Мембранные структуры клетки растения

Понятие о мембране клетки, ее строение. Функции плазмалеммы и тонопластов. Пигменты пластид и клеточного сока, их биологическая роль. Перидерма стебля древесного растения. Строение тычинки и пыльника. Образование зародыша и эндосперма у растений.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 23.12.2015
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

1. Понятие о мембране клетки, ее строение. Плазмалемма, тонопласт, система внутренних мембран, их функции

2. Пигменты пластид и клеточного сока их биологическая роль. Объяснить от чего зависит окрас различных органов растения

3. Перидерма и корка, их образование, строение, функции, использование пробки

4. Перидерма стебля древесного растения, ее строение и функции. Чечевичник

5. Надземные метаморфозы побегов их строение и выполняемые функции. Промеры

6. Андроцей. Строение тычинки и пыльника. Зарисовать андроцей цветков яблони, гороха, капусты, картофеля, тыквы. Функции андроцея

7. Образование зародыша и эндосперма у покрытосеменных растений. Что такое перисперм

Список использованной литературы

1. Понятие о биологической мембране, ее строение и функции. Плазмалемма, тонопласт, система внутренних мембран

мембрана растение тычинка перидерма

Мембраны биологические (лат. membrana оболочка, перепонка) - функционально активные поверхностные структуры толщиной в несколько молекулярных слоев, ограничивающие цитоплазму и большинство органелл клетки, а также образующие единую внутриклеточную систему канальцев, складок, замкнутых областей.

Биологические мембраны имеются во всех клетках. Их значение определяется важностью функций, которые они выполняют в процессе нормальной жизнедеятельности, а также многообразием заболеваний и патологических состояний, возникающих при различных нарушениях мембранных функций и проявляющихся практически на всех уровнях организации -- от клетки и субклеточных систем до тканей, органов и организма в целом.

Мембранные структуры клетки представлены поверхностной (клеточной, или плазматической) и внутриклеточными (субклеточными) мембранами. Название внутриклеточных (субклеточных) мембран обычно зависит от названия ограничиваемых или образуемых ими структур. Так, различают митохондриальные, ядерные, лизосомные мембраны, мембраны пластинчатого комплекса аппарата Гольджи, эндоплазматического ретикулума, саркоплазматического ретикулума и др. (см. Клетка). Толщина биологических мембран -- 7--10 нм, но их общая площадь очень велика, например, в печени крысы она составляет несколько сот квадратных метров.

Свойства и функции мембран.

Все клеточные мембраны представляют собой подвижные текучие структуры, поскольку молекулы липидов и белков не связаны между собой ковалентными связями и способны достаточно быстро перемещаться в плоскости мембраны. Благодаря этому мембраны могут изменять свою конфигурацию, т. е. обладают текучестью.

Мембраны -- структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях.

Мембраны разных типов клеток существенно различаются как по химическому составу, так и по относительному содержанию в них белков, гликопротеинов, липидов, а следовательно, и по характеру имеющихся в них рецепторов. Каждый тип клеток поэтому характеризуется индивидуальностью, которая определяется в основном гликопротеинами.

Разветвленные цепи гликопротеинов, выступающие из клеточной мембраны, участвуют в распознавании факторов внешней среды, а также во взаимном узнавании родственных клеток.

Например, яйцеклетка и сперматозоид узнают друг друга по гликопротеинам клеточной поверхности, которые подходят друг к другу как отдельные элементы цельной структуры. Такое взаимное узнавание -- необходимый этап, предшествующий оплодотворению.

Подобное явление наблюдается в процессе дифференцировки тканей. В этом случае сходные по строению клетки с помощью распознающих участков плазмалеммы правильно ориентируются относительно друг друга, обеспечивая тем самым их сцепление и образование тканей. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунологический ответ, в котором гликопротеины играют роль антигенов. Сахара, таким образом, могут функционировать как информационные молекулы (подобно белкам и нуклеиновым кислотам). В мембранах содержатся также специфические рецепторы, переносчики электронов, преобразователи энергии, ферментные белки. Белки участвуют в обеспечении транспорта определенных молекул внутрь клетки или из нее, осуществляют структурную связь цитоскелета с клеточными мембранами или же служат в качестве рецепторов для получения и преобразования химических сигналов из окружающей среды.

Важнейшим свойством мембраны является также избирательная проницаемость. Это значит, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Диффузия воды через мембрану называется осмосом.

Существует несколько механизмов транспорта веществ через мембрану.

Диффузия -- проникновение веществ через мембрану по градиенту концентрации (из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ (воды, ионов) осуществляется при участии белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).

Процесс, обратный эндоцитозу, -- экзоцитоз (экзо... -- наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пузырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Гак выводятся пищеварительные ферменты, гормоны, гемицеллюлоза и др.

Таким образом, биологические мембраны как основные структурные элементы клетки служат не просто физическими границами, а представляют собой динамичные функциональные поверхности. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение веществ, преобразование энергии, синтез АТФ и др.

Функции биологических мембран следующие:

1. Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

2. Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

3. Выполняют роль рецепторов (получение и преобразование сигналов из окружающей среды, узнавание веществ клеток и т. д. ).

4. Являются катализаторами (обеспечение примембранных химических процессов).

5. Участвуют в преобразовании энергии.

2. Пигменты пластид и клеточного сока их биологическая роль. Объяснить от чего зависит окрас различных органов растения

Вакуоли есть почти во всех взрослых живых растительных клетках.

Они представляют собой полости внутри протопласта, заполненные обычно водянистым содержимым -- клеточным соком. Так как вакуоли образуются в результате обмена веществ протопласта, то их форма, размеры и состояние определяются состоянием самого протопласта. В очень молодых, эмбриональных клетках протопласт обычно занимает весь объем клетки и вакуолей нет. В более взрослых клетках наблюдаются многочисленные очень мелкие (2--10 мк) вакуоли, равномерно распределенные в цитоплазме. Ядро обычно лежит в центре клетки. При рассматривании в световой микроскоп эти мелкие вакуоли имеют вид отдельных изолированных зерен или тонких изогнутых нитей, по форме напоминающих митохондрии. Благодаря своей многочисленности они придают цитоплазме пенистый вид. Содержимое их отличается довольно высокой плотностью и вязкостью и представляет собой гидрогель, образованный, по-видимому, гидрофильными белками. При постепенном переходе клетки во взрослое состояние, что выражается прежде всего в ее росте, объем клетки сильно увеличивается, тогда как объем цитоплазмы увеличивается незначительно. Этот процесс, называемый процессом растяжения клетки, связан с накоплением большого количества воды, поглощаемой клеткой извне, и ростом оболочки. Цитоплазма, поглощая воду, выделяет ее затем в вакуоли вместе с продуктами своей жизнедеятельности -- продуктами обмена, в виде клеточного сока. При этом мелкие вакуоли растут, содержимое их разжижается, они сливаются друг с другом и число их уменьшается. Отдельные вакуоли часто принимают неправильную форму, изменяемую движением цитоплазмы. Наконец, во взрослой клетке, достигшей своего окончательного размера, все вакуоли сливаются в одну центральную вакуолю, а протопласт оттесняется к оболочке, облекая вакуолю в виде тонкого постенного слоя. Как показали электронно микроскопические исследования, толщина этого постенного слоя цитоплазмы может быть значительно меньше толщины первичной оболочки и митохондрий. Это наблюдается, например, в клетках основной паренхимы стебля, толщина слоя цитоплазмы которых находится на пределе разрешающей способности светового микроскопа (около 0, 2 мк). В этих клетках плазмалемма и тонопласт до такой степени сближаются друг с другом, что клеточные органоиды (митохондрии и пластиды), зажатые между ними, изменяют свою форму.

В постенном слое цитоплазмы располагаются ядро и другие органоиды клетки. Иногда ядро занимает центр клетки, окружающая его цитоплазма соединяется с постенной цитоплазмой тяжами, проходящими через полость вакуоли. Кроме цитоплазмы, вакуолеподобные образования могут возникать при особых условиях и в других органоидах, например, в пластидах и в ядре.

Присутствие одной крупной вакуоли, заполненной клеточным соком, является характерной особенностью дифференцированной (взрослой) растительной клетки, которая остается живой к моменту зрелости. Объем такой вакуоли обычно значительно больше объема всех других клеточных компонентов, вместе взятых, и часто почти равен объему всей клетки. Так, вакуоли клеток сочных органов растений нередко занимают свыше 90% объема клетки.

Содержимое вакуолей -- клеточный сок -- представляет собой очень маловязкую жидкость и является весьма слабым водным раствором различных веществ, синтезированных и выделенных протопластом. Таким образом, основной компонент клеточного сока -- вода. В ней аккумулируются многочисленные соединения, минеральные и органические, которые находятся в состоянии истинного или коллоидного раствора и реже -- в виде твердых включений.

Вязкость клеточного сока связана с присутствием коллоидов, которые иногда при обезвоживании клетки могут придавать ему состояние настоящего геля. Реакция клеточного сока обычно слабокислая или нейтральная, реже щелочная.

Для некоторых растительных групп (семейства кактусовых, толстянковых, орхидных) характерно накопление в клеточном соке слизистых веществ, также являющихся углеводами. Очень часто в состав клеточного сока входят глюкозиды (миндаль, наперстянка) и алкалоиды (мак, кофе, чай). Первые представляют собой соединения глюкозы со спиртами, альдегидами и другими веществами, не содержащими азот, а вторые -- азотистые вещества сложного состава. Роль их в обмене веществ не выяснена. Они имеют горький вкус и в определенных количествах ядовиты для животных, предохраняя, таким образом, растение от поедания. В то же время многие из них представляют собой ценные лекарства, например атропин, -- у белладонны, морфин и кодеин -- у мака, хинин -- у хинного дерева.

В клеточном соке очень часто встречаются дубильные вещества -- танниды. Это сложные органические безазотистые соединения вяжущего вкуса, сильно преломляющие свет. Клеточный сок, содержащий танниды, отличается высокой вязкостью. Особенно богаты дубильными веществами клетки коры (дуб, ива, ель), листья чая, семена кофе. При отмирании клетки танниды окисляются, пропитывают клеточную оболочку и придают ей темно-коричневый цвет. Значение дубильных веществ в жизни самого растения выяснено недостаточно. Они обладают антисептическими свойствами и поэтому служат защитными веществами против нападения различных микроорганизмов. Техническое значение таннидов состоит в том, что с их помощью дубят кожу, после чего она становится мягкой, не ослизняющейся и не пропускает воду.

Все эти вещества, растворенные в клеточном соке, как правило, бесцветны и их выявляют лишь специальными реактивами. Поэтому клеточный сок может быть и бесцветным, и окрашенным в различные цвета, благодаря присутствию растворимых в воде пигментов. Наиболее распространенные пигменты клеточного сока -- антоцианины и флавоны -- относятся к группе глюкозидов. Чаще всего они сосредоточены в клеточном соке наружных слоев клеток высших растений. Антоцианины обусловливают красный цвет корнеплодов и листьев столовой свеклы, красный, пурпуровый или синий цвет лепестков многих цветков и других частей растений. Особенно часто они встречаются в клетках проростков и молодых растений, которые приобретают поэтому красноватые тона. Различие в оттенках цвета -- от фиолетового до красного -- связано с различной реакцией клеточного сока: если реакция кислая, то господствуют красные тона, при нейтральной реакции -- фиолетовые, а при слабощелочной-- синие. Присутствием антоцианов объясняется и цвет плодов вишни, сливы, винограда. Желтый цвет цветков, например, лепестков льнянки, желтой георгины связан с присутствием в клеточном соке пигментов группы флавонов.

Значение пигментов клеточного сока в обмене веществ выяснено недостаточно. Находясь в клетках лепестков и вызывая их яркую окраску, пигменты выполняют функцию привлечения насекомых-опылителей. Так как они сильно поглощают ультрафиолетовые лучи, то возможно, что молодые части растений благодаря этому защищены от вредного действия этих лучей.

Механизм заложения вакуолей еще полностью не выяснен. Электронно микроскопические исследования показали, что во взрослой клетке вакуоли отграничены от цитоплазмы одной мембраной-- тонопластом. Иногда, если в клетке несколько крупных вакуолей, то у них наблюдаются длинные трубки, вытягивающиеся в сторону цитоплазмы, причем трубки часто напоминают контуры гладкой эндоплазматической сети.

Участок эмбриональной клетки

В молодых клетках, как видно на некоторых электронограммах, обнаруживаются многочисленные местные расширения межмембранного пространства эндоплазматической сети. Эти клетки при рассматривании в световой микроскоп имеют мельчайшие вакуоли, напоминающие по форме те, которые получились на электронограммах. Это дало основание некоторым ученым выдвинуть гипотезу, согласно которой вакуоли закладываются в результате местных расширений межмембранного промежутка эндоплазматической сети. В пользу этой точки зрения свидетельствует и наличие одной мембраны вокруг вакуолей.

3. Перидерма и корка (образование, строение, функции)

Перидерма (от греч. "пери" - вокруг, около и "дерма") - вторичная покровная ткань стеблей и корней растений, формирующаяся в результате деятельности феллогена (пробкового камбия), который откладывает снаружи от себя многослойную феллему (пробку), а внутрь - однослойную феллодерму. Клетки феллемы воздухо- и водонепроницаемы, так как оболочки клеток внутри покрыты жироподобным веществом - суберином, чередующимся с плёнками растительного воска. Живое содержимое в этих клетках отмирает без остатка.

Типы клеток перидермы:

1) феллема (пробка) --- защитная функция

2) феллоген (пробковый камбий) --- образовательная функция

3) феллодерма --- выполняет питательную функцию по отношению к феллогену.

1. Основа - феллоген, однослойная меристема, возникающая из живых паренхимных клеток постоянных тканей, следовательно - вторичная тк. Его клетки делятся тангентально и откладывают кнаружи много слоев клеток пробки - феллемы (главные клетки), а внутрь клетки феллодермы. Сначала клетки пробки тонкостенные, затем они опробковевают (на внутренней поверхности клеточных оболочек откладывается изолятор - суберин) и живое содержимое их отмирает и заполняется воздухом (следовательно, такие мертвые клетки приобретают хорошие изолирующие свойства).

В таком состоянии они выполняют основные функции:

1) защитная (механическая, защита от потери влаги, бактерицидная защита, т. к. устойчива к разрушению);

2) терморегуляционная (пробка терморегулятор, т. к. хорошо защищает растение от перепадов to , следовательно, откладывается у древесных растений к концу лета - началу осени (благодаря пробке растение постепенно промерзает и постепенно оттаивает, что не дает образоваться в цитоплазме клеток кристаллов льда, которые повреждают и разрушают клетку).

Феллоген залечивает раны при повреждении растения и при благоприятных условиях постоянно формирует новые слои пробки. Поэтому перидерма - многослойная ткань. После развития перидермы, эпидерма, отрезанная от притока питательных веществ и Н2О, отмирает и слущивается (зеленая окраска стебля заменяется на коричневатую).

Лежащие под пробкой-феллемой живые ткани нуждаются в газообмене, поэтому в перидерме формируются чечевички - проходные разрывы в пробке, через которые происходит газообмен. Обычно чечевички закладываются под устьицами. Вместо пробки феллоген здесь откладывает живые клетки паренхимы.

Поперечный срез чечевички показывает, что слои пробки, чередуются с паренхимными клетками с хорошо развитыми межклетниками. По межклетникам и идет газообмен. Феллоген подстилает паренхимную ткань, т. к. в нем есть межклетники, он не препятствует газообмену.

К зиме феллоген откладывает под паренхимным слоем клеток замыкающий слой мертвых клеток пробки-феллемы -чечевичка закрывается (т. к. зимой растение резко сокращает газообмен и обменные процессы почти до 0).

Весной под напором новых паренхимных клеток, откладываемых феллогеном, этот слой разрывается и газообмен восстанавливается.

Чечевички у разных видов деревьев и кустарников имеют свою форму и размер и изменяются с возрастом.

Часто у деревьев на смену перидерме приходит корка - ретидом- третичная покровная ткань(например, у сосны, яблони, ясеня, клена; у платана и эвкалипта - корки нет).

Корка очень мощная, толстая, трещиноватая.

Образование.

Корка образуется при многократном заложении слоев феллогена, а затем и перидермы в глубоких тканях коры.

Живые клетки, оказавшись между этими слоями, погибают и становятся частью корки.

Т. о. , корка состоит из чередующихся слоев пробки и клеток других, отмерших тканей коры, т. е. - сложная по составу.

Из-за того, что мертвые ткани пробки не могут растягиваться при росте стебля в толщину на ретидоме образуются трещины на мертвых участках.

Функции:

1) защитная (увеличивают механическую прочность, устойчивость к пожарам и т. д. );

2) терморегуляционная (предохраняет растение от резких перепадов to).

4. Перидерма стебля древесного растения, ее строение и функции. Чечевичник

Перидерма (от греч. "пери" - вокруг, около и "дерма") - вторичная покровная ткань стеблей и корней растений, формирующаяся в результате деятельности феллогена (пробкового камбия), который откладывает снаружи от себя многослойную феллему (пробку), а внутрь - однослойную феллодерму. Клетки феллемы воздухо- и водонепроницаемы, так как оболочки клеток внутри покрыты жироподобным веществом - суберином, чередующимся с плёнками растительного воска. Живое содержимое в этих клетках отмирает без остатка.

Функция - газообмен и испарение; осуществляются через образующиеся в перидерме чечевички. Внешне чечевички выглядят как округлые или вытянутой формы образования на поверхности стебля. Форма чечевичек специфична для каждого вида растений. Чечевички закладываются под устьицами. В области чечевичек феллоген наружу откладывает выполняющие клетки с крупными межклетниками, заполненными воздухом, а внутрь - однослойную феллодерму. Осенью образуется замыкающий слой, и чечевичка закрывается. Весной феллоген в области чечевички снова образует клетки выполняющей ткани. Под их давлением замыкающий слой разрывается, чечевичка открывается, через неё происходит газообмен и транспирация.

У большинства древесных растений перидерма со временем замещается коркой - третичной покровной тканью, образующейся в результате многократного заложения новых прослоек перидермы во всё более глубоких тканях коры. Живые клетки, заключённые между этими прослойками, гибнут. Таким образом, корка состоит из чередующихся слоев пробки и заключённых между ними отмерших тканей коры.

Она защищает растение от излишнего испарения, резких колебаний температуры и др. неблагоприятных воздействий.

Чечевички - это образования на стволе и ветках дерева, в которых находятся мелкие отверстия, прикрытые рыхлой тканью. По форме они очень разнообразны: обычно они представлены в виде мелких округлых бугорков, или штрихов, но могут быть и ромбическими. Основными функциями являются газообмен между внутренними живыми тканями стебля и окружающей средой, а также выведение лишней влаги. Чечевички разбросаны по стеблю и хорошо заметны, также их можно увидеть и на некоторых плодах в виде крапинок, например, на грушах, яблоках и др.

Функции и строение

Живые ткани ствола и веток нуждаются в газообмене, который изначально осуществляются через устьица эпидерма. Под устьицами и закладываются чечевички. По мере роста дерева образуется перидерма, а эпидерма отмирает, чечевички начинают выполнять функции устьиц по газообмену.

Еще до образования пробковой ткани заложенные под отверстиями устьиц корковые клетки начинают увеличиваться и делиться, образуя бугорки - чечевички.

Заполняющие чечевички клетки не имеют хлорофилловых зерен, округлые по форме, рыхло соединенные между собой. Под ними закладывается слой феллогена, служащий для увеличения числа образующих чечевички клеток. Образование пробковой ткани начинается после закладки. По обе стороны происходит деление клеток тангентальными перегородками. К окончанию формирования феллогеновый слой опоясывает всю окружность стебля и соединяется с феллогеном чечевички, которая оказывается внутри перидермы. Если у растений пробка образуется глубоко в ткани стебля, то чечевички закладываются в пробковом камбии, а не под устьицами. Клетки пробкового камбия местами при делении откладывают рыхлые клетки наружу вместо обыкновенных пробковых клеток, а внутрь -- большую массу феллодермы.

Чечевички не образуются на корнях растений. Лишь у немногих древесных растений они отсутствуют, но у них имеются другие приспособления для вентиляции коры. Например, у лозы винограда существуют сердцевинные лучи с ходами для воздуха до поверхности стебля. Но есть растения, у которых проветривание осуществляется за счет сбрасывания участков коры.

5. Надземные метаморфозы побегов, их строение и выполняемые функции. Примеры

Побег - это орган, который возникает из верхушечной меристемы и расчленяется на раннем этапе морфогенеза на специализированные части: стебель, листья, почки.

Основная его функция - фотосинтез. Части побега могут служить также для вегетативного размножения, накопления запасных продуктов, воды.

Строение двудольного растения (схема): 1 - главный корень, 2 - боковой корень, 3 - семядоля, 4 - гипокотиль, 5 - эпикотиль, 6 - узел, 7 - пазуха листа, 8 - пазушная почка, 9 - междоузлие, 10 - лист, 11 - цветок, 12 - верхушечная почка, 13 - стебель.

Возникновение метаморфизированных побегов часто связано с выполнением функций вместилища запасных продуктов, перенесения неблагоприятных условий года, вегетативного размножения.

Метаморфизированные органы побегового происхождения: I - подземные, II - надземные; А - клубень (картофель), Б-В - корневище (Б - ирис, В - пырей), Г - клубнелуковица (шафран), Д - луковица (лук), Е - клубень (кольраби), Ж - усик ( виноград), З - ус (земляника), И - филлокладий (иглица)

Клубень надземный - это утолщенная часть побега, вместилище запасных продуктов. Представляет собой утолщение главного (кольраби) или бокового (тропические орхидеи) побега и несет нормальные листья.

Надземный столон - это недолговечный ползучий побег, служащий для распространения (захвата территории) и вегетативного размножения. Он имеет длинные междоузлия и зеленые листья. На узлах образуются придаточные корни, а из верхушечной почки - укороченный побег (розетка), который после отмирания столона продолжает самостоятельное существование. Нарастает надземный столон симподиально. Надземные столоны, утратившие функцию фотосинтеза и выполняющие в основном функцию вегетативного размножения, иногда называют усами (земляника).

Колючки имеют различное происхождение - из побега (яблоня, груша, терн, боярышник, гледичия, цитрусовые), листа (барбарис) или его частей: рахиса (астрагал), прилистников (акация белая), участка пластинки (сложноцветные).

Усики образуются из побега (виноград), листа (тыквенные) или его частей: рахиса и нескольких листочков (горох), пластинки (чина), прилистников (сассапарель). Служат для прикрепления к опоре.

Филлокладии - это плоские листовидные побеги, расположенные в пазухах редуцированных листьев. На них образуются цветки.

Ловчие аппараты - видоизмененные листья, свойственные насекомоядным растениям (росянка, мухоловка). Имеют форму кувшинчиков, урночек, пузырьков ил же запахивающихся и завертывающихся пластинок. Небольшие насекомые, попадая в них, погибают, растворяются при помощи ферментов и потребляются растениями в качестве пищи.

6. Андроцей. Строение тычинки и пыльника. Зарисовать андроцей цветков яблони, гороха, капусты, картофеля, тыквы. Функции андроцея

Андроцей (греч. «дом мужчины»): совокупность микроспорофиллов, тычинок состоящих из тычиночной нити с разделенным на две половинки пыльником, содержащим четыре микроспорангия (пыльцевых мешка). Тычинки располагаются в один-два круга. Тычинки делятся на свободные и сросшиеся.

Существуют разные типы андроцея, различимые по числу сросшихся групп тычинок:

-однобратственный (тычинки в одной группе, люпин, камелия),

-двубратственный (две группы тычинок),

-многобратственный (несколько групп, магнолия, зверобой),

-братственный (несросшиеся тычинки).

Также тычинки различаются по длине: равные, неравные, двусильные (из четырех тычинок две длинные), трехсильные (из шести тычинок три длинные), четырехсильные (из шести тычинок четыре длинные).

Тычинка состоит из тычиночной ткани, на верхнем конце которой расположен пыльник, а нижним концом прикрепленной к цветоложу. Основной тканью тычиночной нити является паренхима. В пыльнике происходят важные процессы - микроспорогенез(образование микроспор в микроспорангиях) и микрогаметогенез (образование из микроспор мужского гаметофита). Стерильная тычинка называется стаминодией.

Пыльник состоит из однородных клеток, окруженных эпидермой.

Сравнительно-морфологическое изучение тычинок, в совокупности составляющих андроцей, показывает, что они произошли из довольно широких листовидных микроспорофиллов с 3 жилками, на верхних сторонах которых между средней и 2 боковыми жилками располагались по 2 линейных микроспорангия, впоследствии срастающихся в синангии, частично погруженные в ткань пластинки. Такие тычинки встречаются у наиболее примитивных современных покрытосеменных, в частности у дегенерии и некоторых видов магнолии. Их эволюционные преобразования шли по пути редукции стерильных частей микроспорофиллов, обусловившей постепенный переход синангиев в краевое положение, их сближение и последующее срастание, приведшее к образованию четырех гнёздного пыльника. Нижняя часть микроспорофилла дала начало тычиночной нити, средняя, соединяющая половинки пыльника, превратились в связник с проводящим пучком внутри, а самая верхняя, выступающая над пыльником, - в придаток (надсвязник), впоследствии редуцировавшийся. Из современных растений придатки имеют пыльники некоторых сложноцветных, олеандра, барвинка. Пыльник может быть неподвижным (если по длине он почти равен связнику и тычиночная нить в месте перехода в связник имеет ту же ширину, что и в основании или слегка расширена) и качающимся ( если по длине он значительно превышает связник и место отхождения сильно утонченной тычиночной нити находится почти посередине пыльника). У большинства растений пыльники четырёх гнёздные, при этом гнёзда располагаются вдоль связника, по всей его длине. Тычиночные нити у большинства растений тонкие, цилиндрические, но они могут быть и широкими, плоскими, как у кубышки, кувшинки, стрелолиста. Число тычинок варьирует от одной, как у некоторых орхидных, До весьма многочисленных, как у магнолии, лютика. Тычинки имеют либо одинаковые либо разные по длине нити. Дифференциация тычиночных нитей на длинные и короткие чаще всего свойственна тычинкам разных кругов андроцея, реже-одному и тому же кругу. У крестоцветных 2 тычинки наружного круга короче 4 тычинок внутреннего. Такие тычинки называют четырёх сильными. У губоцветных тычинки двусильные, они расположены в одном круге, но 2 из них длинные, а 2 короткие. Тычинки могут срастаться между собой. Андроцей, состоящий из свободных тычинок, называют многобратственным, а если все тычинки срослись между собой нитями-однобратственным, как у кислицы, герани, люпина.

Если сросшиеся тычинки составляют 2 группы, то независимо от числа тычинок в каждой из них, андроцей называют двубратственными. У сложноцветных слипаются пыльники, образуя трубку, окружающую столбик пестика, однако нередко в период цветения пыльники расходятся (мальва). Тесная сближенность тычинок и лепестков в процессе развития цветка определяет возможность их срастания у некоторых растений. Тычинки участвуют и в формировании гипантия. Основная функция тычинок - образование пыльцевых зёрен, развивающихся в гнездах пыльника. Однако некоторые тычинки не имеют пыльников. Такие стерильные тычинки называют стаминодиями. Тычинки закладываются в цветоложе в виде бугорков после появления на нём зачатков будущего околоцветника. Из бугорка формируется пыльник, а тычиночная нить развивается путём интеркалярного роста перед распусканием цветка.

Тычинка является носителем мужской наследственности. Она состоит из тычиночной нити и пыльника. Совокупность всех тычинок в цветке составляет его андроцей. На цветоложе тычинки могут располагаться по спирали (у многих лютиковых) или кругами (лилейные). В однополых женских цветках тычинки теряют свою основную функцию и превращаются в стерильные стаминодии. Стаминодии бывают и в обоеполых цветках и часто представляют собой промежуточное образование между тычинками и лепестками (у магнолиевых), в некоторых случаях превращаются в нектарники.

Число тычинок в одном цветке варьирует у разных растений от одной-двух до множества. Длина тычинок в одном и том же цветке может быть различной. У яснотки белой всего 4 тычинки, причем 2 из них длиннее остальных. Такой андроцей называется двусильным. У редьки дикой имеется 6 тычинок, из них 4 длинные и 2 короткие. Такой андроцей называется четырехсильным. Если в цветке все тычинки свободные, то андроцей называется многобратственным (лютик). При срастании всех тычинок между собой андроцей называют однобратственным (подсолнечник), если все срослись, кроме одной, - двубратственным (горох)

7. Образование зародыша и эндосперма у покрытосеменных растений. Что такое перисперм

Покрытосеменные - самый крупный тип растений, к которому относится более половины всех известных видов. Наиболее характерно для них наличие пестика, образованного одним или несколькими плодолистиками (макро- и мегаспорофиллами), сросшимися своими краями, так что в нижней части пестика образуется замкнутое полое вместилище - завязь, в которой развиваются семяпочки (макро- и мегаспорангии). После оплодотворения завязь разрастается в плод, внутри которого находятся развившиеся из семяпочек семена (или одно семя).

Кроме того для покрытосеменных характерны: восьмиядерный, или производный из него, зародышевый мешок, двойное оплодотворение, триплойдный эндосперм, образующийся только после оплодотворения, рыльце у пестика, улавливающее пыльцу, и для подавляющего большинства - более или менее типичный цветок с околоцветником. Из анатомических признаков для покрытосеменных характерно наличие настоящих сосудов (трахей), тогда как у голосеменных развиты только трахеиты, а сосуды встречаются крайне редко. За небольшими исключениями, все покрытосеменные растения имеют корень, стебель и листья.

В большинстве покрытосеменных зигота делится на две клетки: апикальную, дающую начало собственно зародышу, и базальную - подвеску, или суспензору.

В эмбриогенезе различают 2 фазы развития: предзародышевая (от зиготы до образования эмбриодермы) и зародышевая (закладка основных структур: точки роста побеги, насиннядоли, гипокотиля и центрального зародышевого корешка). На основе первых этапов деления предзародаша были созданы классификации эмбриональных типов, используемые систематиками при решении вопросов эволюции и филогении растений. Предзародышевая стадия развития двудольных и однодольных растений одинакова. На поздних стадиях у однодольных апикальная зона проэмбрио дает начало только 1 семядольному бугорку, у двудольных таких бугорков может возникнуть 2, а у некоторых видов 3 и даже больше, что приводит к образованию многосемядольности. У покрытосеменных растений развитие зародыша, в отличие от голосеменных, сопровождается образованием клеточных перегородок. Только у пионов обнаружен новый тип эмбриогенеза, при котором в зиготе вначале возникают свободные ядра, а затем такая многоядерная структура становится клеточной и на ее периферии возникают проэмбриональные бугорки, из них собственно зародыш развивается только один. При наличии или отсутствии у зародыша покрытосеменных зеленого пигмента - хлорофилла - они делятся на 2 группы: хлороэмбриофиты (бобы, крестоцветные и др. ). И лейкоэмбриофиты (лютики, злаковые и др.). Источником питания зародыша служит эндосперм, который у одних видов (бобовые) поглощается целиком растущим зародышем, в других (злаки) - сохраняется. Иногда зародыш в семенах окружен не только эндоспермом, но и другой запасной тканью - периспермом, развивающаяся из клеток нуцеллуса (свекла, черный перец и др.).

Женский археспорий покрытосеменных растений

Начиная с ранних фаз развития семяпочки происходит ее внутренняя дифференциация. При этом в нуцеллусе семяпочки, ближе к вершине (апикальная часть нуцеллуса), довольно часто непосредственно под наружным субэпидермальным слоем его клеток, образуется клетка, выделяющийся среди других клеток нуцеллуса своими размерами, количеством органелл и мембранных систем. Эта клетка представляет собой клетку женского археспория. Довольно часто клеток археспория образуется две, или даже больше, т. е. у покрытосеменных растений наблюдается как одно - так и многоклеточный археспорий. Для кукурузы свойственно образование одноклеточного археоспория. Археспориальная клетка расширяется в апикальной части и сужается в базальной, существенно увеличивается в размерах ядро, которое всегда находится в апикальной части клетки. Таким образом, археспориальная клетка дифференцируется в мегаспороцит - материнскую клетку

Мегаспоры и развитие покрытосеменных растений

Из клеток археспория возникают материнские клетки макроспор или мегаспор. Материнская клетка мегаспор в покрытосеменных растений проходит два последовательных деления мейоза, в результате чего аналогично образованию тетради микроспор образуется тетрада мегаспор с гаплоидным набором хромосом в каждой клетке. В результате мейоза и образуется диада, в которой халазальная клетка больше чем апикальная. В результате мейоза II, также неравномерного образуется тетрада мегаспор. У злаков тетрады обычно линейные. У кукурузы отмечено случаи незаконченности делений в мейозе, в результате чего возникает триада мегаспор. Образование перегородок между мегаспорами происходит последовательно. Существуют пять типов размещения мегаспор в тетрадах: линейный, Т-образный, обратно Т-образный, квадратный и тетраэдрический исследуя развитие зародышевого мешка злаков, пришла к выводу, что характерной особенностью мегаспоры, как и любой другой клетки, является ее полярность, основанная на разнокачественности протоплазмы и ядра в верхних и нижних ее частях. Функционирующая мегаспора содержит в халазальной части ядро и специфическое распределение органелл и вакуолей. Также было отмечено разнокачественность клеток микропилярной и халазальнои частей зародышевого мешка. С момента начала подготовки материнских клеток мегаспор до редукционного деления начинается усиленный рост и развитие семяпочки, поглощающего при этом большое количество питательных веществ из тканей завязи. В большинстве цветочных растений, кукуруза не исключение, возникают четыре клетки мегаспор, из которых нижняя (халазальная) увеличивается в размерах и превращается в материнскую клетку зародышевого мешка, а три верхние - отмирают. Однако, остатки отмирающих клеток в виде сгустков, которые не имеют формы, и сильно красятся, еще долго наблюдаются на разных фазах развития зародышевого мешка, который развиваясь, увеличивается в размерах и постепенно ассимилирует. У всех хлебных злаков зародышевый мешок сначала разрастается в направлении микропиле, поэтому происходит сплющивание остатков трех не функционирующих мегаспор, и только потом продолжает рост в направлении халазы. Дегенерующая мегаспора, непосредственно контактирует с зародышевым мешком остается функционирующей дольше других - на стадии двух ядерного зародышевого мешка еще различаются ее структуры. На стадии двух ядерного зародышевого мешка усиливается дегенерация нуцелярных клеток, прилегающих к нему. В результате второго деления образуется четырех ядерный зародышевый мешок, дегенерующие мегаспоры на этой стадии представлены компактной массой. На данный момент семяпочка сильно разрастается, края внутреннего интегумента смыкаются, образуя микропиле. В результате быстрого роста четырех ядерный зародышевый мешок кукурузы достигает нуцелярного колпачка [Батыгина, 1987]. Клетка четырехъядерного зародышевого мешка характеризуется крупнейшим ростом, образованием центральной вакуоли и снижением биосинтетических процессов. В результате третьего деления образуется восьми ядерный зародышевый мешок - ценоцит, который имеет два полюса, в каждом из которых по четыре ядра.

Список литературы

1. Андреев Н. Г. , Андреев Л. Н. Основы агрономии и ботаники: учеб. пособ. для с/х вузов. - М. : Колос, 2004. - 487 с.

2. Андреева И. И. , Родман Л. С. Ботаника: учеб для с/вузов. - М. : Колос, 2005. - 528 с.

3. Атабекова А. И. , Устинова Е. И. Цитология растений. - М. : Колос, 2007. - 246 с.

4. Викторов Д. П. Краткий словарь ботанических терминов. - М. -Л. : Наука, 1964. - 177 с.

5. Жуковский П. М. Ботаника. - М. : Колос, 2002. - 623 с.

6. Лотова Л. И. Морфология и анатомия высших растений. - М. : КомКнига, 2007. - 510 с.

7. Суворов В. В. , Воронов И. Н. Ботаника с основами геоботаники. - Л. : Колос, 1979. - 560 с.

8. Тихомиров Ф. К. Ботаника. - М. : Высш. шк. , 2008. - 439 с.

Размещено на Allbest.ru

...

Подобные документы

  • Элементы строения клетки и их характеристика. Функции мембраны, ядра, цитоплазмы, клеточного центра, рибосомы, эндоплазматической сети, комплекса Гольджи, лизосом, митохондрий и пластид. Отличия в строении клетки представителей разных царств организмов.

    презентация [2,9 M], добавлен 26.11.2013

  • Понятие о мембране клетки, ее строение и функция. Строение хлоропластов и митохондрий. Типы листьев по форме листовой пластинки, края и основания. Ветвление и кущение побегов. Строение сложных и простых соцветий, цветков ячменя, ржи, пшеницы, кукурузы.

    контрольная работа [24,2 K], добавлен 27.11.2011

  • Клеточные структуры, строение, состав и свойства основных компонентов растительной клетки. Поглощение и выделение веществ и энергии клеткой. Хлоропласты, их строение, химический состав и функции. Строение молекулы хлорофилла, флавоноидные пигменты.

    контрольная работа [1,0 M], добавлен 05.09.2011

  • Ткани высших растений (покровные, проводящие, механические, основные, выделительные). Строение растения и функции его органов: корня, стебля, листа, побега и цветка. Разновидности корневых систем. Роль цветка как особой морфологической структуры.

    презентация [8,1 M], добавлен 28.04.2014

  • Классификация органелл клетки общего и специального значения. Основные задачи и функции плазмалеммы. Эндоплазматическая сеть, ее строение и структура. Цитоплазматический матрикс, структура микрофиламентов и микротрубочек. Пластинчатый комплекс Гольджи.

    презентация [3,4 M], добавлен 16.02.2014

  • Стебель – осевая часть растения, состоящая из узлов и междоузлий. Его функции, разнообразие по строению, форме, направлению роста. Виды ползучих, укороченных и лежачих побегов. Определение возраста растения и условий произрастания по годичным кольцам.

    презентация [2,4 M], добавлен 10.11.2014

  • Покровная, пучковая и основная ткани растений. Ткани и локальные структуры, выполняющее одинаковые структуры функции. Клеточное строение ассимиляционного участка листа. Внутреннее строение стебля. Отличие однодольных растений от двудольных растений.

    презентация [15,3 M], добавлен 27.03.2016

  • Изучение вегетативных органов растений. Их видоизменения (колючка, усик, клубни, луковицы), функции и строение. Цветки и соцветия - генеративные органы растения. Описание процесса опыления и оплодотворения растений. Распространение плодов и семян.

    реферат [21,1 K], добавлен 29.06.2010

  • Процессы превращения веществ и энергии внутри растительного организма как основные физиологические функции растения. Химический состав клетки. Строение, классификация и функции углеводов, липидов и аминокислот. Кинетика ферментативного катализа.

    курс лекций [188,8 K], добавлен 15.06.2010

  • Общая характеристика цветковых растений, их отличие от голосеменных. Типы завязей. Строение растений: цветоножка, цветоложе, чашелистики. Общая схема строения цветка. Жизненный цикл цветкового растения. Двойное оплодотворение. Опыление ветром, насекомыми.

    презентация [1,2 M], добавлен 09.04.2012

  • Строение и функции оболочки клетки. Химический состав клетки. Содержание химических элементов. Биология опухолевой клетки. Клонирование клеток животных. А была ли Долли? Клонирование - ключ к вечной молодости? Культивирование клеток растений.

    реферат [27,3 K], добавлен 16.01.2005

  • Химический состав и значение оболочки растительной клетки. Физические свойства цитоплазмы. Структура мембраны клетки, ее мембранные органоиды. Особенности нуклеинового и белкового обмена двумембранных органоидов. Одномембранные и немембранные органоиды.

    презентация [2,2 M], добавлен 08.11.2012

  • Строение животной клетки. Основные положения клеточной теории, понятие про прокариоты и эукариоты. Структура цитоплазмы и эндоплазматический ретикулум. Хромосомный набор человека. Способы деления клетки (амитоз, митоз и мейоз) и ее химический состав.

    презентация [3,1 M], добавлен 09.10.2013

  • Цветковые или покрытосеменные - наиболее высоко организованы среди растений. Изучение растений на разных уровнях их биологической организации: клетки, ткани, органа. Функции и строение семени, побега, стебля, почки. Описание процесса фотосинтеза.

    реферат [21,7 K], добавлен 29.06.2010

  • Последовательность образования антител. Дентдритные клетки и их классификация. Клетки Лангерганса, их происхождение и функции, методы выявления. Презентация антигена. Роль клеток в формировании клеточного и гуморального антивирусного иммунитета.

    реферат [896,5 K], добавлен 09.02.2012

  • Почему так важны пигменты. Хлорофиты, эвгленофиты, хромофиты. Жгутиковый аппарат хромофитов типичной гетероконтной структуры. Строение клетки, фотосинтетический аппарат. Жизненный цикл гаптофитов. Отличия строения клетки гаптофитов от хромофитов.

    презентация [7,9 M], добавлен 15.09.2014

  • Морфологические особенности двудольных растений. Двудольные как группа цветковых растений. Строение семян цветковых растений. Вегетативные и репродуктивные органы. Значение в хозяйственной деятельности человека. Эфиромасличные и декоративные растения.

    презентация [5,6 M], добавлен 19.01.2012

  • Строение, состав и физиологическая роль отдельных органелл клетки. Классификация белков по степени сложности. Состояние воды в живых тканях, ее функции. Полисахариды морских водорослей: состав, строение. Биологическая роль и классификация липидов.

    контрольная работа [1014,7 K], добавлен 04.08.2015

  • Методы изучения клетки, их зависимость от типа объектива микроскопа. Положения клеточной теории. Клетки животного и растительного происхождения. Фагоцитоз - поглощение клеткой из окружающей среды плотных частиц. Подходы к лечению наследственных болезней.

    презентация [881,2 K], добавлен 12.09.2014

  • Почка как зачаточный побег. Первичное строение стебля. Строение апекса побега. Функции стебля: опорная и проводящая. Древесина голосеменных и покрытосеменных. Закладка и работа камбия. Схема строения стебля кирказана. Гистологические элементы древесины.

    презентация [8,6 M], добавлен 12.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.