Культивирование протопластов и селекция растений

Понятие изолированных протопластов. Пути, по которым может идти развитие клетки после ее дедифференцировки. Характеристика и этапы процесса клонального микроразмножения растений. Методы клеточной инженерии растений в ускорении селекционного процесса.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 09.01.2016
Размер файла 25,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Изолированные протопласты

2. Морфогенез в клеточных культурах растений

3. Клональное микроразмножение растений

4. Методы клеточной инженерии растений в ускорении селекционного процесса

Список использованной литературы

Введение

Клеточная биотехнология относится к одному из бурно развивающихся направлений современной клеточной биологии. Главными целями клеточной биотехнологии являются: разработка технологий производства веществ синтезируемых клетками человека, животных и растений, используемых в медицине, сельском хозяйстве и промышленности, обеспечение биобезопасности населения, а также создание клеточных продуктов предназначенных для лечения тяжелых заболеваний человека Развитие исследований в выше перечисленных направлениях, а также во многих других постепенно привело исследователей к заключению о том, что существует принципиальная возможность крупномасштабного культивирования клеток разных животных и растений. Эти успехи привели общество к естественному желанию использовать культивируемый клеточный материал для промышленного производства полезных для человека продуктов.

Обнаруженная способность клеток разных типов при определенных условиях сливаться и образовывать гибридные клетки, привела, в конечном счете, к созданию первых гибридом, продемонстрироваших фантастические перспективы коммерческого производства и применения моноклональных антител. Эти успехи также способствовали возникновению и развитию новой отрасли народного хозяйства - клеточной биотехнологии. В первую очередь клеточные культуры были использованы для получения вакцин. Собственно говоря, именно вирусологи принимали самое непосредственное участие в получении стабильных клеточных линий и в создании методов крупномасштабного культивирования.

1. Изолированные протопласты

Изолированный протопласт - клетка, лишенная целлюлозной оболочки, окруженная цитоплазматической мембраной, сохраняющая все свойства, присущие растительной клетке. Впервые протопласты в 1892 г. выделил Дж. Клеркер, который использовал механический способ. При этом способе у плазмолированных клеток разрезают клеточную стенку, протопласты выходят в среду. В настоящее время метод претерпел модификации, улучшен, но имеет ряд ограничений:

· Невысокая производительность,

· Можно использовать ткани только с экстенсивным плазмолизом,

· Трудоемкость и длительность.

Другой метод выделения протопластов - энзиматический, с использованием ферментов. В 1952 году Салтон с помощью фермента лизоцима впервые разрушил клеточную стенку бактерий. В 1960 году Коккинг обработал кончики корней томата гидролитическим ферментом из культуральной жидкости плесневых грибов (Myrothecium verrucaria) и впервые получил изолированные протопласты высших растений энзиматическим способом.

Преимущества энзиматического метода по сравнению с механическим:

· Одновременно выделяется большое количество протопластов (до 10 млн. из грамма ткани или клеток),

· Клетки не подвергаются сильному осмотическому стрессу,

· Клетки не повреждаются,

· Метод сравнительно быстрый.

Для удаления клеточной стенки используют ферменты трех типов: целлюлазы, гемицеллюлазы и пектиназы. Комбинация ферментов и их соотношение специфично для каждого типа клеток.

Выделение протопластов проводят в три этапа:

1. Обработка ферментами,

2. Выделение протопластов из клеточных стенок,

3. Отделение интактных протопластов от клеточных осколков.

Стандартная методика протопластов (по Такебе) из тканей листа Nicotiana tabacum:

Зрелый, сформировавшийся лист отделяют от взрослого растения в возрасте 60 - 80 дней, окунают в 70% этанол, а затем помещают на 15 - 20 минут в 10% раствор гипохлорита кальция и многократно промывают дистиллированной водой. С помощью пинцета нижний эпидермис снимают, очищенные от эпидермиса листья разрезают скальпелем на небольшие кусочки площадью 4 кв. см. Для лучшего снятия эпидермиса листья должны немного подвянуть, можно также ограничить снабжение водой перед срезанием листьев.

Далее ткань обрабатывают последовательно или одновременно пектиназой, вызывающей мацерацию, и целлюлазой, разрушающей клеточные стенки. Оптимальная концентрация ферментов, как и время обработки, индивидуальны для разных тканей. Протопласты должны находиться в растворе ферментов минимальное количество времени, после чего следует тщательная промывка. Ферменты стерилизуют через бактериальные фильтры.

Регуляция водообмена клетки связана с наличием клеточной стенки. Когда протопласт "голый", один из компонентов регуляции водообмена теряется, поэтому важное значение приобретают осмотические свойства среды выделения и культивирования. Среда должна быть немного гипертонической, чтобы протопласты находились в слегка плазмолизированном состоянии. Эти условия тормозят метаболизм и регенерацию клеточной стенки. В качестве осмотических стабилизаторов используют сахара (глюкозу, маннит, сорбит, ксилозу), ионные осмотики (CaCl2, KCl) в концентрации 0,3 - 0,8 моль/литр. Концентрации подбираются индивидуально для каждого растительного объекта.

Удобнее обрабатывать ткани ферментами в чашке Петри, которую держат под углом 15о. Смесь ферментов с протопластами переносят в центрифужные пробирки. Отделить протопласты от ферментативной смеси можно двумя способами: либо фильтрация с центрифугированием, либо флотация.

При фильтрации смесь пропускают через фильтры с размерами пор 40 мкм. На фильтре при этом остаются комки клеток и их большие осколки. При дальнейшем центрифугировании оседают протопласты, осколки остаются в супернатанте. При повторном центрифугировании идет отмывка от фермента, после чего протопласты переносятся в среду для культивирования.

Метод флотации предложен О. Гамборгом с сотрудниками в 1981 году, и предназначается для ослабленных протопластов. Он основан на том, что протопласты имеют более низкую плотность, чем органеллы или остатки клеточных стенок. К исходной смеси добавляют раствор сахарозы и центрифугируют при скорости от 40 - 80 до 350 g. Чистые протопласты плавают, осколки оседают на дно.

Протопласты можно выделять также из суспензионных и клеточных культур. Лучше всего - в поздней стадии логарифмического роста, когда клеточные стенки легче поддаются разрушению, протопласты наиболее жизнеспособны.

Далее протопласты культивируют в тех же условиях, что и клетки. Состав солей может быть несколько изменен. Среда состоит из осмотического стабилизатора, неорганических соединений, источника углерода, азота, витаминов, фитогормонов. Условия культивирования: рН среды 5,4 - 5,8, температура 22 - 28оС, невысокая освещенность (не более 2000 лк).

Способы культивирования протопластов

Существуют два способа культивирования протопластов: метод жидких капель и метод платирования.

В первом случае суспензию протопластов в виде капель помещают на пластиковые чашки Петри. Вариацией этого способа является культивирование единичных изолированных протопластов в микрокаплях объемом 1 мкл, предложенное Ю. Глебой в 1978 г.

Во втором - суспензию протопластов наливают в пластиковые чашки Петри, добавляют равный объем той же среды с 1% агаром при температуре не выше 45оС. После остывания чашки Петри переворачивают и культивируют при 28оС. В данном случае протопласты фиксированы в одном положении и физически отделены друг от друга. Это дает возможность наблюдать за развитием интактного протопласта: формированием клеточной стенки, делением, ростом и развитием растения. Вариантом этой техники является использование кормящих протопластов или клеток, подвергнутых воздействию рентгеновского или г-излучения, что блокирует их способность к делению. Такие протопласты или клетки смешивают с жизнеспособными протопластами и они поддерживают и стимулируют их рост.

Сразу после удаления раствора фермента начинается образование клеточной стенки. Труднее добиться деления клеток и регенерации растений. Регенерация растений осуществляется либо через эмбриогенез, либо через развитие каллуса с дальнейшей индукцией морфогенеза. Добиваются этого добавлением в среду ауксинов или сочетания ауксинов с цитокининами.

На пролиферацию клеток, возникших из протопластов, влияет 4 фактора:

· Видовая специфичность и физиологическое состояние исходной ткани растения,

· Способ и условия выделения протопластов,

· Плотность высева протопластов,

· Состав питательной среды.

2. Морфогенез в клеточных культурах растений

Существует несколько путей, по которым может идти развитие клетки после ее дедифференцировки:

· вторичная регенерация целого растения, возможна дифференцировка на уровне клеток, тканей, органов.

· утрата клеткой способности к вторичной дифференцировке и регенерации растения, стойкая дедифференцировка, приобретение способности расти на среде без гормонов, т.е. превращение в опухолевую. Такими свойствами часто характеризуются клетки старых пересадочных культур.

· нормальный цикл развития каллусной клетки, заканчивающийся ее старением и отмиранием. В этом случае клетка претерпевает вторичную дифференцировку и прекращает делиться (стационарная фаза роста). Однако такая дифференцировка не ведет к морфогенезу, а закрепляет за ней свойства старой каллусной клетки.

Морфогенез в каллусной ткани начинается с того, что под влиянием соответствующих условий детерминированная клетка обособляется от окружающих ее каллусных клеток, образуя утолщенную клеточную стенку. Это явление было обнаружено в 1972 г. Данилиной при изучении соматического эмбриогенеза в культуре ткани моркови.

В культуре тканей морфогенез может проявляться в виде органогенеза (образования монополярной структуры, т.е. отдельных органов): корневого, стеблевого, реже флорального (цветочного) или листового, а также в виде соматического эмбриогенеза (образования биполярных зародышеподобных структур из соматических клеток). В случае органогенеза сначала регенерируют отдельные органы, а затем уже из них -- целые растения, исключение составляет корневой органогенез.

В результате соматического эмбриогенеза в отличие от органогенеза сразу образуется зародыш, имеющий как меристему корня, так и меристему верхушечной почки, из которого в дальнейшем развивается целое растение.

3. Клональное микроразмножение растений

Процесс клонального микроразмножения можно разделить на четыре этапа:

1. Выбор растения-донора (донор - растение, часть которого вводится в культуру), изолирование эксплантов (эксплант - ткань, взятая из своего оригинального места и перенесенная в искусственную среду для роста и поддержания жизнедеятельности) и получение хорошо растущей стерильной культуры;

2. Собственно микроразмножение, когда достигается получение максимального количества мериклонов (микропобегов);

3. Укоренение размноженных побегов с последующей адаптацией их к почвенным условиям, а при необходимости депонирование растений-регенерантов при пониженной температуре (2-10 С);

4. Выращивание растений в условиях теплицы и подготовка их к реализации или посадке в поле.

Существует много методов клонального микроразмножения. Различные авторы, проводя индивидуальные исследования по влиянию условий культивирования эксплантов на процессы морфогенеза, наблюдали разные ответные морфогенетические реакции на изменение условий выращивания, что, в свою очередь, способствовало созданию новых классификаций методов клонального микроразмножения.

В литературе предложены следующие методы микроразмножения растений: активация развития уже существующих в растении меристем (апекс стебля, пазушные и спящие почки стебля); индукция возникновения адвентивных почек непосредственно тканями экспланта; индукция соматического эмбриогенеза; дифференциация адвентивных почек в первичной и пересадочной каллусной ткани.

1. Метод, используемый при клональном микроразмножении растений, - это активация развития уже существующих в растении меристем, основывающийся на снятии апикального доминирования. Это может быть достигнуто двумя путями:

- Удаление верхушечной меристемы стебля (снятие апикального доминирования) и последующее микрочеренкование побега in vitro на безгормональной среде. Апикальное доминирование - подавление роста боковых почек растительного побега или наличие терминальной почки.

- Добавление в питательную среду веществ цитокининового типа действия, индуцирующих развитие многочисленных пазушных побегов. Как правило, в качестве цитокининов используют 6-бензиламинопурин (БАП) или 6-фурфуриламинопурин (кинетин), а также 2-изопентениладенин (2-iр) и зеатин. Полученные таким образом побеги отделяют от первичного материнского экспланта (инокулюм (трансплант) - часть суспензионной или каллусной культуры, переносимой в свежую питательную среду) и вновь самостоятельно культивируют на свежеприготовленной питательной среде, стимулирующей пролиферацию пазушных меристем и возникновение побегов более высоких порядков.

2. Индукция возникновения адвентивных почек непосредственно на тканях экспланта. (Адвентивный - добавочный побег. Развитие растений из необычных точек происхождения, например, почечные или корневые ткани, возникающие из каллуса, или зародыши, развивающиеся из других источников, а не из зигот. 3. Метод, практикуемый при клональном микроразмножении, основывается на дифференциации из соматических клеток зародышеподобных структур, которые по своему внешнему виду напоминают зиготические зародыши. Этот метод получил название соматический эмбриогенез

Основное отличие образования зародышей in vitro и in vivo (в естественных условиях) заключается в том, что соматические зародыши развиваются асексуально вне зародышевого мешка и по своему внешнему виду напоминают биполярные структуры, у которых одновременно наблюдается развитие апикальных меристем стебля и корня. Согласно Стеварду, соматические зародыши проходят три стадии развития: глобулярную, сердцевидную, торпедо-видную и в конечном счете имеют тенденцию к развитию в проросток.

4. Метод клонального микроразмножения - дифференциация адвентивных почек в первичной и пересадочной каллусной ткани. Каллус - неорганизованная, пролиферирующая масса дифференцированных растительных клеток. Дедифференциация - переход специализированных, неделящихся клеток к пролиферации. Практически он мало используется в целях получения посадочного материала in vitro.

Это связано с тем, что при периодическом пересаживании каллусной ткани на свежую питательную среду часто наблюдаются явления, нежелательные при микроразмножении: изменение плоидности культивируемых клеток, структурные перестройки хромосом и накопление генных мутаций, потеря морфогенетического потенциала культивируемыми клетками.

Этот метод целесообразно применять лишь к тем растениям, для которых показана генетическая стабильность каллусной ткани, а вариабельность между растениями-регенерантами не превышает уровня естественной изменчивости.

В целом методы клонального микроразмножения, несомненно, имеют ряд преимуществ перед существующими традиционными способами размножения:

· получение генетически однородного посадочного материала;

· освобождение растений от вирусов за счет использования меристемной культуры;

· высокий коэффициент размножения (10 5-10 6 - для травянистых, цветочных растений, 10 4-10 5 - для кустарниковых и древесных, 104 - для хвойных);

· сокращение продолжительности селекционного процесса;

· ускорение перехода растений от ювенильной к репродуктивной фазе развития;

· размножение растений, трудно размножаемых традиционными способами;

· возможность проведения работ в течение круглого года и экономия площадей, необходимых для выращивания посадочного материала;

· возможность автоматизации процесса выращивания.

4. Методы клеточной инженерии растений в ускорении селекционного процесса

протопласт клональный микроразмножение растение

Одно из направлений клеточных технологий -- это использование их в селекции, которое облегчает и ускоряет традиционный селекционный процесс в создании новых форм и сортов растений. Существующие методы культивирования изолированных клеток и тканей in vitro условно можно разделить на две группы.

Первая группа - это вспомогательные технологии, которые не подменяют обычную селекцию, а служат ей. К ним можно отнести: оплодотворение in vitro (преодоление прогамной несовместимости), культивирование семяпочек и незрелых гибридных зародышей (преодоление постгамной несовместимости), получение гаплоидов путем культивирования пыльников и микроспор, криосохранение изолированных клеток, тканей и органов, клональное микроразмножение отдаленных гибридов.

Вторая группа методов ведет к самостоятельному, независимому от традиционных методов селекции, получению новых форм и сортов растений: клеточная селекция с использованием каллусной ткани, соматическая гибридизация (слияние изолированных протопластов и получение неполовых гибридов), применение методов генной инженерии.

В отдаленной гибридизации находят применение такие методы культуры изолированных тканей, как оплодотворение in vitro, эмбриокультура (выращивание изолированных зародышей на искусственных питательных средах), клональное микроразмножение ценных гибридов, а также получение гаплоидов in vitro и криосохранение.

Оплодотворение in vitro (преодоление прогамной несовместимости) проводится в том случае, когда невозможно осуществить оплодотворение между выбранными парами в естественных условиях. Это вызвано несколькими причинами:

1) физиологические (несоответствие во времени созревания пыльцы и т. д.);

2) морфологические (короткая пыльцевая трубка или блокирование роста ее на разных этапах развития и т. д.).

Оплодотворение in vitro можно осуществить двумя способами:

а) культивирование на искусственной агаризованной питательной среде завязи с нанесенной на нее готовой пыльцой;

б) завязь вскрывается и на питательную среду переносятся кусочки плаценты с семяпочками, вблизи которых или непосредственно на ткани плаценты культивируется готовая пыльца. Визуально определить, прошло оплодотворение in vitro или нет, можно по быстро увеличивающимся в размерах семяпочкам. Сформировавшийся зародыш, как правило, не переходит в состояние покоя, а сразу прорастает и дает начало гибридному поколению. Плацентарное оплодотворение in vitro позволило преодолеть несовместимость в скрещивании сортов культурного табака N. tabacum с дикими видами N. rosulata и N. debneyi и сделало возможным получение межвидовых гибридов табака в опытах М.Ф. Терновского и др. (1976), Шинкаревой (1986).

Постгамная несовместимость при отдаленной гибридизации возникает после оплодотворения. Часто при этом образуются щуплые невсхожие семена. Причиной может быть расхождение во времени развития зародыша и эндосперма. Из-за слабого развития эндосперма зародыш бывает неспособен к нормальному прорастанию. В таких случаях из зрелой щуплой зерновки изолируют зародыш и выращивают его в питательной среде.

Выращивание зародышей в искусственной питательной среде называется эмбриокультурой. Среда для выращивания зрелого зародыша может быть простой, без добавок физиологически активных веществ (например, среда Уайта) или любая другая, содержащая минеральные соли и сахарозу. При более отдаленных скрещиваниях нарушения в развитии зародыша могут наблюдаться уже на ранних этапах, что выражается в отсутствии дифференцировки, замедленном росте. В этом случае культура зародыша состоит из двух этапов -- эмбрионального роста зародыша, во время которого продолжается его дифференцировка, и прорастания подросшего зародыша. Для первого этапа требуется более сложная по составу среда с повышенным содержанием сахарозы, с добавками различных аминокислот, витаминов и гормонов.

Применение эмбриокультуры в селекции приобретает в последнее время большое значение для получения отдаленных гибридов зерновых, злаковых и других сельскохозяйственных культур. Показана возможность увеличения выхода пшенично-ржаных гибридов путем доращивания незрелых зародышей, а также использования эмбриокультуры для преодоления постгамной несовместимости при гибридизации пшеницы с колосняком.

Метод эмбриокультуры находит все более широкое применение в межвидовой гибридизации овощных растений. Для лука разработаны приемы выращивания in vitro абортивных зародышей от гибридных семян с разных этапов эмбриогенеза, выращивание зародышей от частично фертильных межвидовых гибридов. Культура изолированных зародышей используется в селекции томатов и других овощных растений.

Исследована гормональная регуляция роста и развития зародышей томата in vitro . Обсуждается возможность применения эмбриокультуры для получения отдаленных гибридов подсолнечника, изучаются факторы, контролирующие рост и развитие in vitro зародышей подсолнечника, выделенных в разные сроки после опыления.

Культура изолированных зародышей как вспомогательный метод при отдаленной гибридизации применяется не только для преодоления постгамной несовместимости, но также с целью микроразмножения ценных гибридов. В этом случае микроразмножение идет путем каллусогенеза, индукции морфогенеза и получения растений-регенерантов из каллусной ткани. Техника клонирования незрелых зародышей позволяет размножать ценные генотипы растений на ранних стадиях жизненного цикла. Еще одна возможность применения культуры зародышей -- использование ее в клеточной селекции.

Список использованной литературы

1. Пинаев Г.П. «Клеточная биотехнология: учебно-методическое пособие» / Пинаев Г.П., Блинова М.И., Николаенко Н.С., Полянская Г.Г., Ефремова Т.Н., Шарлаимова Н.С., Шубин Н.А. / СПб.: Изд-во Политехн. ун-та, 2011. - 209 с.

2. Калинин Ф. Л., Кушнир Г. П., Сарнацкая В. В. «Технология микроклонального размножения растений». - Киев: Наука думка, 1992.

3. «Методы культивирования клеток» / Отв. ред. Пинаев Г. П. - Л: Из-во Наука, 1988.

4. http://igolka.org/selhozbio/1/page39.htm

5. http://www.biotechnolog.ru/pcell/pcell5_1.htm

Размещено на Allbest.ru

...

Подобные документы

  • Клеточная инженерия как совокупность методов, используемых для конструирования новых клеток, история ее развития. Методы выделения протопластов. Описание способов культивирования протопластов: метод жидких капель и платирования. Соматическая гибридизация.

    презентация [661,9 K], добавлен 28.02.2014

  • Выделение растительных протопластов Дж. Клеркером при изучении плазмолиза в клетках водного телореза (Stratiotes aloides) при механическом повреждении ткани. Общая процедура получения растительных протопластов. Культивирование растительных протопластов.

    презентация [529,5 K], добавлен 07.11.2016

  • Применение клеточных технологий в селекции растений. Использование методов in vitro в отдаленной гибридизации. Работы по культивированию каллуса с целью получения нового селекционного материала. Гибридизация соматических клеток и ее основные результаты.

    реферат [28,6 K], добавлен 10.08.2009

  • Основы и техника клонирования ДНК. Этапы генной инженерии бактерий. Развитие генетической инженерии растений. Генетическая трансформация и улучшение растений с помощью агробактерий, источники генов. Безопасность генетически модифицированных растений.

    реферат [26,3 K], добавлен 11.11.2010

  • Основные методы селекции - гибридизация и отбор, их характеристика и виды. Центры происхождения культурных растений. Вклад работ Мичурина в развитие селекции растений, его методы преодоления нескрещиваемости видов. Использование искусственного мутагенеза.

    презентация [1,3 M], добавлен 12.03.2014

  • Задачи современной селекции, породы животных и сорта растений. Центры многообразия и происхождения культурных растений. Основные методы селекции растений: гибридизация и отбор. Самоопыление перекрестноопылителей (инбридинг), сущность явления гетерозиса.

    реферат [17,6 K], добавлен 13.10.2009

  • Создания и совершенствования сортов культурных растений и пород домашних животных, применение этих методов в растениеводстве (селекция растений) и животноводстве (селекция животных). Сорта растений и породы животных с нужными биологическими свойствами.

    презентация [598,9 K], добавлен 25.10.2011

  • Фитоиммунитет и его виды. Типы повреждений растений насекомыми и клещами. Связь между устойчивостью к вредителям и поражением растений возбудителями заболеваний. Основные факторы групповой и комплексной устойчивости растений к патогенным агентам.

    курсовая работа [28,2 K], добавлен 30.12.2002

  • Фитобиотехнология как составная часть биотехнологии, предмет и методы ее изучения, общие сведения и история развития. Характеристика и получение протопластов. Проблема создания векторов для введения чужеродной ДНК в протопласты растений, пути ее решения.

    реферат [22,8 K], добавлен 24.01.2010

  • Биотехнология как наука о методах и технологиях производства. Понятие генной и клеточной инженерии. Биотехнология сельскохозяйственных растений. Повышение урожайности и естественная защита растений. Устойчивость к гербицидам и неблагоприятным факторам.

    реферат [34,6 K], добавлен 14.11.2010

  • Генетическое разнообразие форм растений и животных. Отбор и гибридизация как основные методы селекции растений. Пересадка генов и частей ДНК одного вида в клетки другого организма. Отбор генетически модифицированных организмов, их применение в медицине.

    презентация [815,0 K], добавлен 30.01.2014

  • Селекция как наука о методах создания и улучшения пород животных, сортов растений, штаммов микроорганизмов, ее цели и задачи, используемые методы и приемы, современные достижения. Понятие и принципы гибридизации. Типы отбора и значение мутогенеза.

    презентация [200,1 K], добавлен 15.12.2015

  • Возможности генной инженерии растений. Создание гербицидоустойчивых растений. Повышение эффективности фотосинтеза, биологической азотфиксации. Улучшение качества запасных белков. Экологические, медицинские и социально-экономические риски генной инженерии.

    контрольная работа [47,1 K], добавлен 15.12.2011

  • Этапы получения трансгенных организмов. Агробактериальная трансформация. Схема создания генетически модифицированного организма. Пример селективного маркера растений. Процесс подавления экспрессии генов (сайленсинг). Направления генной инженерии растений.

    презентация [6,2 M], добавлен 24.06.2013

  • Селекция как наука о методах создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов. Центры происхождения культурных растений. Закон гомологических рядов. Индуцированный мутагенез. Полиплоидия и гибридизация в селекции.

    презентация [4,5 M], добавлен 09.12.2011

  • Опыление как жизненно важный процесс для всех цветковых растений, разновидности. Приемы адаптации растений к насекомым. Селекция цветов, алгоритм наследования нужных признаков у растений. Секреты опыления плодовых культур. Роль пчел в процессе опыления.

    реферат [263,6 K], добавлен 07.06.2010

  • Характеристика основных групп растений по отношению к воде. Анатомо-морфологические приспособления растений к водному режиму. Физиологические адаптации растений, приуроченных к местообитаниям разной увлажненности.

    курсовая работа [20,2 K], добавлен 01.03.2002

  • Изучение дыхания растений как окислительного распада органических веществ синтезированных в процессе фотосинтеза. Характеристика процесса аэробного дыхания растений как процесса, в ходе которого расходуется кислород. Специфика и типы анаэробного дыхания.

    реферат [371,6 K], добавлен 29.03.2011

  • Составляющие растительной клетки. Плазматическая мембрана, ее функции. Компоненты клеточной стенки. Типы митоза эукариот. Образовательные ткани в теле растений и их расположение. Механические свойства растительных клеток. Наружные выделительные ткани.

    учебное пособие [76,4 K], добавлен 12.12.2009

  • Характеристика основных методов селекции растений. Особенности искусственного и естественного отбора. Цели применения инбридинга и перекрестного опыления самоопылителей. Содержание гипотез, объясняющих эффект гетерозиса. Сущность отдаленной гибридизации.

    презентация [1,3 M], добавлен 28.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.