаружение Карлом Максимовичем Бэром яйцеклетки млекопитающих. Создание клеточной теории. Процесс деления клетки. Роль ядра клетки.
презентация [1,4 M], добавлен 28.11.2013Уровни организации живой материи. Клеточная мембрана, поверхностный аппарат клетки, ее части и их назначение. Химический состав клетки (белки, их структура и функции). Обмен веществ в клетке, фотосинтез, хемосинтез. Мейоз и митоз – основные различия.
контрольная работа [58,3 K], добавлен 19.05.2010Основные органеллы клетки. Цитоплазма - полужидкая среда, в которой находятся ядро клетки и все органоиды, ее состав. Схема строения комплекса Гольджи. Органоиды движения включения (реснички и жгутики). Форма и размеры ядра, его главные функции.
презентация [764,3 K], добавлен 13.11.2014Основы гистологической техники. Цитохимические методы исследования клеток и тканей. Наружная цитоплазматическая мембрана, типы и происхождение пластид, их строение и функции. Мейоз (редукционное деление клетки), его фазы и биологический смысл.
контрольная работа [22,7 K], добавлен 07.06.2010Цитоплазма как обязательная часть клетки, заключенная между плазматической мембраной и ядром. Реакция среды и особенности движения цитоплазмы. Значение, функции и структура гиалоплазмы. Виды и роль одно- и двухмембранных органоидов живой клетки.
презентация [1009,0 K], добавлен 21.02.2014Клеточная теория Шлейдена и Шванна. Состав вирусов. Методы изучения клетки. Строение и функции ее поверхностного аппарата, мембраны, надмембранного комплекса, хромопластов, лейкопластов, рибосом, органелл, ядра, ядерной оболочки, кариоплазмы, хромосом.
презентация [3,6 M], добавлен 13.11.2014Характеристика жизненного цикла клетки, особенности периодов ее существования от деления до следующего деления или смерти. Стадии митоза, их продолжительность, сущность и роль амитоза. Биологическое значение мейоза, его основные этапы и разновидности.
лекция [169,6 K], добавлен 27.07.2013Создание электронно-образовательного ресурса "Биология клетки" в системе дистанционного обучения "MOODLE" ТувГУ. Рабочая программа для дисциплины "Цитология". Возможности системы moodle при создании теста, пример задания для самостоятельной работы.
дипломная работа [807,5 K], добавлен 07.09.2016Особенности строения и роста растительных клеток. Методы изучения растительной клетки. Электронная микроскопия, возможности светового микроскопа. Метод замораживания-скалывания. Дифференциальное центрифугирование, фракционирование. Метод культуры клеток.
реферат [30,9 K], добавлен 04.06.2010