Содержание свободных аминокислот в органах и тканях как фактор гомеостатического механизма регуляции интенсивности синтеза белка в организме животных

Характеристика свободных аминокислот в крови, органах и тканях животных как субстрата для синтеза белков. Определение содержания свободных аминокислот в плазме крови, в печени и в мышцах крыс в зависимости от разной степени сбалансированности рационов.

Рубрика Биология и естествознание
Вид статья
Язык русский
Дата добавления 11.02.2016
Размер файла 24,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Северо-Кавказский НИИ животноводства

УДК 636.4.085/13

Статья

на тему: Содержание свободных аминокислот в органах и тканях, как фактор гомеостатического механизма регуляции интенсивности синтеза белка в организме животных

Выполнил:

Омаров М.О.

Свободные аминокислоты в крови, органах и тканях являются субстратом для синтеза белков. Их концентрация в крови отражает, с одной стороны, качественную и количественную сторону притока аминокислот в результате кормления и деградации белков тела, с другой - оттока на синтез белков в организме. Ряд исследователей использовали пул свободных аминокислот в плазме крови и органах с целью определения биологической ценности протеина [5], потребности животных в аминокислотах [4, 13], состояния белкового обмена [2, 9].

Концентрация свободных аминокислот в плазме отражает состояние динамического равновесия, которое определяется следующими условиями: количеством аминокислот, поступающих с потреблённым белком, скоростью поглощения тканями на синтез белка и степенью деградации белков и аминокислот.

Уровень свободных аминокислот в плазме отражается в в мышечной ткани, на которую приходится 45% массы тела животного [12]. Печень составляет небольшую долю 3,5-4%. В этом отношении мышцы по своему значению, как депо аминокислот, значительно превосходят печень. Всего 6% общего количества аминокислот, проходящих через печень, используются на синтез белков печени [8]. Между тем, печени отводится ключевая роль в регуляции белкового обмена. Большинство незаменимых аминокислот, за исключением валина, лейцина и изолейцина деградируются почти исключительно в печени. Она является главным местом образования мочевины. Белки плазмы крови, кроме гамма-глобулина, синтезируются, и почти половина их катализируется печенью [11].

После переваривания белков в желудочно-кишечном тракте, освобожденные аминокислоты из воротной вены сначала проходят через печень, где частично катаболизируются. Основная же часть поступает в общую циркуляцию и доставляется к другим органам в неизменном виде.

С целью определения пула свободных аминокислот в тканях и органах животных в зависимости от разной степени сбалансированности рационов по аминокислотам был проведён лабораторный опыт на пяти группах животных.

Опыт проведён на крысах-отъёмышах породы Вистар в возрасте 20-24 дней с живой массой 56 г, в каждой группе по 14 голов (поровну самцов и самок).

Основной контрольный рацион (ОР) состоял из дерти ячменной, пшеничной и кукурузной, обогащенной витаминами, жирами, мак-ро- и микроэлементами. Животные второй группы получали рацион первой группы и смесь незаменимых аминокислот для удовлетворения норм физической потребности, но без лизина (имбаланс лизина). Животные третьей группы - без метионина (имбаланс метионина).

Животные четвёртой группы - без треонина (имбаланс треонина). Животные пятой группы получали скорректированный по всем незаменимым аминокислотам рацион. Продолжительность опыта составляла 14 дней. Подготовку образцов крови, печени и мышечной ткани для определения свободных аминокислот проводили по прописи В.Г Рядчикова [4], аминокислоты определяли на анализаторе Т-339.

Результаты исследований. У животных пятой группы, получавших скорректированную диету, общая сумма свободных аминокислот в плазме крови и мышцах существенно не отличались от таковой у животных первой, второй и четвёртой групп, несмотря на то, что они потребляли протеина на 50%, 29% и 43%, соответственно, больше (табл. 1, 2, 3).

В печени суммарная концентрация свободных аминокислот у них ниже, чем у животных первой, второй и четвёртой групп - 128,2 против 152,4, 143,5 и 177,8 мг%, соответственно.

Если рассматривать концентрацию свободных аминокислот относительно их потребления с кормом, то такое соотношение будет

самым низким в плазме крови, мышцах и печени у животных на скорректированной диете. По-видимому, правильное соотношение аминокислот в скорректированной диете способствовало более эффективному использованию свободных аминокислот на синтез белков тела.

Эти данные согласуются с выводами Fonsecal. B. et. al. [9], который считает, что дефицит даже одной незаменимой аминокислоты вызывает снижение белкового синтеза и повышение концентрации свободных аминокислот в плазме. И, наоборот, при балансе аминокислот они быстро расходуются на синтез белка тканей, и уровень их плазмы снижается.

Относительно низкую концентрацию аминокислот в крови и мышцах при кормлении хорошо сбалансированными рационами отмечали в опытах на цыплятах [1] и на поросятах [6]. При имбалансе треонинаконцентация свободного треонина в крови снижается в пять раз, хотя его потребление с кормом было примерно таким же, как у животных первой группы (29 мг против 30 мг) (табл. 4).

Уровень свободного лизина был чрезвычайно низким при дефиците лизина - 0,56 мг%. Животные 1-ой группы получали рацион с таким же содержанием лизина, потребляли меньше корма, но содержание свободного лизина в крови у них было заметно больше - 1,95 мг %. Эти данные ещё раз подтверждают факт, что свободный лизин плазмы при 100% обеспеченности остальными аминокислотами использовался у животных 2-ой группы более эффективно, чем у животных первой, где недоставало до норм потребности независимых аминокислот. аминокислота синтез белок животное

В плазме животных с треониновым дефицитом уровень свобод-ноготреонина понижен, но не очень значительно, как это наблюдается с лизином между 1-ой и 2-ой группами.

Интересен тот факт, что в плазме животных 2-ой группы (дефицит лизина) наблюдается высокое содержание свободного треонина. В печени несколько другая картина по содержанию свободных аминокислот. Так, уровень свободного лизина у животных при дефиците лизина мало отличается от его концентрации в печени животных 1-ой, 2-ой и 5-ой групп. Вместе с тем, она заметно ниже в печени животных с треониновым дефицитом.

Концентрация свободного треонина у животных 4-ой группы при его дефиците почти в 2 раза ниже по сравнению с уровнем треонина в 1-й и 3-ей группах.

Содержание свободного метионина в печени животных всех групп находилось практически на одном уровне. Обращает на себя внимание высокое содержание свободных незаменимых аминокислот в печени животных тех групп [1, 2, 4], у которых наблюдается наиболее низкий рост. Это, по-видимому, объясняется необходимостью переработки избытка печенью.

В мышцах можно отметить только незначительную тенденцию более низкого уровня свободного лизина, по сравнению с таковыми в других группах. Нет значительной разницы и по уровню свободного треонина. В то же время, в группе животных с дефицитом метионина его концентрация в мускулах понижена.

Уровень незаменимых, заменимых и общая сумма аминокислот при всех формах аминокислотного питания оказалась очень близкой. По-видимому, в мышечную ткань транспортируется оптимальный набор аминокислот в качестве субстрата для осуществления синтеза внутреклеточных белковых структур. Барьерные и регуляторные функции вероятнее всего обеспечиваются плазматической мембраной миоцитов.

Обращает на себя внимание взаимозависимость концентрации одних аминокислот крови, печени и мышц с концентрацией других. Так, у животных при дефиците лизина (вторая группа) вместе со снижением уровня лизина в плазме крови заметно повышается содержание свободного треонина, серина и валина.

У животных четвёртой группы (дефицит треонина) при низком уровне треонина в плазме крови и мышцах заметно повышается содержание свободного лизина и, наоборот, в печени увеличивается содержание треонина и снижается содержание лизина.

По-видимому, существует прямая связь между количеством поступившего треонина с кормом и концентрацией свободного лизина в плазме крови, и, наоборот.

Таблица 1. Содержание свободных аминокислот в плазме крови крыс (мг %)

Аминокислоты

Основной рацион (1)

Рацион с дефицитом

Скорректированный рацион (5)

лизина (2)

метионина (3)

треонина (4)

Лизин

1,95

0,56

4,95

5,51

4,05

Гистидин

0,84

1,09

1,52

1,34

0,99

Аргинин

1,86

2,28

3,82

2,02

2,56

Аспарагиновая кислота

6,32

6,12

5,59

6,42

3,85

Треонин

1,67

2,20

1,88

1,34

1,54

Серин

8,71

12,60

4,61

7,23

3,87

Глютаминовая кислота

4,32

1,71

2,0

5,50

14,26

Глицин

4,29

2,69

2,33

2,74

1,85

Аланин

6,61

8,14

7,88

7,34

7,81

Валин

1,24

1,71

0,92

0,99

0,83

Метионин

0,17

0,16

0,15

0,15

0,17

Изолейцин

0,74

1,62

1,20

0,95

0,98

Лейцин

10,82

8,81

9,29

9,67

7,42

Тирозин

0,73

1,53

2,12

1,11

1,34

Фенилаланин

0,78

1,32

1,57

1,10

1,11

Сумма аминокислот:

незаменимых (НА)

20,8

21,28

25,3

24,38

20,94

Заменимых (ЗА)

30,25

31,26

24,53

29,23

31,64

Общая (НА + ЗА)

51,05

52,54

49,83

53,61

52,58

НА / ЗА

0,69

0,68

1,03

0,80

0,66

В исследованиях Н.А. Шманенкова и др. [1] обнаружен повышенный распад треонина при недостатке и избытке лизина в рационе.

По-видимому, треонин каким-то образом играет важную роль при метаболизме метионина, и не исключено существование связи между ферментными системами ответственными за превращение треонина и метионина, а также треонина и лизина в организме животных [2, 3, 7].

Таблица 2. Содержание свободных аминокислот в печени крыс (мг %)

Аминокислоты

Основной рацион (1)

Рацион с дефицитом

Скорректированный рацион (5)

лизина (2)

метионина (3)

треонина (4)

Лизин

6,68

6,15

6,0

2,71

5,79

Гистидин

2,58

2,60

2,44

2,04

2,10

Аргинин

9,84

4,85

1,48

10,41

3,12

Аспарагиновая кислота

15,10

16,66

13,12

15,57

12,39

Треонин

30,40

21,64

13,26

26,25

14,18

Серин

16,19

16,87

12,87

13,57

15,36

Глютаминовая кислота

42,16

38,55

66,38

49,36

37,66

Глицин

1,99

3,89

2,90

13,61

7,08

Аланин

14,99

11,13

10,39

10,30

13,41

Валин

10,91

7,22

7,01

4,49

7,37

Метионин

2,31

2,18

2,18

2,34

2,08

Изолейцин

1,32

1,68

1,37

1,24

1,20

Лейцин

2,29

5,07

5,08

6,83

3,13

Тирозин

1,26

1,09

1,81

6,13

1,18

Фенилаланин

1,40

3,89

1,07

12,97

2,17

Сумма аминокислот:

незаменимых (НА)

68,99

56,37

41,7

75,41

42,3

Заменимых (ЗА)

90,43

87,1

105,66

102,41

85,9

Общая (НА + ЗА)

159,42

143,47

147,36

177,82

128,2

НА / ЗА

0,77

0,65

0,40

0,74

0,49

Обобщая результаты по содержанию свободных аминокислот в крови, тканях и органах белых крыс при дефиците и на сбалансированном рационе, можно сделать следующие выводы:

1) при дефиците наблюдалось снижение в плазме крови и увеличение в печени концентрации лимитирующей аминокислоты;

2) при дефиците наблюдалось высокое содержание суммы свободных аминокислот в печени и более низкое - на скорректированной диете;

3) при разных условиях аминокислотного питания уровень свободных аминокислот в мышечной ткани оказывается практически одинаковым, что свидетельствует о том, что плазматическая мембрана миоцитов обладает барьерной и регуляторной функцией для транспортировки из крови в клетки набора свободных аминокислот, который обеспечивает нормальное функционирование клеток мышечной ткани.

Таким образом, аминокислотный состав корма отчетливо отражается на уровне свободных аминокислот в плазме крови. В печени уровень дефицитных аминокислот оказывается не ниже, а даже выше, чем в печени крыс, получавших хорошо сбалансированный рацион. В мышечной ткани независимо от сбалансированности рациона фонд свободных аминокислот, соотношение суммы независимых и заменимых аминокислот сохраняется более сбалансированным. Это обстоятельство свидетельствует о наличии защитной и регуляторной функции миоцитов в своем обеспечении сбалансированным набором аминокислот.

Это свидетельствует о том, что плазматическая мембрана миоци-тов обладает барьерной и регуляторной функцией для транспортировки из крови в клетки такого набора свободных аминокислот, который обеспечивает нормальное функционирование мышечных клеток.

Таблица 3. Содержание свободных аминокислот в мышцах крыс (мг %)

Аминокислоты

Основной рацион (1)

Рацион с дефицитом

Скорректированный рацион (5)

лизина (2)

метионина (3)

треонина (4)

Лизин

3,70

3,40

5,72

4,30

3,51

Гистидин

1,81

1,43

2,06

2,24

1,58

Аргинин

4,70

5,48

4,79

6,16

4,79

Аспарагиновая кислота

9,59

9,87

10,60

6,97

6,88

Треонин

10,74

8,44

8,90

8,66

10,81

Серин

26,0

24,01

18,06

26,81

28,89

Глютаминовая кислота

56,77

60,43

58,06

56,77

52,30

Глицин

20,30

18,41

23,47

18,69

15,18

Аланин

12,98

16,54

21,64

15,84

17,10

Валин

3,60

3,74

2,14

3,83

2,81

Метионин

1,52

1,62

1,0

1,69

1,28

Изолейцин

2,27

2,69

1,59

2,58

2,24

Лейцин

5,37

4,95

3,55

5,06

4,47

Тирозин

3,77

3,17

3,77

3,06

2,98

Фенилаланин

2,54

3,26

1,90

2,66

2,28

Сумма аминокислот: незаменимых (НА)

40,05

38,18

35,42

40,01

36,66

Заменимых (ЗА)

125,64

129,26

131,83

125,08

120,44

Общая (НА + ЗА)

165,69

167,44

167,25

165,09

157,1

НА / ЗА

0,32

0,30

0,27

0,32

0,31

Таблица 4. Переваримость и отложение азота у крысза период 0-14 дней (M±m)

Показатели

Группы

1 (основная диета)

2 (дефицит лизина)

3 (дефицит метионина)

4 (дефицит треонина)

5 (скорректированная диета)

Коэффициент переваримости, %

85,15 ± 1,10

86,60 ± 0,90

85,10 ± 1,4

87,67 ± 0,67

86,62 ± 1,2

Отложено: г/гол

0,47

0,55

0,66

0,41

0,76

Мг/г потреблённого белка

34

36

32,5

27

32,6

Резюме

Свободные аминокислоты в крови, органах и тканях являются субстратом для синтеза белков. Их концентрация в крови отражает, с одной стороны, качественную и количественную сторону притока аминокислот в результате кормления и деградации белков тела, с другой - оттока на синтез белков в организме. Ряд исследователей использовали пул свободных аминокислот в плазме крови и органах с целью определения биологической ценности протеина, потребности животных в аминокислотах, состояния белкового обмена. В статье приведены результаты опыта по изучению влияния разных форм сбалансированности рационов в питании лабораторных животных на содержание свободных аминокислот в тканях и органах животных. Доказано, что сумма свободных аминокислот в органах на скорректированном рационе ниже, чем при дефиците одной из незаменимых аминокислот. Аминокислотный состав рациона отчётливо отражается на уровне свободных аминокислот в плазме крови. В печени уровень дефицита аминокислот оказывает не ниже, а даже выше, чем в печени крыс, получавших хорошо сбалансированную диету. В мышечной ткани независимо от сбалансированности рациона фонд свободных аминокислот, соотношение суммы независимых и заменимых аминокислот сохраняется более сбалансированным. Это свидетельствует о том, что плазматическая мембрана миоцитов обладает барьерной и регуляторной функцией для транспортировки из крови в клетки такого набора свободных аминокислот, который обеспечивает нормальное функционирование мускульных клеток.

Ключевые слова: белые крысы, кровь, печень, мышечная ткань, аминокислоты, протеин, синтез белка, дефицит, дисбаланс, имбаланс, пул свободных аминокислот, субстрат, лизин, метионин, треонин.

Список литературы

1. Абдулкадыров К., Каленюк В.Ф., Шманенков Н.А. и др. Влияние различного уровня лизина в рационе цыплят на динамику свободных аминокислот в плазме крови и стенке отдела кишечника. //Науч. тр. ВНИИФБ и П с.х. животных - Боровск, 1973, т. XII, с. 74-79.

2. Омаров М.О. Биохимическое обоснование влияния некоторых незаменимых аминокислот в питании моногастричных животных на обмен веществ в организме и их продуктивность.//Автореф. дисс. д-ра биол. наук - Краснодар, 2001.

3. Османова С.О., Омаров М.О. Влияние различных концентраций лизина и протеина в кормах на активность фермента лизин-кетоглютаратредуктазы.// Ж. Ветеринария Кубани, 2011,6 с.10-12.

4. Рядчиков В.Г Обмен веществ у моногастричных животных и пути повышения биологической ценности белка зерна злаковых культур. //Автореф. дисс. д-ра биол. наук - Краснодар, 1981.

5. Эггум Б. Методы оценки использования белка животными. //М.; Колос,1977, с. 189.

6. Янушкевич В.Г. Рост и обмен веществ у откармливаемого молодняка свиней при разной обеспеченности энергией, лизином и метионином: //Авто-реф. дисс. канд. биол. наук - Каменец-Подольский, 1974.

7. Cohen H.P., Choitz H.C., Berg C.P. Pesponce of rats to diets high in methionine and compounds //V. Nutr, 1958, 64, p.555-559.

8. Daoies M.G., Thomas A.J. Chandes in the amino acid content of young growth rates after weaning. //Nutz. Repts. Jntezn., 197, 11, p. 3-11.

9. Fonseca J.B., Rogler J.C., Featheraton W.R., Cline T.R. Futher studies on nutritioe value of opaque -2 corn for the chick.// V. Poyltry. Sci, 1970,V. 49. № 6, p.1518-1525.

10. Leung P.M.B., Rogers Q.R., Harper A.E. Effect of amino acid imbalance on dietary choice in therat.//V. Natrition, 1968, 95, p. 483-492.

11. Mc Farione A.S. Metabolism of plasma proteins.-Mammalian Protein Metabolism. Ed. H.N. Munro., V.B. Allisjn.//Ac. Press.-New-York, 1964, Vol 1, p.298-342.

12. Munro H.N., Amino acid requirements and utilization by individual mammalian tissues.Proteinfnd Amino Acid Functijn.-Intern.Encyel.-Foadfnd Nutrition, //Vol. Oxford, Chapter, 4, 1972, p.157-195.

13. Williams H.H., Curtin L.W., Abraham V., Loosli V.K., Maynard L.A. Extimation of growth requirements for amino acids by assay of the carcass. //V.Biol. Chem, 1954, 208, 1 p.277.

Размещено на Allbest.ru

...

Подобные документы

  • Типовые нарушения белкового обмена. Несоответствие поступления белка потреблению. Нарушение расщепления белка в ЖКТ и содержания белка в плазме крови. Расстройство конечных этапов катаболизма белка и метаболизма аминокислот. Нарушения липидного обмена.

    презентация [201,8 K], добавлен 21.10.2014

  • Промежуточный обмен аминокислот в тканях. Общие пути обмена аминокислот. Обезвреживание аммиака в организме. Орнитиновый цикл мочевинообразования. Типы азотистого обмена. Общие пути превращения аминокислот включают реакции дезаминирования.

    реферат [7,6 K], добавлен 18.04.2004

  • Исследование физиологической роли аминокислот - конечных продуктов гидролиза белков. Классификация аминокислот по числу аминных и карбоксильных групп на: моноаминомонокарбоновые; диаминомонокарбоновые; моноаминодикарбновые новые и диаминодикарбоновые.

    контрольная работа [199,0 K], добавлен 13.03.2013

  • Процесс синтеза белков и их роль в жизнедеятельности живых организмов. Функции и химические свойства аминокислот. Причины их нехватки в организме человека. Виды продуктов, в которых содержатся незаменимые кислоты. Аминокислоты, синтезируемые в печени.

    презентация [911,0 K], добавлен 23.10.2014

  • История открытия и изучения белков. Строение молекулы белка, ее пространственная организация и свойства, роль в строении и жизнеобеспечении клетки. Совокупность реакций биологического синтеза. Всасывание аминокислот. Влияние кортизола на обмен белка.

    контрольная работа [471,6 K], добавлен 28.04.2014

  • Определение, функции основных аминокислот, их физико-химические свойства и критерии классификации. Оптическая активность, конфигурация и конформация аминокислот. Растворимость и кислотно-основные свойства аминокислот. Заменимые и незаменимые аминокислоты.

    реферат [2,3 M], добавлен 05.12.2013

  • Изучение строения гена эукариот, последовательности аминокислот в белковой молекуле. Анализ реакции матричного синтеза, процесса самоудвоения молекулы ДНК, синтеза белка на матрице и-РНК. Обзор химических реакций, происходящих в клетках живых организмов.

    презентация [666,1 K], добавлен 26.03.2012

  • Понятие термина "трансляция" как передачи наследственной информации от иРНК к белку. "Перевод" последовательности трехчленных кодонов иРНК в последовательность аминокислот синтезируемого белка. Генетический код и механизм регулирования белкового синтеза.

    реферат [189,1 K], добавлен 11.12.2009

  • Содержание воды в организме человека. Кровь как разновидность соединительных тканей. Состав крови, ее функции. Объем циркулирующей крови, содержание веществ в ее плазме. Белки плазмы крови и их функции. Виды давления крови. Регуляция постоянства рН крови.

    презентация [593,9 K], добавлен 29.08.2013

  • Содержание, локализация и транспорт аминокислот. Метаболизм дикарбоновых аминокислот и глутамина. Компартментализация метаболизма аминокислот. Глицин и пути его обмена, серосодержащие аминокислоты. Ароматические аминокислоты нервной ткани и их метаболизм.

    курсовая работа [1,7 M], добавлен 26.08.2009

  • Растворы и жидкости в отношении их кислотности. Показатель водно-солевого баланса в тканях и крови организма - pH-фактор. Закисление организма, повышенное содержание щёлочи в организме (алкалоз). Концентрация буферных систем. Защита от перекислений.

    презентация [1,2 M], добавлен 18.03.2015

  • Особенности влияния рентгеновского излучения на гематологические показатели крови крыс на фоне приема различных штаммов спирулины и смеси витаминов. Влияние пищевых добавок на гематологические показатели крови у лабораторных животных при облучении.

    курсовая работа [189,4 K], добавлен 22.09.2011

  • Пищевые белки как основной источник аминокислот для человека. Группы аминокислот, которые встречаются в белках организма. Переваривание белков в желудке и кишечнике. Обезвреживание продуктов гниения путем соединения с серной и глюкуроновой кислотами.

    презентация [2,5 M], добавлен 28.12.2013

  • Основные механизмы нервно-гормональной регуляции во время выполнения физических нагрузок. Зависимость глубины биохимических сдвигов, возникающих в мышцах, во внутренних органах, в крови и в моче, от мощности и продолжительности физической работы.

    реферат [24,9 K], добавлен 06.09.2009

  • Понятие белков как высокомолекулярных природных соединений (биополимеров), состоящих из остатков аминокислот, которые соединены пептидной связью. Функции и значение белков в организме человека, их превращение и структура: первичная, вторичная, третичная.

    презентация [564,0 K], добавлен 07.04.2014

  • Изучение функций белков - высокомолекулярных органических веществ, построенных из остатков аминокислот, которые составляют основу жизнедеятельности всех органов. Значение аминокислот - органических веществ, которые содержат амин- и карбоксильную группы.

    презентация [847,2 K], добавлен 25.01.2011

  • Определение влияния гипотермии на содержание водорастворимых белков в тканях высших растений, бактерий и водорослей. Применение электрофореза для разделения растительных белков. Влияние развития морозоустойчивости на синтез белков, изменение экспрессии.

    реферат [22,1 K], добавлен 11.08.2009

  • Производство продуктов микробного синтеза первой и второй фазы, аминокислот, органических кислот, витаминов. Крупномасштабное производство антибиотиков. Производство спиртов и полиолов. Основные типы биопроцессов. Метаболическая инженерия растений.

    курсовая работа [233,2 K], добавлен 22.12.2013

  • Аминокислотный состав белков в организмах, роль генетического кода. Комбинации из 20 стандартных аминокислот. Выделение белков в отдельный класс биологических молекул. Гидрофильные и гидрофобные белки. Принцип построения белков, уровень их организации.

    творческая работа [765,3 K], добавлен 08.11.2009

  • Репликация ДНК как ее уникальное свойство. Водородные связи, которые связывают нити. Комплементарный участок родительской цепи, взаимодействие с праймером. Образование новой цепи ДНК дочерней нити. Транспорт аминокислот к месту синтеза белка, рибосомам.

    презентация [276,8 K], добавлен 24.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.