Патофизиология системы кровообращения и дыхания

Недостаточность кровообращения при нарушении притока крови к сердцу. Недостаточность сердца, вызванная перегрузкой. Механизмы компенсации. Артериальная гипотензия. Нарушения нереспиратоных функций легких. Физико-химический свойства кровеносных сосудов.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 27.12.2015
Размер файла 44,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство аграрной политики и продовольствия Украины

Харьковская государственная зооветеринарная академия

Кафедра нормальной и патологической физиологии

Реферат

по дисциплине «Патофизиология»

на тему:

«Патофизиология системы кровообращения и дыхания»

Выполнила: студентка 3 курса

1 группы ФВМ

Мартемьянова А.Е.

Проверил: доцент кафедры

Костюк И.А.

Харьков 2013

НЕДОСТАТОЧНОСТЬ КРОВООБРАЩЕНИЯ ПРИ НАРУШЕНИИ ПРИТОКА КРОВИ К СЕРДЦУ

Этот вид недостаточности развивается в тех случаях, когда к сердцу притекает мало крови по венам или когда оно не в состоянии принять всю притекающую кровь. Первое наблюдается при гиповолемии (кровопотеря) или резком расширении сосудов (коллапс), второе -- при накоплении жидкости в полости перикарда, что ведет к затруднению расширения полостей во время диастолы.

Накопление жидкости в полости перикарда может происходить быстро и медленно. Быстрое накопление возникает вследствие кровоизлияния при ранении или разрыве сердца или при быстро развивающемся перикардите. Из-за плохой растяжимости перикарда в полости повышается давление, препятствующее диастолическому расширению сердца, возникает острая тампонада сердца. В эксперименте этот процесс моделируется введением жидкости в полость перикарда (А. Б. Фохт), что позволяет подробно изучить патологические и компенсаторные механизмы, которые при этом возникают. Прежде всего уменьшается кровенаполнение полостей сердца, снижается ударный объем, и артериальное давление. Между этими показателями и внутриперикардиальным давлением имеется четкая обратная зависимость: чем больше внутриперикардиальное давление, тем ниже артериальное. Венозное давление при этом повышается.

Включение компенсаторных механизмов при перикардите происходит рефлекторно с участием сигналов, поступающих из трех рецепторных полей:

1) отверстий полых и легочных вен -- повышенным давлением на путях притока;

2) аорты и сонных синусов (синокаротидные зоны) -- снижением давления на путях оттока и последующим уменьшением депрессорного эффекта;

3) перикарда, раздражаемого повышенным интраперикардиальным давлением. При перерезке блуждающих и депрессорных нервов, а также при выключении рецепторных полей с помощью новокаина приспособительные механизмы не включаются и нарушения кровообращения протекают намного тяжелее. При тампонаде сердца мобилизация мощных механизмов компенсации, которые ведут к усилению сокращений сердца (гомео- и гетерометрические механизмы, инотропный эффект катехоламинов), малоэффективна и невозможна. Поэтому работает только сравнительно маломощный и энергетически расточительный механизм компенсации и поддержания артериального давления -- учащение сокращений сердца, к которому затем подключается сужение периферических сосудов. Этим и объясняется тяжелое клиническое течение острой тампонады сердца.

При более медленном накоплении жидкости в перикарде работа компенсаторных механизмов оказывается более эффективной; повышение внутриперикардиального давления в течение некоторого времени может компенсироваться. Медленное накопление жидкости, которое наблюдается при хроническом экссудативном перикардите и гидроперикарде, сопровождается постепенным растяжением перикарда и увеличением объема околосердечной сумки. Вследствие этого внутриперикардиальное давление изменяется сравнительно мало, а нарушение кровообращения не возникает долгое время.

кровообращение сердце артериальный гипотензия

НЕДОСТАТОЧНОСТЬ СЕРДЦА, ВЫЗВАННАЯ ПЕРЕГРУЗКОЙ. МЕХАНИЗМЫ КОМПЕНСАЦИИ

Повышение нагрузки на сердце может быть вследствие увеличения количества притекающей крови или вследствие повышения сопротивления оттоку крови. Первый вид нагрузки сердца (объемом) наблюдается во время физической работы, при пороках сердца, сопровождающихся недостаточностью клапанного аппарата. При таких пороках во время диастолы в полость сердца поступает не только та кровь, которая притекает по нормальным путям, но и та, которая вследствие неполного замыкания клапанов выброшена из полости во время систолы. То же наблюдается и при врожденных дефектах перегородок сердца. Второй вид повышенной нагрузки на сердце (давлением) развивается при сужении выходного отверстия из полости сердца, например, при сужении отверстия легочного ствола или аорты, предсердно-желудочкового отверстия. Увеличение сопротивления оттоку возникает также при гипертонии, генерализованном атеросклерозе, пневмосклерозе.

В эксперименте различные виды нарушения деятельности сердца изучают путем создания искусственного порока клапанов или же сужения (коарктации) крупных отводящих сосудов -- аорты и легочной артерии.

Сердце обладает способностью быстро приспосабливаться к повышенной нагрузке и, выполняя повышенную работу, компенсировать возможные расстройства кровообращения. При этом в зависимости от вида нагрузки включается тот или иной механизм компенсации.

При перегрузке объемом крови срабатывает гетерометрический механизм компенсации (Франка -- Старлинга). При этом во время диастолы наблюдается повышенное кровенаполнение полостей (или одной полости) сердца, что ведет к увеличенному растяжению мышечных волокон. Следствием такого растяжения является более сильное сокращение сердца во время систолы. Этот механизм обусловлен свойствами клеток миокарда. В известных пределах нагрузки имеется линейная зависимость между количеством притекающей крови и силой сокращения сердца. Однако если степень растяжения мышечного волокна превышает допустимые границы, то сила сокращения снижается. Уменьшение активно развиваемого напряжения происходит при растяжении сегмента миокарда более чем на 25% его исходной длины, что соответствует увеличению объема полости левого желудочка примерно на 100%. При допустимых же перегрузках линейные размеры сердца увеличиваются не более чем на 15--20%. Происходящее при этом расширение полостей сердца сопровождается увеличением ударного объема и называется тоногенной дилатацией.

При повышении сопротивления оттоку крови включается гомеометрический механизм компенсации. В этом случае длина мышечного волокна сердца увеличивается не так резко, но повышаются давление и напряжение, возникшие при сокращении мышцы в конце диастолы. Повышение силы сердечных сокращений происходит не сразу, а увеличивается постепенно с каждым последующим сокращением сердца, пока не достигнет уровня, необходимого для сохранения постоянства минутного объема сердца. В известных пределах нагрузки мощность, развиваемая при сокращении сердца, линейно связана с величиной сопротивления оттоку. При выходе за эти пределы сила сокращения сердца снижается.

Энергетически оба механизма компенсации повышенной нагрузки неравноценны. Так, при одинаковом увеличении внешней работы сердца, рассчитанном по произведению минутного объема крови на среднее систолическое давление в аорте, потребление кислорода сердцем изменяется по-разному, в зависимости от того, чем обусловлен рост работы -- увеличением притока крови к сердцу или увеличением аортального сопротивления. Если работа удвоилась вследствие увеличения в 2 раза конечного диастолического объема, то потребление кислорода возрастает всего на одну четверть, если же работа удвоилась в результате увеличения в 2 раза сопротивления оттоку, то потребление кислорода миокардом увеличивается на 200%. Это объясняется тем, что при гомеометрическом механизме компенсации для преодоления повышенного сопротивления оттоку необходимо значительное повышение систолического давления, которое может быть достигнуто путем повышения величины и скорости развития напряжения мышечного волокна. А именно фаза изометрического напряжения является наиболее энергоемкой и служит фактором, определяющим расход АТФ и потребление кислорода миокардом. Следовательно, гетерометрический механизм компенсации экономнее гомеометрического, чем, возможно, и объясняется более благоприятное течение тех патологических процессов, которые сопровождаются включением механизма Франка -- Старлинга, например недостаточности клапанов по сравнению со стенозом отверстия.

Компенсаторным механизмом, обеспечивающим поддержание постоянного уровня минутного объема крови, также может служить учащение сокращений сердца -- тахикардия. Она может возникнуть как за счет прямого действия повышенного давления крови в полости правого предсердия на водитель ритма -- синусно-предсердный узел, так и за счет нервных и гуморальных экстракардиальных влияний. С энергетической точки зрения это наименее выгодный механизм компенсации, так как он, во-первых, сопровождается расходованием большого количества кислорода, а во-вторых, значительным укорочением диастолы -- периода восстановления и отдыха миокарда. В-третьих, ухудшается гемодинамическая характеристика сердца: во время диастолы желудочки не успевают заполняться кровью, систола становится менее полноценной, так как при этом невозможна мобилизация гетерометрического механизма компенсации. Из рис. 19.2 видно, что по мере укорочения сердечного цикла (верхняя кривая) длительность систолы укорачивается в меньшей степени, чем длительность диастолы. Момент начала сокращения, предсердий (пунктирная линия) все больше приближается к концу систолы желудочков, пока при 170 ударах в 1 мин не совпадает с ним ("закупорка предсердий") - На ЭКГ при этом зубец Р наслаивается на зубец Т.

Описанные механизмы компенсации при перегрузке сердца можно продемонстрировать и на изолированном, лишенном регуляторных связей с организмом сердце. Они обусловлены свойствами сердечной мышцы, ее проводящей системы и в определенной степени функцией внутрисердечной нервной системы. Последняя представлена нейронами, расположенными в сердце до уровня предсердно-желудочковой перегородки и образующими рефлекторные дуги в пределах сердца. Считают, что функция внутрисердечной нервной системы заключается в приспособлении деятельности сердца к нагрузке и координации работы предсердий и желудочков сердца, левой и правой его половин.

На внутрисердечные механизмы регуляции накладываются внесердечные регуляторные влияния -- нервные и гуморальные. Среди них особенно важная роль принадлежит симпатической части вегетативной нервной системы, выделяющей норадреналин нервными окончаниями и адреналин мозговым веществом надпочечников. Эти симпатические медиаторы (катехоламины) взаимодействуют с рецепторами на поверхности миокардиоцита. Рецепторы симпатической нервной системы подразделяются на два класса: б- и в-рецепторы, каждый из которых делится на подклассы: б1, а2; в1, в2. В сердце млекопитающих содержатся преимущественно в1-рецепторы, а в гладких мышцах сосудов -- б1- и в2-рецепторы. Внутриклеточные эффекты стимуляции рецепторов обусловлены повышением цАМФ, увеличением активности цАМФ-зависимой протеинкиназы, изменением потоков Са2+ и связывания Са2+ клеточными структурами. При симпатическом возбуждении значительно увеличиваются сила и скорость сердечных сокращений, уменьшается объем остаточной крови в полостях сердца за счет более полного изгнания крови во время систолы (при обычной нагрузке около половины крови в желудочке остается в конце систолы), повышается частота сокращений сердца. При повышении тонуса симпатических нервов и выделении большого количества катехоламинов более эффективно происходит компенсация перегрузки и за счет внутрисердечных регуляторных механизмов.

Нарушение симпатической иннервации сердца, в частности при введении некоторых фармакологических препаратов или при экспериментальной хирургической десимпатизации, затрудняет мобилизацию компенсаторных механизмов, что снижает рабочие возможности сердца.

Если повышенная нагрузка на сердце чрезмерна, компенсаторные механизмы не справляются с перегрузкой и развивается острая недостаточность сердца. При этом в сердечной мышце возникают изменения в виде накопления внутри клеток ионов натрия и кальция, нарушения синтеза макроэргических соединений, закисления внутриклеточной среды с последующим нарушением процессов сокращения и расслабления сердечного мышечного волокна. Это ведет к снижению силы и скорости сокращения сердечной мышцы, увеличению остаточного систолического объема и диастолического давления, расширению полостей сердца. Острая недостаточность сердца сопровождается значительными изменениями в кровообращении -- повышением венозного давления, снижением минутного объема крови, гипоксией тканей. В сердечной мышце наряду с обменными могут возникать и структурные изменения, так что даже при последующем уменьшении нагрузки деятельность сердца может не нормализоваться.

Острая недостаточность сердца развивается при фибрилляции желудочков, пароксизмальной тахикардии, инфаркте миокарда, миокардите, тромбозе клапанного отверстия, эмболии легочной артерии, тампонаде сердца. При этом наблюдается недостаточное наполнение кровью артериальной системы, ведущее к ишемии головного мозга с тяжелыми изменениями его функции, напоминающими картину шока и нередко сопровождающимися потерей сознания и судорогами.

При длительной нагрузке сердца, как это бывает, например, при пороках клапанов, гипертонической болезни, включаются долгосрочные механизмы компенсации -- в миокарде развиваются специфические обменные и структурные изменения, приводящие к увеличению массы и работоспособности сердца.

Артериальная гипотензия.

В отличие от гипертензии артериальная гипотензия представляет собой стойкое понижение артериального давления, обусловленное преимущественно понижением тонуса резистивных сосудов. Наблюдается она чаще у лиц астенической конституции, характеризуется понижением физического развития и питания, общей адинамией, быстрой утомляемостью, тахикардией, одышкой, головокружением, головной болью, обмороками.

В настоящее время выделяют артериальную гипотензию физиологическую (не сопровождается болезненными симптомами) и патологическую (с характерным симптомокомплексом). Последняя бывает острой и хронической. Хроническая артериальная гипотензия подразделяется на симптоматическую (вторичную) и нейроциркуляторную дистонию гипотензивного типа (первичную гипотензию).

Патогенетически, учитывая, что уровень артериального давления определяется величиной сердечного выброса, количеством циркулирующей крови и тонусом резистивных сосудов, возможны три гемодинамические формы артериальной гипотензии: связанная с недостаточностью сократительной функции сердца; вызванная уменьшением количества циркулирующей крови и возникающая вследствие понижения тонуса резистивных сосудов.

Симптоматическая хроническая артериальная гипотензия (вторичная) является следствием ряда общих соматических острых и хронических заболеваний: сердца (пороки, миокардит, инфаркт миокарда); головного мозга (комоция), легких (крупозная пневмония), печени (гепатит, механическая желтуха), крови (анемия), эндокринных желез, а также экзогенных и эндогенных интоксикаций.

Что касается происхождения нейроциркуляторной (первичной) артериальной гипотензии, то по аналогии с гипертонической болезнью считают, что основным этиологическим и патогенетическим фактором первичной артериальной гипотензии также является перенапряжение основных процессов коры большого мозга (возбуждения и торможения). Однако в отличие от первичной гипертензии наблюдается превалирование торможения и распространение его на подкорковые вегетативные образования, в частности на сосудодвигательный центр.

Ослабление вследствие этого эффективных сосудосуживающих влияний на фоне свойственного астеническому типу конституции преобладания холинэргических влияний над адренэргическими является непосредственной причиной снижения тонуса резистивных сосудов, периферического сопротивления и артериального давления.

НАРУШЕНИЯ НЕРЕСПИРАТОРНЫХ ФУНКЦИЙ ЛЕГКИХ

Легкие выполняют не только функцию газообмена между кровью и воздухом, но и многообразные другие, так называемые недыхательные функции, которые могут нарушаться при развитии в легких различных патологических процессов (воспаления, отека, эмфиземы, склероза и др.).

Легкие выполняют прежде всего защитную функцию. Обладая огромной суммарной площадью (50 -- 100 м2), они представляют самую большую поверхность организма, соприкасающуюся со все более агрессивной окружающей средой. Легкие обладают способностью задерживать вредные механические и токсические продукты, поступающие с вдыхаемым воздухом (задерживается до 90% частиц диаметром больше 2 мкм). Осевшие в легких частицы со стенок бронхов удаляются с восходящим током слизи (мукоцилиарный транспорт). Слизь оттекает вверх благодаря ритмичным движениям огромного числа тонких ресничек, работа которых может быть парализована некоторыми токсическими продуктами. Частицы же, оседающие в альвеолах, преимущественно поглощаются макрофагами, которые в дальнейшем покидают легкие с током крови или лимфы.

Очистительная (фильтрационная) функция -- легкие способны очищать кровь от различных механических примесей -- капель жира, мелких тромбов, бактерий и т. п. Все это задерживается в легких, подвергается деструкции и метаболизму.

Экскреторная функция легких проявляется в выведении ряда летучих метаболитов (например, ацетона, аммиака и др.) или экзогенных веществ (алкоголь, бензол и др.), что имеет значение при интоксикациях.

С другой стороны, очень интенсивно может осуществляться всасывательная функция легких. Многие жиро- и водорастворимые вещества, главным образом летучие, аэрозоли, способны с большой скоростью всасываться легкими. Ингаляционный путь введения применяется для ряда лекарственных препаратов.

Легкие выполняют важные метаболические функции, участвуя в обмене белков, жиров и углеводов. Они исключительно богаты липолитическими и протеолитическими ферментами и по интенсивности обмена липидов могут сравниться с печенью. Легкие регулируют поступление жира в артериальную кровь, поскольку в них задерживается и метаболизируется часть хиломикронов, поступающих из кишечника по лимфатическим сосудам. Они могут синтезировать жирные кислоты и фосфолипиды, в частности дипальмитоилфосфатидилхолин, входящий в состав сурфактантов. Существенную роль играет также синтез белков, так как структурная основа легких образована коллагеном и эластином. Нарушение синтеза, усиленный распад или гиперпродукция этих белков может лежать в основе развития эмфиземы и пневмосклероза. Большое значение имеет также обмен углеводов, особенно выработка мукополисахаридов, входящих в состав бронхиальной слизи.

В легких происходит обмен многих веществ, влияющих на сосуды. При этом надо иметь в виду, что только через эти органы проходит вся кровь и именно в них сосредоточена значительная часть всех сосудистых эндотелиальных клеток организма, и поэтому они лучше всего подходят для превращений циркулирующих в крови веществ. Многие вазоактивные вещества полностью или частично теряют активность при прохождении через сосуды легких. На 80% в них может инактивироваться брадикинин. Легкие являются главным органом, освобождающим кровь от серотонина путем его захвата и депонирования. В легких серотонин может частично поступать в кровяные пластинки, при анафилаксии он освобождается. Здесь находятся также ферменты, инактивирующие простагландины Е1, Е2, и F2a и частично (до 30%) захватываются норадреналин и гистамин. В легочных сосудах обладающий прессорным действием полипептид ангиотензин I под влиянием конвертирующего фермента превращается в ангиотензин II, примерно в 50 раз более активный, чем его предшественник. Легкие играют важную роль в поддержании фибринолитической и антикоагулянтной активности крови. В интерстиции легких присутствует большое количество тучных клеток, содержащих гепарин. Легкие принимают участие в детоксикации ряда лекарственных препаратов (аминазин, сульфаниламиды и др.).

Известна также роль легких в терморегуляции. При низкой температуре вдыхаемого воздуха в легких активируются процессы биологического окисления (в частности, в-окисления липидов) и увеличивается теплопродукция. Одновременно происходит снижение капиллярного кровотока в малом круге и уменьшение теплоотдачи через легкие.

Наконец, надо отметить, что легкие являются резервуаром крови благодаря выраженной способности сосудов малого круга изменять свой объем даже при незначительных изменениях давления в них. Легкие играют определенную роль и в поддержании водного баланса, поскольку с выдыхаемым воздухом удаляется из организма и вода.

Нарушение всех этих важных для организма нереспираторных функций легких может быть причиной развития в организме самых разнообразных патологических процессов.

Исследование физико-химических свойств кровеносных сосудов

Исследование физико-механических свойств кровеносных сосудов (их эластичности, растяжимости, предела прочности и пр.) приобретает в настоящее время не только экспериментально-теоретическое, но и клинико прикладное значение. Так, прочность кровеносных сосудов необходимо знать при расчете предельных перегрузок, возникающих при скоростных полетах. Даже в здоровом организме, например космонавта, когда он при взлете и посадке испытывает перегрузку и в силу этого происходит смещение внутренних органов в сторону, противоположную направлению движения ракеты, артериальная система переполняется кровью и возникает опасность разрыва сосудов. Особенно резко меняются физико-механические свойства сосудов при патологических процессах -- атеросклерозе, гипертонии и др. Поэтому сведения о состоянии сосудистой стенки необходимы и в терапии (например, при испытании новых лекарственных препаратов), и в хирургии, когда решается вопрос об операциях на крупных сосудах, клапанах сердца, выбираются соответствующие протезы и т. д.

Непосредственное определение эластичности и растяжимости живых тканей практически невозможно. Поэтому прибегают к лабораторном-экспериментальном и косвенным методам исследования. В опытах на животных или с отрезками сосудов, извлеченных из тела вскоре после наступления смерти, нашли, что стенки аорты здоровых кроликов и пораженных экспериментальным атеросклерозом по своим свойствам различны. Растягивая стенки аорты малыми грузами, можно видеть, что растяжимость по мере развития атеросклероза постепенно, но непрерывно снижается. Таким образом, склеротические изменения стенок аорты делают ее ригидной, малорастяжимой.

Первоначальный смысл понятия "атеросклероз", предложенного Маршаном в 1904 г., сводился лишь к двум типам изменений: скоплению жировых веществ в виде кашицеобразных масс во внутренней оболочке артерий (от греч. athere -- каша) и собственно склерозу -- соединительнотканному уплотнению стенки артерий (от греч. scleras -- твердый). Современное толкование атеросклероза гораздо шире и включает в себя... "различные сочетания изменений интимы артерий, проявляющиеся в виде очагового отложения липидов, сложных соединений углеводов, элементов крови и циркулирующих в ней продуктов, образования соединительной ткани и отложения кальция" (определение ВОЗ).

Склеротически измененные сосуды (наиболее частая локализация -- аорта, артерии сердца, мозга, нижних конечностей) отличаются повышенной плотностью и хрупкостью. Вследствие снижения эластических свойств они не в состоянии адекватно изменять свой просвет в зависимости от потребности органа или ткани в кровоснабжении.

Первоначально функциональная неполноценность склеротически измененных сосудов, а следовательно, органов и тканей обнаруживается только при предъявлении к ним повышенных требований, т. е. при увеличении нагрузки. Дальнейшее прогрессирование атеросклеротического процесса может привести к снижению работоспособности и в состоянии покоя.

Сильная степень атеросклеротического процесса, как правило, сопровождается сужением и даже полным закрытием просвета артерий. При медленном склерозировании артерий в органах с нарушенным кровоснабжением происходят атрофические изменения с постепенным замещением функционально активной паренхимы соединительной тканью.

Быстрое сужение или полное перекрытие просвета артерии (в случае тромбоза, тромбоэмболии или кровоизлияния в бляшку) ведет к омертвению участка органа с нарушенным кровообращением, т. е. к инфаркту. Инфаркт миокарда -- наиболее часто встречающееся и наиболее грозное осложнение атеросклероза венечных артерий.

Экспериментальные модели. В 1912 г. Н. Н. Аничков и С. С. Халатов предложили способ моделирования атеросклероза у кроликов путем введения внутрь холестерина (через зонд или посредством примешивания к обычному корму). Выраженные атеросклеротические изменения развивались через несколько месяцев при ежедневном применении 0,5 -- 0,1 г холестерина на 1 кг массы тела. Как правило, им сопутствовало повышение уровня холестерина в сыворотке крови (в 3 -- 5 раз по сравнению с исходным уровнем), что явилось основанием для предположения о ведущей патогенетической роли в развитии атеросклероза гиперхолестеринемии. Эта модель легко воспроизводима не только у кроликов, но и у кур, голубей, обезьян, свиней.

У собак и крыс, резистентных к действию холестерина, атеросклероз воспроизводится путем комбинированного влияния холестерина и метилтиоурацила, который подавляет функцию щитовидной железы. Такое сочетание двух факторов (экзогенного и эндогенного) ведет к длительной и резкой гиперхолестеринемии (свыше 26 ммоль/л -- 100 мг%). Добавление к пище сливочного масла и солей желчных кислот также способствует развитию атеросклероза.

У кур (петухов) экспериментальный атеросклероз аорты развивается после длительного (4 -- 5 мес) воздействия диэтилстильбэстролом. В этом случае атеросклеротические изменения появляются на фоне эндогенной гиперхолестеринемии, возникающей вследствие нарушения гормональной регуляции обмена веществ.

Этиология. Приведенные экспериментальные примеры, а также наблюдение над спонтанным атеросклерозом человека, его эпидемиологией свидетельствуют о том, что данный патологический процесс развивается вследствие комбинированного действия ряда факторов (средовых, генетических, пищевых). В каждом отдельном случае на первый план выступает какой-нибудь один из них. Различают факторы, вызывающие атеросклероз, и факторы, способствующие его развитию.

Роль наследственного фактора в возникновении атеросклероза подтверждают статистические данные о высокой частоте ишемической болезни сердца в отдельных семьях, а также у однояйцевых близнецов. Речь идет о наследственных формах гиперлипопротеидемии, генетических аномалиях клеточных рецепторов к липопротеидам.

Пол. В возрасте 40 -- 80 лет атеросклерозом и инфарктом миокарда атеросклеротической природы мужчины болеют чаще, чем женщины (в среднем в 3 -- 4 раза). После 70 лет заболеваемость атеросклерозом среди мужчин и женщин примерно одинакова. Это свидетельствует о том, что заболеваемость атеросклерозом среди женщин приходится на более поздний период. Указанные различия связаны, с одной стороны, с более низким исходным уровнем холестерина и содержанием его в основном во фракции неатерогенных а-липопротеидов сыворотки крови женщин, а с другой -- с антисклеротическим действием женских половых гормонов. Снижение функции половых желез в связи с возрастом или по какой-либо другой причине (удаление яичников, их облучение) обусловливает увеличение в сыворотке крови уровня холестерина и резкое прогрессирование атеросклероза.

Предполагают, что защитное действие эстрогенов сводится не только к регуляции содержания холестерина в сыворотке крови, но и других видов обмена в артериальной стенке, в частности окислительного. Такое антисклеротическое действие эстрогенов проявляется преимущественно по отношению к венечным сосудам.

Возраст. Резкое увеличение частоты и тяжести атеросклеротического поражения сосудов в связи с возрастом, особенно заметное после 30 лет (см. рис. 19.12), породило у некоторых исследователей представление о том, что атеросклероз -- функция возраста и является исключительно биологической проблемой [Давыдовский И. В., 1966]. Этим объясняется пессимистическое отношение к практическому решению проблемы в перспективе. Большинство исследователей, однако, придерживаются мнения, что возрастные и атеросклеротические изменения сосудов -- это различные формы артериосклероза, особенно на поздних стадиях их развития, но возрастные изменения сосудов способствуют его развитию. Способствующее атеросклерозу действие возраста проявляется в виде местных структурных, физико-химических и биохимических изменений артериальной стенки и общих нарушений обмена веществ (гиперлипемия, гиперлипопротеидемия, гиперхолестеринемия) и его регуляции.

Избыточное питание. Экспериментальные исследования Н. Н. Аничкова и С. С. Халатова позволили предположить важность этиологической роли в возникновении спонтанного атеросклероза избыточного питания, в частности, избыточного поступления пищевых жиров. Опыт стран с высоким жизненным уровнем убедительно доказывает, что чем больше удовлетворяется потребность в энергии за счет животных жиров и содержащих холестерин продуктов, тем выше содержание холестерина в крови и процент заболеваемости атеросклерозом. Напротив, в странах, где на долю жиров животного происхождения приходится незначительная часть энергетической ценности суточного рациона (около 10%), заболеваемость атеросклерозом низкая (Япония, Китай).

В соответствии с разработанной в США программой, основанной на этих фактах, уменьшение потребления жиров с 40% от общего калоража до 30% к 2000 г. должно снизить смертность от инфаркта миокарда на 20 -- 25%.

Стресс. Заболеваемость атеросклерозом выше среди людей "стрессовых профессий", т. е. профессий, требующих длительного и сильного нервного напряжения (врачи, учителя, преподаватели, работники управленческого аппарата, летчики и др.).

В целом заболеваемость атеросклерозом выше среди городского населения по сравнению с сельским. Это может быть объяснено тем, что в условиях большого города человек чаще подвергается нейрогенным стрессовым влияниям. Эксперименты подтверждают возможную роль нервно-психического стресса в возникновении атеросклероза. Сочетание диеты, содержащей большое количество жиров, с нервным напряжением должно рассматриваться как неблагоприятное.

Гиподинамия. Малоподвижный образ жизни, резкое уменьшение физической нагрузки (гиподинамия), свойственные человеку второй половины XX в., -- еще один важный фактор атерогенеза. В пользу этого положения свидетельствуют меньшая заболеваемость атеросклерозом среди работников физического труда и большая -- у лиц, занимающихся умственным трудом; более быстрая нормализация уровня холестерина в сыворотке крови после избыточного поступления его извне под действием физической нагрузки.

В эксперименте обнаружены выраженные атеросклеротические изменения в артериях кроликов после помещения их в специальные клетки, значительно уменьшающие их двигательную активность. Особенную атерогенную опасность представляет сочетание малоподвижного образа жизни и избыточного питания.

Интоксикация. Влияние алкоголя, никотина, интоксикация бактериального происхождения и интоксикация, вызванная различными химическими веществами (фториды, СO, H2S, свинец, бензол, соединения ртути), также являются факторами, способствующими развитию атеросклероза. В большинстве рассмотренных интоксикаций отмечались не только общие нарушения жирового обмена, свойственные атеросклерозу, но и типичные дистрофические и инфильтративно-пролиферативные изменения в артериальной стенке.

Артериальная гипертензия самостоятельного значения фактора риска, по-видимому, не имеет. Об этом свидетельствует опыт стран (Япония, Китай), население которых часто болеет гипертонической болезнью и редко -- атеросклерозом. Однако повышенное артериальное давление приобретает значение способствующего развитию атеросклероза фактора в комбинации с другими, особенно если оно превышает 160/90 мм рт. ст. Так, при одинаковом уровне холестерина заболеваемость инфарктом миокарда при гипертензии в пять раз выше, чем при нормальном артериальном давлении. В эксперименте на кроликах, в пищу которых добавляли холестерин, атеросклеротические изменения развиваются быстрее и достигают большей степени на фоне гипертензии.

Гормональные нарушения, болезни обмена веществ. В некоторых случаях атеросклероз возникает на фоне предшествующих гормональных нарушений (сахарный диабет, микседема, понижение функции половых желез) или болезней обмена веществ (подагра, ожирение, ксантоматоз, наследственные формы гиперлипопротеидемии и гиперхолестеринемии). Об этиологической роли гормональных нарушений в развитии атеросклероза свидетельствуют и приведенные выше опыты по экспериментальному воспроизведению этой патологии у животных путем влияния на эндокринные железы.

Патогенез. Существующие теории патогенеза атеросклероза можно свести к двум, принципиально отличающимся по своим ответам на вопрос: что первично, а что вторично при атеросклерозе, другими словами, что является причиной, а что следствием -- липоидоз внутренней оболочки артерий или дегенеративно-пролиферативные изменения последней. Этот вопрос впервые был поставлен Р. Вирховым (1856). Он же первый и ответил на него, указав, что "при всех условиях процесс, вероятно, начинается с определенного разрыхления соединительнотканного основного вещества, из которого большей частью состоит внутренний слой артерий".

С тех пор и берет начало представление немецкой школы патологов и ее последователей в других странах, согласно которому при атеросклерозе первоначально развиваются дистрофические изменения внутренней оболочки стенки артерий, а отложение липидов и солей кальция -- явление вторичного порядка. Преимуществом данной концепции является то, что она в состоянии объяснить развитие спонтанного и экспериментального атеросклероза как в тех случаях, когда имеются выраженные нарушения холестеринового обмена, так и при их отсутствии. Первостепенную роль авторы указанной концепции отводят артериальной стенке, т. е. субстрату, который непосредственно вовлекается в патологический процесс. "Атеросклероз является не только и даже не столько отражением общих обменных сдвигов (лабораторно они могут быть даже неуловимы), сколько производным собственных структурных, физических и химических превращений субстрата артериальной стенки... Первичный фактор, ведущий к атеросклерозу, лежит именно в самой артериальной стенке, в ее структуре и в ее энзимной системе" [Давыдовский И. В., 1966].

В противоположность этим взглядам со времени опытов Н. Н. Аничкова и С. С. Халатова, главным образом благодаря исследованиям отечественных и американских авторов, успешно развивается концепция о роли в развитии атеросклероза общих метаболических нарушений в организме, сопровождающихся гиперхолестеринемией, гипер- и дислипопротеидемией. С этих позиций, атеросклероз -- следствие первичной диффузной инфильтрации липидов, в частности холестерина, в неизмененную внутреннюю оболочку артерий. Дальнейшие изменения в сосудистой стенке (явления мукоидного отека, дистрофические изменения волокнистых структур и клеточных элементов подэндотелиального слоя, продуктивные изменения) развиваются в связи с наличием в ней липидов, т. е. являются вторичными.

Первоначально ведущая роль в повышении уровня липидов, особенно холестерина, в крови приписывалась алиментарному фактору (избыточному питанию), что дало название и соответствующей теории возникновения атеросклероза -- алиментарной. Однако очень скоро ее пришлось дополнить, так как стало очевидным, что не все случаи атеросклероза можно поставить в причинную связь с алиментарной гиперхолестеринемией. Согласно комбинационной теории Н. Н. Аничкова, в развитии атеросклероза, кроме алиментарного фактора, имеют значение эндогенные нарушения липидного обмена и его регуляции, механическое влияние на стенку сосуда, изменения артериального давления, главным образом его повышение, а также дистрофические изменения в самой артериальной стенке. В этой комбинации причин и механизмов атерогенеза одни (алиментарная и/или эндогенная гиперхолестеринемия) играют роль инициального фактора. Другие либо обеспечивают увеличенное поступление холестерина в стенку сосуда, либо уменьшают его экскрецию из нее через лимфатические сосуды.

В крови холестерин содержится в составе хиломикронов (мелкодисперсных частиц, не растворенных в плазме) и липопротеидов -- надмолекулярных гетерогенных комплексов триглицеридов, эфиров холестерина (ядро), фосфолипидов, холестерина и специфических белков (апопротеиды: АПО А, В, С, Е), образующих поверхностный слой. Существуют определенные отличия липопротеидов по размерам, соотношению ядра и оболочки, качественному составу и атерогенности.

Выделены 4 основные фракции липопротеидов плазмы крови в зависимости от плотности и электрофоретической подвижности.

Обращает на себя внимание высокое содержание белка и низкое -- липидов во фракции липопротеидов высокой плотности (ЛПВП -- б-липопротеиды) и, наоборот, низкое содержание белка и высокое -- липидов во фракциях хиломикронов, липопротеидов очень низкой плотности (ЛПОНП - пре- в -липопротеиды) и липопротеидов низкой плотности (ЛПНП -- в-липопротеиды).

Таким образом, липопротеиды плазмы крови осуществляют доставку синтезированных и полученных с пищей холестерина и триглицеридов к местам их использования и депонирования.

ЛПВП оказывают антиатерогенное действие путем обратного транспорта холестерина из клеток, в том числе из сосудов, к печени с последующим выведением из организма в форме желчных кислот. Остальные фракции липопротеидов (особенно ЛПНП) являются атерогенными, обусловливая избыточное накопление холестерина в стенке сосудов.

В табл. 5 приведена классификация первичных (генетически обусловленных) и вторичных (приобретенных) гиперлипопротеидемий с той или иной степенью выраженности атерогенного действия. Как следует из таблицы, в развитии атероматозных изменений сосудов основную роль играют ЛПНП и ЛПОНП, их повышенная концентрация в крови, избыточное поступление в интиму сосудов.

Избыточный транспорт ЛПНП и ЛПОНП в сосудистую стенку прошествует повреждению эндотелия.

В соответствии с концепцией американских исследователей И. Голдстайна и М. Брауна, ЛПНП и ЛПОНП в клетки поступают путем взаимодействия со специфическими рецепторами (АПО В, Е-реиепторы-гликопротеиды), после чего происходит их эндоцитозный захват и слияние с лизосомами. При этом ЛПНП расщепляются на белки и эфиры холестерина. Белки расщепляются на свободные аминокислоты, которые покидают клетку. Эфиры холестерина подвергаются гидролизу с образованием свободного холестерина, который поступает из лизосом в цитоплазму с последующим использованием для тех или иных целей (образование мембран, синтез стероидных гормонов и т. д.). Важно, что этот холестерин угнетает его синтез из эндогенных источников, при избытке образует "запасы" в форме эфиров холестерина и жирных кислот, но, самое главное, по механизму обратной связи угнетает синтез новых рецепторов для атерогенных липопротеидов и их дальнейшее поступление в клетку. Наряду с регулируемым рецепторопосредованным механизмом транспорта ЛП, обеспечивающим внутренние потребности клеток в холестерине, описан межэндотелиальный транспорт, а также так называемый нерегулируемый эндоцитоз, который представляет собой трансцеллюлярный, в том числе трансэндотелиальный везикулярный транспорт ЛПНП и ЛПОНП с последующим экзоцитозом (в интиму артерий из эндотелия, макрофагов, гладкомышечных клеток).

С учетом изложенных представлений механизм начального этапа атеросклероза, характеризующегося избыточным накоплением липидов в интиме артерий, может быть обусловлен:

1. Генетической аномалией рецептор-опосредованного эндоцитоза ЛПНП (отсутствие рецепторов -- менее 2% от нормы, уменьшение их числа -- 2 -- 30% от нормы). Наличие таких дефектов обнаружено при семейной гиперхолестеринемии (гипербеталипопротеидемия II А типа) у гомо- и гетерозигот. Выведена линия кроликов (Ватанабе) с наследственным дефектом рецепторов к ЛПНП.

2. Перегрузкой рецепторопосредованного эндоцитоза при алиментарной гиперхолестеринемии. И в том, и в другом случае наступает резкое усиление нерегулируемого эндоцитозного захвата частиц ЛП эндотелиальными клетками, макрофагами и гладкомышечными клетками стенки сосудов вследствие выраженной гиперхолестеринемии.

3. Замедлением удаления атерогенных липопротеидов из стенки сосудов через лимфатическую систему в связи с гиперплазией, гипертензией, воспалительными изменениями.

Существенный дополнительный момент -- различные превращения (модификации) липопротеидов в крови и сосудистой стенке. Речь идет об образовании в условиях гиперхолестеринемии аутоиммунных комплексов ЛП -- IgG в крови, растворимых и нерастворимых комплексов ЛП с гликозаминогликанами, фибронектином, коллагеном и эластином в сосудистой стенке (А. Н. Климов, В. А. Нагорнев).

По сравнению с нативными ЛП захват модифицированных ЛП клетками интимы, в первую очередь макрофагами (с помощью нерегулируемых холестерином рецепторов), резко возрастает. Это, как полагают, является причиной превращения макрофагов в так называемые пенистые клетки, которые составляют морфологическую основу стадии липидных пятен и при дальнейшем прогрессировании -- атером. Миграция кровяных макрофагов в интиму обеспечивается с помощью моноцитарного хемотаксического фактора, образующегося под действием ЛП и интерлейкина-1, который выделяется из самих моноцитов.

На заключительном этапе формируются фиброзные бляшки как ответ гладкомышечных клеток, фибробластов и макрофагов на повреждение, стимулируемый факторами роста тромбоцитов, эндотелиоцитов и гладкомышечных клеток, а также стадия осложненных поражений -- кальцификация, тромбообразование и др.

Приведенные выше концепции патогенеза атеросклероза имеют свои сильные и слабые стороны. Наиболее ценным достоинством концепции общих метаболических нарушений в организме и первичного липоидоза артериальной стенки является наличие экспериментальной холестериновой модели. Концепция первичного значения местных изменений в артериальной стенке, несмотря на то что была высказана более 100 лет назад, пока не имеет убедительной экспериментальной модели.

Патология перикарда.

Перикард выполняет важные функции: удерживает сердце и его сосуды в средостении, предохраняет его от механических повреждений, проникновения инфекций, участвует в регуляции диастолы, является рефлексогенной зоной - обнаружены механо- и хеморецепторы, участвующие в регулировании частоты и силы сердечных сокращений. В эксперименте показано, что при введении воздуха в область перикарда происходят рефлекторная остановка сердца и снижение кровяного давления; после перерезки вагуса все восстанавливается.

Наиболее частое поражение перикарда - его воспаление, перикардит. Чаще его регистрируют у крупного рогатого скота из-за травмы перикарда инородными острыми предметами, проникшими в грудную полость через диафрагму из преджелудков. Нередко перикардит бывает инфекционного происхождения. При перикардите в процесс воспаления вовлекаются миокард и средостение. В полости перикарда накапливается экссудат (от 1 до 10 л в зависимости от величины животного). При данном заболевании во время диастолы ограничивается наполнение желудочков кровью и уменьшается ударный объем сердца. Развиваются застойные явления в венах большого круга кровообращения, особенно в портальной системе. Вследствие этого появляется рефлекторно-компенсаторная тахикардия. При травматическом перикардите у крупного рогатого скота пульс удваивается, при фиброзном в результате образования спаек (соединительнотканных перемычек) затрудняется не только диастола, но ослабляется и систола, если в патологический процесс вовлечен миокард.

При нарушении водно-солевого обмена, снижении онкотического давления крови в перикарде может накапливаться транссудат - водянка перикарда. Последняя обычно сопровождается уменьшением диастолического объема сердца, снижением артериального и повьциением венозного давления. Однако эти процессы протекают несколько иначе, чем при перикардитах, так как транссудат медленнее накапливается, обладает меньшей вязкостью и нетоксичен.

При поражении перикарда и раздражении его рецепторов скопившимся транссудатом или экссудатом могут проявляться патологические рефлексы, обусловливающие расстройство кровообращения.

Нарушения дыхания, обусловленные патологическими изменениями строения и структуры грудной клетки и поражения дыхательных мышц.

Нарушение функции нервно-мышечного аппарата. Нарушение вентиляции может возникать при поражении нервов, иннервирующих дыхательные мышцы (воспаление, авитаминоз, травма), при затруднении передачи мышцам нервного импульса (при миастении, ботулизме, столбняке), при нарушении функции самих дыхательных мышц (миозит, дистрофия).

Из мышц, принимающих участие в акте дыхания, большое значение имеет диафрагма. Нарушение работы диафрагмы может привести к значительному расстройству дыхания, что бывает, в частности, при поражении n.frenicus. При поражении этого нерва возникают парадоксальные движения диафрагмы: вверх -- при вдохе, вниз -- при выдохе (диссоциированное дыхание).

При клонических судорогах мышц диафрагмы появляется икота, во время которой воздух втягивается в легкие. Икота -- рефлекторный акт, связанный обычно с раздражением афферентных окончаний в диафрагме или органах брюшной полости. Особенно упорной бывает икота при операциях на органах брюшной полости.

Нарушение подвижности грудной клетки. Все патологические процессы, ограничивающие подвижность грудной клетки, ограничивают растяжение легких и, следовательно, влияют на альвеолярную вентиляцию. К ним относятся врожденная или приобретенная деформация ребер и позвоночного столба, окостенение реберных хрящей, плевральные шварты, асцит, метеоризм, большая тучность. Экскурсии грудной клетки могут ограничиваться также резкими болевыми ощущениями, возникающими во время дыхания, например при межреберной невралгии, воспалении плевры и т. д.

Нарушение целостности грудной клетки и плевральной полости. Целость плевральной полости обеспечивает создание постоянного транспульмонального давления (разность между давлением воздуха внутри альвеол и давлением в плевральной полости), которое поддерживает легкое в расправленном состоянии. Во время вдоха, когда объем грудной клетки увеличивается, транспульмональное давление возрастает до тех пор, пока. не преодолеет эластическую тягу легких, вследствие чего альвеолы расширяются. В том случае, когда нарушается целость плевральной полости и в нее попадает атмосферный воздух, транспульмональное давление снижается, а легкое спадается. Скопление воздуха в плевральной полости и повышение давления в ней называется пневмотораксом.

Воздух может попасть в полость плевры при проникающем ранении грудной клетки, разрыве эмфизематозных альвеол на поверхности легкого, распаде легочной ткани (туберкулез, опухоль, абсцесс). При этом полость плевры может сообщаться с легкими и другими воздухоносными органами -- пищеводом, желудком, кишкой. Иногда воздух вводят в плевральную полость с лечебной целью.

Если при попадании воздуха в плевральную полость последняя не сообщается с атмосферным воздухом, возникающий пневмоторакс называют закрытым, если сообщается с атмосферным воздухом -- открытым. Наконец, если особенности входного отверстия в полости плевры допускают попадание воздуха во время вдоха, но препятствуют его выходу при выдохе, пневмоторакс называют клапанным, или вентильным.

НАРУШЕНИЕ РИТМА СЕРДЦА

Работа сердца как единого насосного устройства зависит от согласованности работы мышечных волокон каждого его отдела, последовательности сокращений этих отделов, ритма и частоты сокращений сердца. Эти требования, как известно, обеспечиваются основными свойствами сердца: автоматизмом, возбудимостью, проводимостью и сократимостью. В нормальных условиях автоматизм обеспечивается водителем ритма -- синусно-предсердным узлом, проводимость -- проводящей системой сердца, состоящей из проводящих пучков предсердий, предсердно-желудочкового пучка, предсердно-желудочкового узла и мышечных волокон Пуркинье, с которых возбуждение передается на клетки сократительного миокарда. Несмотря на то, что способностью к автоматизму обладают и другие отделы проводящей системы сердца, частота генерируемых импульсов снижается по направлению от предсердий к желудочкам (закон градиента сердца) и в нормальных условиях способность нижерасположенных отделов сердца к проявлению автоматизма подавляется образованиями, лежащими выше.

Нарушения автоматизма, проводимости и способности сердца к усвоению ритма возбуждения приводят к нарушению частоты ритма, согласованности или последовательности сокращений сердца -- аритмии.

Нарушения ритма возникают при воспалительном, ишемическом или токсическом поражении миокарда, при нарушении баланса между содержанием внутри- и внеклеточного калия, натрия, кальция и магния, при гормональных дисфункциях, а также могут явиться результатом нарушения взаимодействия симпатической и парасимпатической иннервации сердца. Под влиянием указанных этиологических факторов могут измениться активность нормального водителя ритма, рефрактерный период различных возбудимых структур или нарушиться проведение возбуждения между различными звеньями проводящей системы и между проводящей системой и сократительным миокардом, возникнуть эктопические очаги возбуждения. Все эти изменения, порознь или в сочетании, приводят к возникновению аритмии. В ее возникновении, кроме того, значительную роль может играть наличие путей с разной скоростью проведения возбуждения (в виде определенной структурной аномалии или вследствие очагового патологического процесса), которые создают условия для непрерывной циркуляции волны возбуждения.

Нарушение автоматизма. Способность к автоматическому образованию импульсов, как известно, зависит от клеток, расположенных в проводящей системе сердца (P-клетки), в которых происходит спонтанная медленная деполяризация клеточной мембраны в период диастолы. В результате по достижении определенного критического уровня возникает потенциал действия. Частота генерации импульсов зависит от максимального диастолического потенциала этих клеток, уровня того критического потенциала на мембране, после которого возникает потенциал действия и скорости медленной диастолической деполяризации (рис. 19.7).

Изменение уровня максимального диастолического потенциала, критического потенциала или скорости диастолической деполяризации в ту или другую сторону ведет к изменению частоты генерации импульсов или к появлению других источников импульсации, если эти изменения возникают в иных, способных к возбуждению участках сердца и приводят к появлению там потенциалов действия. При уменьшении уровня максимального диастолического потенциала клеток синусно-предсердного узла, при приближении к нему порогового критического потенциала или увеличении скорости медленной диастолической деполяризации импульсы генерируются чаще, развивается тахикардия. Это наблюдается под влиянием повышенной температуры тела, растяжения области синусно-предсердного узла, симпатического медиатора. Наоборот, уменьшение скорости медленной диастолической деполяризации, гиперполяризация в диастоле и отдаление критического порогового потенциала, как это наблюдается при раздражении блуждающего нерва, сопровождаются замедленней генерации импульсов, а следовательно, и сокращений сердца -- брадикардией. Колебания тонуса блуждающего нерва во время акта дыхания могут вызвать дыхательную аритмию (учащение сердцебиения при вдохе, замедление -- при выдохе). Дыхательная аритмия в норме бывает у детей, но изредка может наблюдаться и у взрослых.

...

Подобные документы

  • Изучение строения сердца, особенностей его роста в детском возрасте. Неравномерности формирования отделов. Функции кровеносных сосудов. Артерии и микроциркуляторное русло. Вены большого круга кровообращения. Регуляция функций сердечно-сосудистой системы.

    презентация [861,1 K], добавлен 24.10.2013

  • Параметры, характеризующие движение крови по сосудам органа (региона). Функции регионарного, коронарного, мозгового кровообращения. Структурные особенности легочных сосудов. Организация кровоснабжения легких. Последствия снижения интенсивности кровотока.

    презентация [1,7 M], добавлен 12.09.2013

  • Основы гемодинамики (законы гидродинамики). Показатели гидродинамики (давление, объем крови, гидродинамическое сопротивление). Физиологическая классификация сосудистого русла. Особенности кровотока в сосудах различного типа. Объем крови и диаметр сосудов.

    презентация [2,6 M], добавлен 29.08.2013

  • Малый и большой круги кровообращения. Скорость движения крови в различных частях кровеносной системы. Давление крови, ее ударный объем. Схема строения сердца, его работа и мощность. Уравнение Бернулли, его следствие для работы кровеносной системы.

    презентация [1,3 M], добавлен 30.11.2015

  • Анализ работы кровеносной системы человека. Принцип кровообращения в сердце. Значение капилляров. Движение венозной крови по легочным артериям. Описание выхода углекислого газа из вен и обогащения крови кислородом из альвеолярного воздуха легких.

    презентация [669,6 K], добавлен 24.05.2015

  • Сердце и кровеносные сосуды как главнейшие составляющие кровеносной системы. Строение сердца и процесс циркуляции крови в организме по венам и артериям. Большой и малый круг кровообращения. Контрольные задания для проверки знаний учащихся по данной теме.

    презентация [117,4 K], добавлен 16.02.2011

  • Ишемическая болезнь сердца, аритмия, атеросклероз, инфаркт миокарда, недостаточность кровообращения, пороки сердца, инсульт, неврозы и ревматизм, их сущность, виды и проявления. Факторы риска, а также и профилактика сердечно-сосудистых заболеваний.

    реферат [23,7 K], добавлен 21.11.2008

  • Понятие и назначение кровеносных сосудов. Сосуды - важнейшая составная часть человеческого организма, обеспечивающая надежную транспортную магистраль для передачи крови от сердца во все точки тела. Классификация кровеносных сосудов: артерии, капилляры.

    презентация [1,4 M], добавлен 29.11.2016

  • Общее понятие и состав сердечно-сосудистой системы. Описание кровеносных сосудов: артерий, вен и капилляров. Основные функции большого и малого кругов кровообращения. Строение камер предсердий и желудочков. Рассмотрение принципов работы клапанов сердца.

    реферат [2,3 M], добавлен 16.11.2011

  • Роль крови в организме. Строение кровеносной системы человека. Три фазы работы сердца: сокращение предсердий; сокращение желудочков и пауза; желудочки и предсердия одновременно расслаблены. Большой и малый круг кровообращения. Помощь при кровотечениях.

    презентация [604,9 K], добавлен 11.01.2010

  • Строение и основные функции сердца. Движение крови по сосудам, круги и механизм кровообращения. Строение сердечно-сосудистой системы, возрастные особенности ее реакции на физические нагрузки. Профилактика сердечно-сосудистых заболеваний у школьников.

    реферат [24,2 K], добавлен 18.11.2014

  • Понятие о внутренней среде организма. Функции крови, ее количество и физико-химические свойства. Форменные элементы крови. Свертывание крови, повреждение сосуда. Группы крови, кровеносная система, большой и малый круги кровообращения, переливание крови.

    учебное пособие [26,7 K], добавлен 24.03.2010

  • Значение открытия кровообращения для развития биологии и медицины. Экспериментальные и клинические исследования кровообращения, аналитический и метафизический подходы к физиологическим явлениям. Исследования строения и работы сердца, движения крови.

    реферат [36,8 K], добавлен 07.11.2010

  • Строение сердца: эндокард, миокард и эпикард. Клапаны сердца и крупных кровеносных сосудов. Топография и физиология сердца. Цикл сердечной деятельности. Причины образования тонов сердца. Систолический и минутный объемы сердца. Свойства сердечной мышцы.

    учебное пособие [20,1 K], добавлен 24.03.2010

  • Особенности размера и формы сердца человека. Строение правого и левого желудочков. Положение сердца у детей. Нервная регуляция сердечно-сосудистой системы и состояние кровеносных сосудов в детском возрасте. Врожденный порок сердца у новорожденных.

    презентация [2,1 M], добавлен 04.12.2015

  • Место и значение сердечнососудистой системы в организме человека. Строение и принцип работы сердца человека, его основные элементы и их взаимодействие. Понятие крови, ее состав и значение, общая схема кровообращения. Заболевания сердца и их лечение.

    реферат [35,3 K], добавлен 24.05.2009

  • История развития физиологии кровообращения. Общая характеристика сердечно-сосудистой системы. Круги кровообращения, кровяное давление, лимфатическая и сосудистая системы. Особенности кровообращения в венах. Сердечная деятельность, роль сердечных клапанов.

    презентация [2,5 M], добавлен 25.11.2014

  • Внутренняя среда человека и устойчивость всех функций организма. Рефлекторная и нервно-гуморальная саморегуляция. Количество крови у взрослого человека. Значение белков плазмы крови. Осмотическое и онкотическое давление. Форменные элементы крови.

    лекция [108,2 K], добавлен 25.09.2013

  • Вязкоупругие, упруговязкие и вязкопластичные системы. Механические свойства мышц, костей, кровеносных сосудов, легких. Задачи и объекты биомеханики. Сочленения и рычаги в опорно-двигательном аппарате человека. Механические свойства тканей организма.

    реферат [163,5 K], добавлен 25.02.2011

  • Патологически высокая концентрация холестерина в плазме крови – атеросклероз. Наследственные расстройства липидного обмена как наследственные причины заболевания. Атеросклероз как наиболее распространенная причина для нарушения функций сердца и сосудов.

    реферат [15,9 K], добавлен 13.04.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.