Обмен веществ, углеводов
Введение в обмен веществ, характеристика его основных этапов. Виды и роль углеводов пищи для организма человека. Процессы переваривания и всасывания углеводов. Превращение глюкозы в тканях, пути ее окисления. Анаэробный гликолиз и энергетический баланс.
Рубрика | Биология и естествознание |
Вид | лекция |
Язык | русский |
Дата добавления | 24.01.2016 |
Размер файла | 22,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ЛЕКЦИЯ
по теме «Обмен веществ, углеводов»
План
Введение в обмен веществ
Углеводы и их роль
Переваривание и всасывание углеводов
Превращение глюкозы в тканях
Пути окисления глюкозы. Анаэробный гликолиз энергетический баланс
1. Введение в обмен веществ
Обмен веществ - это совокупность тесно связанных между собой противоположных процессов - ассимиляции (анаболизм) и диссимиляции (катаболизм). Обмен веществ включает 4 этапа: 1 этап - переваривание. Это механическое и ферментативное расщепление сложных веществ, которое происходит в ЖКТ под действием соответствующих гидролаз; 2 этап - всасывание - это транспорт продуктов распада из просвета кишечника во внутреннюю среду организма. Всасывание осуществляется через мембраны микроворсинок тонкого кишечника и бывает активным и пассивным (механизмы транспорта через мембраны см. микролекцию «Б/х мембран», дать ксерокс или дискету).
3 этап - промежуточный обмен - это превращение в клетках или тканях организма всосавшихся веществ; 4 этап - выделение конечных продуктов обмена.
2. Углеводы и их роль
На долю углеводов должно приходиться 50% калорийности суточного рациона. Соотношение белков, липидов и углеводов в пище должно быть (Б:Л:У) - 1:1:4, т.е. в сутки должно поступать 400-500 г углеводов, или 124 г на 1000 ккал рациона в сутки. При этом желательно, чтобы легкоусвояемые дисахариды составляли не более 25% от этого количества. Переедание легкоусвояемых угв является риском развития ожирения и атеросклероза.
Углеводы могут синтезироваться в организме из промежуточных продуктов распада белков и липидов. Единственное производное углеводов, которое обязательно должно поступать с пищей и не синтезируется в организме человека - это витамин С.
Различают следующие пищевые угв 1) 80% приходится на долю крахмала - резервного полисахарида растений. 2) В продуктах животного происхождения содержится гликоген - «животный крахмал». 3) пищевые волокна - целлюлоза, гемицеллюлоза, лигнин, смолы, пектины, пентозаны. С пищей также поступают дисахариды - 4) сахароза, или тростниковый сахар, 5) лактоза, или молочный сахар, а также мсх - 6) глюкоза - виноградный сахар и 7) фруктоза - фруктовый сахар. Этих мсх также много в меде. 8) В составе НП в организм поступают пентозы.
Роль углеводов пищи 1) энергетическая - 99% потребляемых угв используется на производство энергии. Окисление 1г углеводов дает 17,2кДж (4,1ккал) энергии; 2) пластическая, строительная, или структурная - ГАГи, ГП и другие белки (почти все белки организма имеют в своем составе угв, НК, липиды, НЗТ, Коf, глюкуронаты, ГЛ мембран; 3) резервная - гликоген запас глюкозы; 4) сигнальная - угв входят в состав рецепторов (их узнающей части) и в состав ряда гормонов, например, ТТГ, ФСГ. Угв обеспечивают антигенность тканей. 5) пищевые волокна способствуют задержке воды при прохождении пищи по кишечнику и формированию благодаря этому объемных мягких фекалий. Диета, богатая пищевыми волокнами (клетчаткой) снижает вероятность возникновения дивертикулеза, рака толстой кишки, сердечно-сосудистых заболеваний и сахарного диабета. Целлюлоза и лигнин хорошо действуют на функцию толстой кишки, а смолы и пектины снижают уровень ХСН в крови, возможно, благодаря связыванию ЖчК и ХСН пищи. Смолы и пектины препятствуют опорожнению желудка, замедляют и снижают подъем уровня глюкозы в крови после приема пищи и последующим уменьшением секреции инсулина.
3. Переваривание и всасывание углеводов
1 этап - переваривание В ротовой полости начинается переваривание крахмала и гликогена пищи под действием альфа-амилазы слюны. В желудке нет гликозидаз, но пищевой комок подвергается распаду под действием альфа-амилазы слюны до тех пор, пока не пропитается кислым содержимым желудка. При этом альфа-амилаза слюны ингибируется, т.к. рН желудка не соответствует оптимуму рН данного фермента. В кишечнике рН 8,0-9,0 и действие альфа-амилазы слюны возобновляется. Сюда же поступает альфа-амилаза поджелудочной железы и оба фермента расщепляют крахмал и гликоген до мальтозы. В кишечнике мальтоза расщепляется до 2-х глюкоз под действием мальтазы (образуется кишечными клетками) - реакцию повторить (стр. 32, Материалы). Здесь же под влиянием лактазы кишечного сока лактоза расщепляется до галактозы и глюкозы - реакцию повторить (стр. 32, Материалы). У детей раннего возраста благодаря замедленному гидролитическому расщеплению, лактоза способствует поддержанию слабокислой среды в толстой кишке (рН - 5,0-5,5). Под действием сахаразы кишечного сока сахароза расщепляется до фруктозы и глюкозы - реакцию повторить (стр. 32, Материалы). Переваривание НК дает пентозы.
Т.о., все углеводы пищи перевариваются в кишечнике до гексоз. Все процессы переваривания идут на поверхности эпителия кишечника и поэтому называются пристеночным пищеварением.
2 этап - всасывание продуктов переваривания. Мсх всасываются микроворсинками эпителия тонкого кишечника с различной скоростью. Первой всасывается галактоза, затем глюкоза, фруктоза и пентозы. Различие в скорости всасывания зависит от типа всасывания. Галактоза и глюкоза всасываются путем активного транспорта.
Щеточная каемка энтероцитов содержит несколько транспортных систем, некоторые очень схожи с таковыми в почках, служащие для реабсорбции глюкозы и аминокислот. Натрий-зависимый глюкозный транспортер связывает глюкозу и натрий в разных центрах и транспортирует их через плазматическую мембрану кишечной клетки. Натрий транспортируется по градиенту концентрации, а глюкоза транспортируется против градиента концентрации. Энергия, необходимая для активного транспорта, образуется за счет гидролиза АТФ в результате работы натрий-калиевой АТФ-азы (натрий-калиевого насоса). Этот фермент обменивает натрий цитоплазмы на калий. Затем натрий удаляется из цитоплазмы кишечной клетки в межклеточное пространство с помощью натрий-калиевого насоса в обмен на калий. Таким образом, галактоза и глюкоза всасываются активно (против градиента концентрации) натрий-зависимым транспортом с помощью особого белка - натрий-зависимого глюкозного транспортера.
Фруктоза всасывается пассивно путем облегченной диффузии с помощью белка-переносчика - GLUT-5. Если галактозы и глюкозы поступает много, то и эти моносахариды могут пассивно всасываться с помощью этого белка.
Из кишечной клетки галактоза, глюкоза и фруктоза транспортируются в воротную вену путем облегченной диффузии с помощью белка-переносчика - GLUT-2 - см. пленку (рис по Марри).
Пентозы всасываются путем простой диффузии (пассивно).
Т.о., в крови воротной вены имеются различные мсх, их качество зависит от вида принимаемой пищи. Количество их также сильно варьирует - в разгар пищеварения их много, натощак мало. Мсх быстро поглощаются паренхиматозными клетками печени, где происходит превращение всех мсх в глюкозу. Т.о., глюкоза - единственный мсх, поступающий в большой круг кровообращения. В крови БКК у детей раннего возраста возможно небольшое количество других МСХ, например, фруктозы и галактозы. Это связано с незрелостью печени и глюкогенеза 3 этап ОУ - промежуточный обмен.
4. Превращение глюкозы в тканях
обмен углевод глюкоза гликолиз
В транспорте глюкозы между клетками и кровью играют роль белки-переносчики. Эти белки обозначаются GluT и пронумерованы по порядку их обнаружения. Они осуществляют транспорт глюкозы между клетками и кровью по градиенту концентрации (в отличие от переносчиков, транспортирующих мсх при их всасывании в кишечнике против градиента концентрации). GluT1 находится в эндотелии ГЭБ. Он служит для обеспечения глюкозой мозга. GluT2 в стенке кишечника, печени и почках - органах, осуществляющих выделение глюкозы в кровь. GluT3 находится в нейронах мозга. GluT4 - главный переносчик глюкозы в мышцах и адипоцитах. GluT5 находится в тонкой кишке, подробности его функции неизвестны.
Особенно интенсивно используют глюкозу следующие клетки и ткани: 1) нервная ткань, т.к. для нее глюкоза - единственный источник энергии, 2) мышцы (для выработки энергии на сокращения), 3) стенка кишечника (процессы всасывания различных веществ требуют затраты энергии), 4) почки (образование мочи - процесс энергозависимый), 5) надпочечники (необходима энергия для синтеза гормонов); 6) эритроциты; 7) жировая ткань (глюкоза необходима для нее как источник глицерина для образования ТАГ); 8) молочная железа, особенно в период лактации (глюкоза необходима для образования лактозы).
В тканях около 65% глюкозы окисляется, 30% идет на липонеогенез, 5% на гликогеногенез.
Глюкостатическая функция печени обеспечивается тремя процессами: 1) гликогеногенезом, 2) гликогенолизом, 3) глюконеогенезом (синтез глюкозы из промежуточных продуктов распада белков, липидов, углеводов).
При увеличении глюкозы в крови ее избыток используется на образование гликогена (гликогеногенез). При уменьшении содержания глюкозы в крови усиливается гликогенолиз (распад гликогена) и глюконеогенез. Под действием алкоголя глюконеогенез тормозится, что сопровождается падением глюкозы в крови при большом количестве выпитого алкоголя. Клетки печени, в отличие от других клеток способны пропускать глюкозу в обоих направлениях в зависимости от концентрации глюкозы в межклеточном веществе и крови. Т.о., печень выполняет глюкостатическую функцию, поддерживая постоянство содержания глюкозы в крови, которое равно 3,4-6,1 мМ/л. До 10-14 дней после рождения отмечается физиологическая гипогликемия, это связано с тем, что связь с матерью после родов прекратилась, а своих запасов гликогена мало.
Гликогеногенез 5% глюкозы превращается в гликоген. Образование гликогена называется гликогеногенезом. 2/5 запасов гликогена (примерно 150 грамм) откладывается в паренхиме печени в виде глыбок (10% на сырую массу печени). Остальной гликоген откладывается в мышцах и других органах. Гликоген служит резервом УГВ для всех органов и тканей. Запас УГВ в виде гликогена обусловлен тем, что гликоген как ВМС в отличие от глюкозы не повышает осмотического давления клеток.
Гликогеногенез - сложный, многоступенчатый процесс, который состоит из следующих стадий - реакции знать (только текст)см. материалы стр.35:
1 - Образование глюкозо-6-фосфата - в печени под действием глюкокиназы, а в других тканях под действием гексокиназы глюкоза фосфорилируется и превращается в глюкозо-6-фосфат (реакция необратимая).
2 - Превращение глюкозо-6-фосфата в глюкозо-1-фосфат Под действием фосфоглюкомутазы из глюкозо-6-фосфата образуется глюкозо-1-фосфат (реакция обратимая).
3 - Образование УДФ-глюкозы - глюкозо-1-фосфат взаимодействует с УТФ под действием УДФГ-пирофосфорилазы и образуется УДФ-глюкоза и пирофосфат (реакция обратимая)
4 - Удлинение цепи гликогена начинается с включения в работу фермента гликогенина: УДФ-глюкоза взаимодействует с ОН группой тирозина в составе фермента гликогенина (УДФ отщепляется и в дальнейшем при перефосфорилировании вновь дает УТФ). Затем гликозилированный гликогенин взаимодействует с гликогенсинтазой, под действием которой к первому остатку глюкозы через 1-4 связь присоединяется еще до 8 молекул УДФ-глюкозы. При этом УДФ отщепляется (реакции см. стр. 123 - Биохимия в схемах и рисунках, 2изд. - Н.Р. Аблаев).
5 - Ветвление молекулы гликогена - под действием амило(14)(16)-трансглюкозидазы происходит образование альфа(16)-гликозидной связи (см. пленку, не списывать).
Таким образом, 1) в образовании зрелой молекулы гликогена принимают участие гликогенсинтетаза и амилотрансглюкозидаза; 2) для синтеза гликогена требуется много энергии - для присоединения 1молекулы глюкозы к фрагменту гликогена используется 1молекула АТФ и 1 молекула УТФ; 3) для инициации процесса обязательно наличие затравки гликогена и екоторые специализированные белки-праймеры; 4) этот процесс не безграничен - избыток глюкозы превращается в липиды.
Гликогенолиз Процесс распада гликогена осуществляется 2 путями: 1 путь - фосфоролиз, 2 путь - гидролиз.
Фосфоролиз происходит во многих тканях (сразу пишем реакции, на откр. Только текст). При этом к крайним молекулам глюкозы присоединяются фосфорные кислоты и одновременно происходит их отщепление в виде глюкозо-1-фосфатов. Ускоряет реакцию фосфорилаза. Глюкозо-1-фосфат затем переходит в глюкозо-6-фосфат, который не проникает через клеточную мембрану и используется только там где образовался. Такой процесс возможен во всех тканях кроме печени, в которой много фермента глюкозо-6-фосфатазы, который ускоряет отщепление фосфорной кислоты и при этом образуется свободная глюкоза, которая может поступать в кровь - показать на пленке, реакции знать, см. материалы стр.36-37 (на откр. не списывать).
! Обязательно в виде текста - Фосфорилаза не действует на альфа(16)гликозидные связи. Поэтому окончательное разрушение гликогена осуществляется амило-1,6-глюкозидазой. Этот фермент проявляет 2 вида активности. Во-первых, активность трансферазы, которая переносит фрагмент из 3-х молекул глюкозы с альфа(16)положения в альфа(14)положение. Во-вторых, активность глюкозидазы, которая ускоряет отщепление свободной глюкозы на уровне альфа(16) гликозидной связи (см. пленку).
Второй путь гликогенолиза - гидролиз, осуществляется преимущественно в печени под действием гамма-амилазы. При этом происходит отщепление крайней молекулы глюкозы от гликогена и свободная глюкоза может поступать в кровь реакции знать, см. материалы стр. 37, показать на пленке.
Т.о., в результате гликогенолиза образуется или глюкозо-монофосфат (при фосфоролизе) или свободная глюкоза (при гидролизе), которые используется на синтетические процессы или подвергаются распаду (окислению).
5. Пути окисления глюкозы. Анаэробный гликолиз, энергетический баланс
Распад глюкозы (окисление): идет 2 путями - 2/3 глюкозы окисляется гликолитическим путем. 1/3 глюкозы окисляется пентозофосфатным путем - показать на пленке.
Гликолитический путь окисления глюкозы (гликолиз). Первоначально термином «гликолиз» обозначали только анаэробное брожение, завершающееся образованием лактата или этанола и СО2. В настоящее время понятие «гликолиз» используется более широко для описания распада глюкозы, проходящего через образование глюкозо-6-фосфата, фруктозо-1,6-дифосфата и пирувата как в отсутствие, так и в присутствии кислорода. В последнем случае употребляют термин «аэробный гликолиз» в отличие от «анаэробного гликолиза», завершающегося образованием лактата.
При анаэробном гликолизе из 1 молекулы глюкозы образуется 2 молекулы лактата и 2 АТФ. При аэробном гликолизе из 1 молекулы глюкозы образуется 36 или 38 АТФ, выделяется 6 СО2 и 6 Н2О. Пентозофосфатный цикл осуществляется в анаэробных условиях, в результате этого процесса выделяется 6СО2 и 12НАДФН2. НАДФН2 необходимы для восстановительного синтеза.
Анаэробный гликолиз, или фосфотриозный путь, или шунт Эмбдена-Мейерхофа включает 10 реакций. Ступенчатое окисление глюкозы создает возможность не только преодоления при обычной температуре порога энергии активации отдельных реакций, но и рационального использования энергии, освобождающейся здесь не в форме взрыва, а шаг, за шагом, отдельными порциями. На основе гликолиза возникло кислородное дыхание. Гликолиз - это древнее усилие природы использовать энергию - студенты пишут отдельно реакции формулами, а пояснение к реакциям в тексте лекции (как ЦТК).
1 реакция - глюкоза фосфорилируется под действием фермента глюкокиназы (в печени) или гексокиназы (в других тканях)
2 реакция - глюкозо-6-фосфат изомеризуется во фруктозо-6-фосфат под действием фосфогексоизомеразы; этот фермент действует на молекулу с открытой линейной конфигурацией
3 реакция - фруктозо-6-фосфат необратимо фосфорилируется во фруктозо-1,6-дифосфат под действием фосфофруктокиназы, которая также действует на молекулу с открытой конфигурацией
4 реакция - фруктозо-1,6-дифосфат под действием альдолазы расщепляется на 2 фосфотриозы - ФГА и ДОАФ, реакция обратимая
ДОАФ может участвовать в синтезе ТАГ и ФЛ, восстанавливаясь до глицерофосфата, также участвует в глицерофосфатном челночном механизме, но основная его масса переходит в ФГА
5 реакция - ФГА окисляется с участием НАД и фосфорилируется. При этом энергия окисления трансформируется в макроэргическую связь 1,3 дифосфоглицерата.
6 реакция - 1,3-дифосфоглицерат реагирует с АДФ, отдает ей остаток фосфорной кислоты и выделяется АТФ. Так происходит субстратное фосфорилирование и образуется 3-фосфоглицерат, реакцию ускоряет фосфоглицераткиназа
7 реакция - под влиянием фосфоглицеромутазы остаток фосфорной кислоты переносится с С3 на С2 и образуется 2-фосфоглицерат
8 реакция - 2-фосфоглицерат дегидратируется енолазой. При этом за счет внутримолекулярной ОВР энергия аккумулируется в виде макроэргической связи в фосфоенолпирувате. Енолаза ингибируется ионами фторида; этим пользуются в тех случаях, когда необходимо остановить гликолиз, например, перед определением содержания глюкозы в крови. Енолаза нуждается в ионах магния и марганца:
9 реакция - ФЕП передает остаток фосфорной кислоты на АДФ, при этом образуется енолпируват и выделяется АТФ, вновь происходит субстратное фосфорилирование. Реакция ускоряется пируваткиназой. Енолпируват спонтанно превращается в ПВК.
10 реакция - ПВК в анаэробных условиях восстанавливается в молочную кислоту (лактат)
Энергетический баланс анаэробного гликолитического окисления глюкозы
Если процесс гликолиза начинается с глюкозы, то на образование фруктозо-6-фосфата и фруктозо-1,6-дифосфата затрачивается 2 молекулы АТФ. Т.к., в результате гликолиза образуется 4 АТФ, следовательно, в чистом виде запасается 2 АТФ. Если процесс гликолиза начинается с глюкозо-6-фосфата, образованного при распаде гликогена, затрачивается 1 АТФ для образования фруктозо-1,6-дифосфата, тогда выделяется 3 АТФ.
Значение гликолиза
У плода и в первые месяцы жизни преобладает анаэробный распад (окисление) глюкозы. Поэтому уровень лактата у новорожденных больше, чем у взрослых.
В некоторых тканях анаэробный гликолиз является основным источником энергии, например, в эритроцитах, хрусталике, сетчатке, мозговом веществе почек
Для большинства тканей - это аварийный путь, т.к. обеспечивает энергией в условиях гипоксии и аноксии, например в высокогорье, при интоксикации, анемии, болезнях органов дыхания, ССС, отравлении угарным газом, тяжелом физическом труде
Некоторые метаболиты гликолиза используются на синтетические процессы, например, фосфотриозы, ПВК, лактат могут использоваться на образование глюкозы - глюконеогенез; липонеогенез и синтез заменимых аминокислот
Литература
Березов Т.Т., Коровкин Б.Ф. «Биологическая химия», 1998 - С. 169-186, 319-359.
Полосухина Т.Я., Аблаев Н.Р. «Материалы к курсу биологической химии», 1977 - С.30-44.
Плешкова С.М., Абитаева С.А., Ерджанова С.С., Петрова Г.И. «Практикум по биологической химии», 2003 - лаб.раб.№№ 66, 67, 74.
Сеитов З.С. «Биохимия», 2000 - С. 480-506, 517-522.
Зайчик А.Ш., Чурилов Л.П. «Основы патохимии»2000 - С.218-245.
Бышевский А.Ш., Терсенов О.А. «Биохимия для врача» 1994 - С.308-312, 222-224, 227, 75-95
Harper's Biochemistry - R.K. Murray, D.K. Granner, P.A. Mayes, V.W. Rodwell - APPLETON&LANGE, Stamford, Connecticut, 2000
Биохимия человека - Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл - М., Мир, 1993
Шарманов Т.Ш., Плешкова С.М. - Метаболические основы питания с курсом общей биохимии - Алматы, 1998
Размещено на Allbest.ru
...Подобные документы
Специфические свойства, структура и основные функции, продукты распада жиров, белков и углеводов. Переваривание и всасывание жиров в организме. Расщепление сложных углеводов пищи. Параметры регулирования углеводного обмена. Роль печени в обмене веществ.
курсовая работа [261,6 K], добавлен 12.11.2014Значение для организма белков, жиров и углеводов, воды и минеральных солей. Белковый, углеводный, жировой обмен организма человека. Нормы питания. Витамины, их роль в обмене веществ. Основные авитаминозы. Роль минеральных веществ в питании человека.
контрольная работа [1,6 M], добавлен 24.01.2009Изучение проблемы обмена веществ как основной функции организма человека в научной литературе. Обмен углеводов как совокупность процессов их превращения в организме, его фазы. Источник образования и поступления витаминов. Регуляция обмена веществ.
курсовая работа [415,4 K], добавлен 01.02.2014Обмен веществ и энергии как основная функция организма, его основные фазы и протекающие процессы - ассимиляции и диссимиляции. Роль белков в организме, механизм их обмена. Обмен воды, витаминов, жиров, углеводов. Регуляция теплообразования и теплоотдачи.
реферат [27,2 K], добавлен 08.08.2009Результат расщепления и функции белков, жиров и углеводов. Состав белков и их содержание в пищевых продуктах. Механизмы регулирования белкового и жирового обмена. Роль углеводов в организме. Соотношение белков, жиров и углеводов в полноценном рационе.
презентация [23,8 M], добавлен 28.11.2013Функции обмена веществ в организме: обеспечение органов и систем энергией, вырабатываемой при расщеплении пищевых веществ; превращение молекул пищевых продуктов в строительные блоки; образование нуклеиновых кислот, липидов, углеводов и других компонентов.
реферат [28,0 K], добавлен 20.01.2009Превращения веществ и энергии, происходящие в живых организмах и лежащие в основе их жизнедеятельности. Назначение обмена веществ и энергии, взаимосвязь анаболических и катаболических процессов. Энергетическая ценность углеводов и жиров в организме.
реферат [21,9 K], добавлен 28.05.2010Энергетический обмен как часть общего метаболизма клетки, совокупность реакций окисления органических веществ и синтеза богатых энергией молекул АТФ. Основные этапы энергетического обмена: подготовительный, гликолиз, кислородный (клеточное дыхание).
презентация [363,9 K], добавлен 03.12.2011Обмен белков, липидов и углеводов. Типы питания человека: всеядность, раздельное и низкоуглеводное питание, вегетарианство, сыроедение. Роль белков в обмене веществ. Недостаток жиров в организме. Изменения в организме в результате изменения типа питания.
курсовая работа [33,5 K], добавлен 02.02.2014Обмен сложных белков. Переваривание, всасывание и промежуточный обмен липидов. Жирорастворимые и водорастворимые витамины. Регуляция обмена углеводов. Теплообмен и регуляция температуры тела. Регуляция липидного обмена. Роль печени в обмене веществ.
презентация [10,2 M], добавлен 05.04.2014Общая характеристика углеводов и их функции в организме. Расщепление поли- и дисахаридов до моносахаридов. Анаэробное и аэробное расщепление глюкозы. Взаимопревращение гексоз. Схема ферментативного гидролиза крахмала под действием амилаз разных типов.
презентация [13,5 M], добавлен 13.10.2013Обмен веществ в организме - взаимосвязанное единое целое. Взаимопереходы между отдельными классами органических соединений - естественное, неизбежное и крупномасштабное явление в живой природе. Взаимосвязь обменов нуклеиновых кислот, углеводов и липидов.
презентация [919,4 K], добавлен 13.10.2013Обмен веществ и энергии как совокупность физических, химических и физиологических процессов превращения веществ и энергии в организме человека. Знакомство с основными составляющими рационального питания: энергетический баланс, сбалансированность.
презентация [463,5 K], добавлен 13.02.2015Белки - основные структурные элементы клеток и тканей организма. Процессы распада и синтеза белков в ходе тканевого метаболизма. Цикл сложных химических превращений белковых веществ. Процесс переваривания и всасывания белков. Регуляция белкового обмена.
реферат [396,3 K], добавлен 30.01.2011Метаболизм липидов в организме, его закономерности и особенности. Общность промежуточных продуктов. Взаимосвязь между обменами углеводов, липидов и белков. Центральная роль ацетил-КоА во взаимосвязи процессов обмена. Расщепление углеводов, его этапы.
контрольная работа [26,8 K], добавлен 10.06.2015Роль обмена веществ в обеспечении пластических и энергетических потребностей организма. Особенности теплопродукции и теплоотдачи. Обмен веществ и энергии при различных уровнях функциональной активности организма. Температура тела человека и ее регуляция.
реферат [22,5 K], добавлен 09.09.2009Энергетическая, запасающая и опорно-строительная функции углеводов. Свойства моносахаридов как основного источника энергии в организме человека; глюкоза. Основные представители дисахаридов; сахароза. Полисахариды, образование крахмала, углеводный обмен.
доклад [14,5 K], добавлен 30.04.2010Сущность метаболизма организма человека. Постоянный обмен веществ между организмом и внешней средой. Аэробное и анаэробное расщепление продуктов. Величина основного обмена. Источник тепла в организме. Нервный механизм терморегуляции организма человека.
лекция [22,3 K], добавлен 28.04.2013Значение различных углеводов для живых организмов. Основные этапы и регуляция углеводного обмена. Стимулирование расщепления гликогена в процессе гликогенолиза при возбуждении симпатических нервных волокон. Утилизация глюкозы периферическими тканями.
реферат [20,0 K], добавлен 21.07.2013Углеводы и их роль в животном организме. Всасывание и обмен углеводов в тканях. Роль жиров в животном организме. Регуляция углеводно-жирового обмена. Особенности углеводного обмена у жвачных. Взаимосвязь белкового, углеводного и жирового обмена.
презентация [2,0 M], добавлен 07.02.2016