Популяционная структура человечества

Особенности действия эволюционных факторов в популяциях людей. Причины расового, религиозного, культурного порядка. Влияние мутационного процесса, миграции, изоляции на генетическую конституцию людей. Дрейф генов и особенности генофондов изолятов.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 17.05.2016
Размер файла 744,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Популяционная структура человечества

Содержание

1. Специфика человеческих популяций

2. Особенности действия эволюционных факторов в популяциях людей

3. Генетическое разнообразие в популяциях людей. Генетический груз

4. Причины географического, экономического, расового, религиозного, культурного порядка

5. Эффект родоначальника

6. Естественный отбор

7. Отбор и контротбор

8. Генетический полиморфизм

9. Генетический груз

10. Влияние мутационного процесса, миграции, изоляции на генетическую конституцию людей. Дрейф генов и особенности генофондов изолятов. Специфика действия естественного отбора в человеческих популяциях

1. Специфика человеческих популяций

В антропогенетике популяцией называют группу людей, проживающих на общей территории и свободно вступающих в брак. Изоляционные барьеры, препятствующие вступлению в брак носят выраженный социальный характер (например, различия в вероисповедании), поэтому в формировании популяций главную роль играет не общность территории, а родственные связи.

Демографическими показателями популяции людей являются: величина, уровень рождаемости и смертности, возрастной состав, экономическое состояние, уклад жизни. Генетически человеческие популяции характеризуются генофондами.

Популяции человека по численности делятся на крупные, малые (субпопуляции) или демы и изоляты. Большие по размерам популяции (более 4000 человек) состоят обычно из нескольких антропологических групп, имеющих различное происхождение. В таких популяциях распределение частот аллелей в генотипах поколений подчиняется закону Харди - Вайнберга, что используется в медико-генетической практике для расчета доли гетерозигот - носителей рецессивного аллеля.

Закон Харди-Вайнберга. Генетическая гетерогенность популяции при отсутствии давления эволюционных факторов остается неизменной, находясь в определенном равновесии.

Если частоту встречаемости доминантного аллеля А - определить как р, а частоту альтернативного аллеля а - q, то в потомстве свободно скрещивающихся особей должны быть следующие отношения аллелей, генотипов (см. табл. 6):

Это при суммировании дает:

(p+q)2=p2+2pq+q2 = 1

Закон Харди-Вайнберга позволяет рассчитать относительную частоту генотипов и фенотипов в популяции.

Демы - популяции численностью примерно 1500-4000 человек. Изоляты - самые маленькие популяции - не более 1500 человек. Для демов и изолятов характерны следующие признаки: низкий (1-2) процент лиц, происходящих из разных антропологических групп, высокая частота внутригрупповых браков (80-90%) и незначительный прирост населения - около 20% за 25 лет. В изолятах частота внутригрупповых браков может достигать 90% и более. В таком изоляте, если он существует не менее 4-х поколений (около100 лет), все члены являются не менее чем троюродными братьями и сестрами.

В настоящее время в популяциях человека происходят такие процессы:

1) разрушение брачных изолятов;

2) средовая гомогенизация, которая снижает первичные причины расовых различий;

3) замена одних форм болезней другими (первое место с некоторых пор занимают две болезни “цивилизации” - сердечно-сосудистые и онкологические заболевания вместо инфекционных и алиментарных.

Эти процессы в совокупности ведут к численному увеличению популяций.

2. Особенности действия эволюционных факторов в популяциях людей

С возникновением человека как социального существа биологические факторы эволюции постепенно ослабляют свое действие и ведущее значение в развитии человечества приобретают социальные факторы. Однако, человек как биологическое существо подчиняется законам, действующим в живой природе (развитие человеческого организма, продолжительность жизни и др.). Большую часть истории человечество было представлено совокупностью изолированных в репродуктивном отношении малочисленных групп. В связи с этим, генофонды популяций людей испытывали ранее и продолжают испытывать теперь действие элементарных эволюционных факторов. Однако социальная сущность человека вносит в это действие определенную специфику.

Мутационный процесс - эволюционный фактор, который сохраняет свое значение в человеческом обществе. Его действие сходно с таковым у других организмов по средней частоте мутирования, по генетико-физиологическим характеристикам, наличию антимутационных барьеров. На начальных этапах эволюции характеристики спонтанного мутагенеза формировались под действием различных видов излучения, температуры, определенной химической среды. В настоящее время давление мутационного процесса на генофонд человечества усиливается в результате действия индуцированных мутаций, которые обусловлены производственной деятельностью человека в условиях научно-технической революции. Мутации возникают как в половых, так и в соматических клетках. Индуцированные мутации, как правило, приводят к наследственной патологии (генеративные мутации) или к увеличению частоты различных заболеваний, прежде всего злокачественных опухолей (соматические мутации).

Популяционные волны (волны жизни) еще в сравнительно недавнем прошлом играли заметную роль в развитии человечества. Темп прироста населения изменялся неравномерно. Увеличение темпов прироста численности совпадает с достижениями человечества - развитием земледелия, индустриализацией. Наблюдается неравномерное распределение людей на планете. На фоне общей тенденции к повышению численности людей имели место снижения этого показателя. Во время эпидемий холеры и чумы всего лишь несколько сот лет назад население Европы сократилось в десятки раз. Такое сокращение могло быть основой для ряда случайных ненаправленных процессов изменения генофонда населения отдельных районов.

Изоляция, как эволюционный фактор, в прошлом оказывала существенное значение. Природа изоляционных барьеров между популяциями людей социальная. Специфическими для человеческого общества являются формы изоляции, зависящие от разнообразия культур,

экономических укладов, религиозных и морально-этических установок. Разобщение людей по социальным, религиозным причинам приводит к образованию эндогенных групп в больших городах. Евреи в течение многих веков держались обособленно, по своей генетической структуре они отличаются от своих земляков других национальностей. Рецессивные гены (болезнь Тея-Сакса, Тея-Гоше) встречаются преимущественно у евреев, тогда как ген фенилкетонурии является редким у представителей этой национальности. Высокая степень изоляции малочисленных человеческих популяций на протяжении многих поколений создавала условия для дрейфа генов.

Генетико-автоматические процессы, или дрейф генов, приводят к появлению случайных, не связанных с отбором различий между изолятами. Примером дрейфа генов служит эффект родоначальника. Он возникает, когда несколько семей создают новую популяцию, что способствует случайному закреплению в ее генофонде одних аллелей и утрате других. Так, члены секты амишей штата Пенсильвания произошли от трех супружеских пар, иммигрировавших в Америку. В этом изоляте зарегистрировано 55 случаев карликовости с многопалостью, в то время как в мировой практике описаны единичные случаи. Вероятно, среди основателей находился носитель рецессивного мутантного аллеля карликовости - родоначальник соответствующего фенотипа. С развитием средств массового перемещения людей на планете всё меньше остается генетически изолированных групп населения. Нарушение изоляционных барьеров имеет большое значение для обогащения генофонда популяций. В дальнейшем эти процессы неизбежно будут приобретать все более широкое значение.

Естественный отбор в природе в процессе видообразования переводит случайную индивидуальную изменчивость в биологически полезную популяционную, видовую. Смена биологических факторов развития социальными привела к тому, что в человеческих популяциях отбор утратил функцию видообразования. Было бы, однако, неправильно полностью отрицать существование отбора в человеческом обществе. Он действует в основном во время внутриутробного развития, играет значительную роль в таких формах, как несостоявшаяся беременность, спонтанный аборт, мертворождение, детская смертность, стерильность и выполняет известную стабилизирующую роль. В пользу действия стабилизирующей формы отбора свидетельствует большая смертность среди недоношенных и переношенных новорожденных по сравнению с доношенными. Направление отбора зависит от общей жизнеспособности. Отрицательней отбор можно проиллюстрировать на примере системы крови “резус”.

При Rh-отрицательном фенотипе матери Rh-положительный плод всегда гетерозиготен. Это означает, что со смертью индивида из генофонда удаляется равное количество доминантных и рецессивных аллелей. Отбор направлен против гетерозигот. Отрицательный отбор действует в большинстве популяций людей по аллелям аномальных гемоглобинов, он направлен против гомозигот. При этом устраняются аллели одного вида. Отрицательный отбор против гомозигот перекрывается мощным положительным отбором гетерозигот благодаря их высокой жизнеспособности в очагах тропической малярии.

3. Генетическое разнообразие в популяциях людей. Генетический груз

Генетическая гетерогенность популяции - это наличие у особей данной популяции нескольких аллельных вариантов (минимум двух) по генетическим локусам (генам). Она поддерживается за счёт мутаций, процесса рекомбинации. Происходящая при половом размножении комбинаторика генетического материала даёт неограниченные возможности для создания генетического разнообразия в популяции. При скрещивании особей, различающихся в общей сложности по 1000 локусам, каждый из которых представлен 10 аллелями, число возможных наследственных генотипов в потомстве составляет 101000, т.е. многократно превзойдёт число электронов в известной нам вселенной. Эти потенциальные возможности никогда не реализуются. чем больше запас генетической изменчивости в данной популяции, тем легче ей адаптироваться в новой среде. Лабораторные эксперименты показали, что чем выше уровень изменчивости популяции, тем быстрее она эволюционирует.

Результатом эволюционного процесса является внутрипопуляционный или наследственный полиморфизм - это такое состояние популяции, когда в ней на протяжении многих поколений сохраняется две или более разных генетических форм в достаточном количестве (не менее 1%). Различают две формы наследственного полиморфизма:

1) экологический (адаптационный) полиморфизм. При этом две или несколько генетически различных форм внутри популяции подвергаются отбору в разных экологических условиях. Например, возникновение расовых различий человека в процессе антропогенеза.

2) гетерозиготный полиморфизм устанавливается в результате давления на популяцию положительного отбора гетерозигот.

Человечеству свойствен высокий уровень наследственного разнообразия. Люди отличаются фенотипически цветом кожи, глаз, волос, формой ушной раковины и др. Выявлены многочисленные варианты отдельных белков, которые отражают генетическую конституцию организма. У людей не совпадают группы крови по системам эритроцитарных антигенов “резус”, АВО, МN. Известно более 10 вариантов гемоглобина, более 70 вариантов фермента глюкозо-6-фосфат-дегидрогеназы. У человека в целом не менее 30% генов, контролирующих синтез ферментных систем, имеют несколько аллельных форм. Вариабельность частоты аллелей в популяциях людей зависит от действия эволюционных факторов: мутационного процесса, естественного отбора, генетико-автоматических процессов, миграций.

Генетическая гетерогенность снижает реальную приспособленность популяций. Из-за накопления в генофонде популяции рецессивных аллелей, приводящих в гомозиготном состоянии к снижению приспособленности отдельных особей, происходит снижение приспособленности популяции в целом. Генетический груз - это и есть различие в приспособленности между существующей и идеально приспособленной популяцией, так как всегда происходит гибель части особей популяции вследствие их меньшей приспособленности.

Генетический груз - это "проигрыш” приспособленности на данный момент, но одновременно это возможность будущей эволюции и, следовательно, выживание популяции в целом. Это, как бы, плата за возможность эволюционировать. Различают следующие виды генетического груза:

а) по способу образования:

1) мутационный (в результате мутаций и отбора);

2) рекомбинационный (появление новых генов и генных сочетаний при кроссинговере);

б) по направлению передачи:

1) сегрегационный (разная вероятность передачи разных аллелей последующим поколениям);

2) миграционный ( в результате внедрения других организмов в популяцию).

Бремя генетического груза человечества можно оценить, введя понятие летальных эквивалентов.

Летальный эквивалент - это коэффициент, равный у человека от 3-х до 5.

Это означает, что количество неблагоприятных аллелей в генотипе человека по вредному действию эквивалентно действию 3-5 рецессивных аллелей, приводящих в гомозиготном состоянии организм к гибели до наступления репродуктивного периода. Благодаря наличию неблагоприятных аллелей и их сочетаний, примерно половина зигот, образующихся в каждом по-колении людей, не участвует в передаче генов следующему поколению, т.е. гибнет; погибает около 15% зачатых организмов до рождения, 3% - при рождении, 2% - непосредственно после рождения, 3% людей погибает, не достигнув половой зрелости, 20% лиц не вступают в брак и 10% браков бездетны.

В основе мутаций лежат наследуемые изменения генетического материала. В результате мутации возникает мутантная аллель гена или мутантная хромосома, обусловливающие появление мутантного признака. Мутации могут возникнуть в любой момент, но их появление более вероятно в делящейся, а не в покоящейся клетке (например, при гаметогенезе, во время мейоза). В генетическом отношении важны те мутации, которые возникают при гаметогенезе и наследуются особями потомства. Частота мутации для единичного локуса составляет в среднем 1:100000 половых клеток, однако у человека в целом, генотип которого насчитывает до 120000 (а возможно, и более) генов, мутация вовсе не редкое явление.

Мутагенами по отношению к человеку выступают не только естественные факторы (ультрафиолетовое излучение, температура, ионизирующее излучение, определённая химическая среда), но и факторы, производные научно-технического прогресса (рентгеновские излучения и другие физические факторы, синтетические смолы и другие химические вещества). На частоту мутаций у человека оказывает влияние возраст: вероятность рождения ребёнка, страдающего ахондропластической карликовостью, у пожилых супругов выше, чем у молодых. Некоторые гены Х-хромосомы мутируют в мужском организме чаще, чем в женском.

Генотип человека - это высокоинтегрированная система взаимодействующих генов (а также составляющих их элементов), и случайные изменения в её составе влияют на неё чаще всего отрицательно. Поэтому большинство мутантных генов оказываются вредными для человека.

В небольших популяциях людей мутантные гены могут сохраняться (фиксироваться) или утрачиваться случайным образом. В них хорошо выражен дрейф генов - изменение частоты генов в популяции в ряду поколений под действием чисто случайных (стохастических) факторов. На дрейф генов влияют такие факторы, как число индивидуумов, способных оставить потомство, и вариабельность в размере семьи. Структура популяции человека в прошлом создавала идеальные условия для дрейфа генов. Так, численность сообществ человека палеолита, очевидно, не превышала нескольких сот индивидуумов, именно такова численность сообществ современных охотников и собирателей - аборигенов Австралии.

В настоящее время общепризнанным является тот факт, что различия в частоте некоторых групп крови между близкими поселениями людей в отдалённых уголках земного шара возникли вследствие дрейфа генов: частоты генов в существующих в США небольших религиозных изолятах немецкого происхождения отличаются от соответствующих частот в исходной популяции в Германии и в соседних популяциях в США. Обобщённым примером влияния дрейфа генов на частоту аллелей является «эффект родоначальника». Он возникает, когда несколько семей выселяются на новую территорию и поддерживают высокий уровень брачной изоляции, порвав практически все связи с родительской популяцией. В этом случае в генофонде переселенцев из-за небольшой численности особей случайно закрепляются одни аллели и элиминируются другие. Так, среди кишлаков и других поселений Памира в одних популяциях резус-отрицательные индивидуумы составляют до 15%, а в других (таких большинство) - только 3-5%. Последний показатель для населения Памира в целом в 2-3 раза ниже, чем для населения Европы.

Последствиями дрейфа генов, очевидно, является неравномерное распределение некоторых наследственных заболеваний по группам населения земного шара. Так, высокая частота церебромакулярной дегенерации отмечена в Квебеке (Канада) и Ньюфаундленде; алкаптонурии - в Чехословакии; детского цестиноза - во Франции; адреногенитального синдрома - у эскимосов.

Существенное влияние на генофонды популяций людей оказывал фактор изоляции. Длительным проживанием в состоянии относительной географической и культурной изоляции объясняют, например, некоторые антропологические особенности представителей малых народностей: своеобразный рельеф ушной раковины бушменов, большую ширину нижнечелюстного диаметра коряков и ительменов, исключительное развитие бороды у айнов.

Сохранению высокого уровня генетической изоляции двух популяций (изолятов), существующих на одной территории, способствуют отличия по физическим признакам или образу жизни. Однако такие барьеры в последнее время исчезают, о чём свидетельствует, например, тот факт, что доля генов от белых людей возросла в настоящее время у американских негров до 25%, а у бразильских негров - до 40%.

4. Причины географического, экономического, расового, религиозного, культурного порядка

Причины географического, экономического, расового, религиозного, культурного порядка ограничивали брачные связи масштабами определенного района, племени, поселения, секты. Высокая степень репродуктивной изоляции малочисленных человеческих популяций на протяжении многих поколений создавала благоприятные условия для дрейфа генов. Дрейф генов это изменение частоты аллелей в популяции из-за случайных причин, не обусловленных действием естественного отбора. Значение дрейфа генов: он приводит к изменению частоты аллелей в генофонде популяции. Аллели могут удаляться или закрепляться в генофонде, независимо от того, имеют они адаптивную ценность или нет. Он существенно влияет на генофонд малочисленных популяций. Таким образом, дрейф генов более выражен в малочисленных популяциях, чтобы понять, почему следует знать особенности генофондов малочисленных популяций.

Для демов и изолятов типичен относительно низкий естественный прирост населения - соответственно порядка 20-25% за поколение. Частота внутригрупповых браков в них составляет 90% и более, а приток лиц из других групп сохраняется на уровне 1% и менее. В связи с этим наблюдается высокая степень близкородственных браков, что способствует увеличению численности гомозигот страдающих отклонениями. Особенности генофондов малочисленных популяций: малый прирост - чем меньше выборка, тем больше отсев; малый приток генов из других популяций - уменьшает генетическое разнообразие; высокая степень близкородственных браков - увеличивает число больных гомозигот; дрейф генов - приводит к сглаживанию изменчивости внутри группы и появлению случайных, не связанных с отбором различий между изолятами.

эволюционный популяция генетический расовый

5. Эффект родоначальника

Неравномерное распределение патологических генов в популяциях, а точнее, высокие частоты их, может быть обусловлено так называемым эффектом родоначальника. Это явление по своему популяционно-генетическому характеру близко к дрейфу генов. Речь идет о накоплении какой-либо генной болезни (или многих), унаследованной от одного или нескольких индивидов, переехавших в другое место. Хорошо документированных историческими материалами примеров эффекта родоначальника в генетике человека уже много. В 17 веке иммигранты из Европы (Голландия, Дания, Германия) прибыли в Южную Африку (современная ЮАР). Среди них были носители генов порфирии (мягко текущее аутосомно- доминантное заболевание),хореи Гентингтона (аутосомно- доминантная болезнь с поздним началом), семейного полипоза толстой кишки (аутосомно-рецессивная болезнь).

Семьи иммигрантов были большими (более 10 детей), поэтому число лиц с этими болезнями в ЮАР теперь во много раз выше, чем в Голландии и Дании. Родословная лиц с аутосомно-доминантными болезнями прослеживается до одного брака иммигрантов, а ген липопротеиноза до брата и сестры, прибывших в 1652 г. в теперешнюю ЮАР. Они, их дети и внуки имели большие семьи, что и способствовало увеличению частоты этого рецессивного гена. Китайский иммигрант, прибыв в Южную Африку, имел 7 жен. Он страдал аутосомно-доминантным заболеванием - дисплазией костей и зубов, вызывающей полную потерю зубов к 20 годам. Он передал этот ген 70 из 356 прослеженных потомков в следующих 4 поколениях.

В штате Пенсильвания (США) живут изолированно амиши (переселенцы из Европы), переехавшие туда в 18 в. В 60-х годах нашего века в их поселении обнаружены 82 человека с аутосомно- рецессивной болезнью ( карликовость с 6 пальцами ), все эти люди являются потомками одной супружеской пары. Естественно, имеется тенденция к илиминации патологических генов из популяций путем естественного отбора, поэтому один эффект родоначальника как таковой не может объяснить долгое существование патологического гена в популяции.

6. Естественный отбор

Одним из наиболее важных эволюционных факторов, изменяющих частоты аллельных генов в популяциях людей, является естеств. отбор. Однако его давление в человеч. популяциях ослабело настолько, что отбор утратил значение как фактор видообразования. Это обусловлено возрастанием значения социальных факторов историч. развития человечества и постепенным ослаблением роли биологич. факторов эволюции чел-ка. Однако за естеств. отбором осталась функция стабилизации генофондов и поддержания наследств. разнообразия популяций людей. О действии на популяцию человека стабилизирующей формы естеств. отбора свидетельствует, например, большая перинатальная смертность среди недоношенных и переношенных новорождённых. Направление отбора в этом случае опр-тся снижением общей жизнеспособности новорождённых.

Отрицат. действие отбора по одному локусу иллюстрирует наследование антигенов системы резус. 85% населения Европы имеет в эритроцитах антиген Rh и образует группу резус-положит-х индивидуумов, остальные 15% населения составляют резус-отрицат-е индивиды. Синтез антигена Rh контролируется доминантным аллелем Д который проявляется в гомозиготе (DD) и гетерозиготе (Dd). Поэтому резус-отрицательные люди являются рецессивными гомозиготами (dd). Если, например, мать резус-отрицательная (dd), отец резус-положительный (DD или Dd), то при беременности резус-положительным плодом (Dd) эритроциты плода могут проникнуть при нарушении плаценты в организм матери и иммунизировать его. При последующей (второй и т.д.) беременности резус-положительным плодом (Dd) антирезус-антитела, выработавшиеся в организме матери во время первой беременности, проникают через плаценту в организм плода и разрушают его эритроциты (эритробластоз). Развивается гемолитическая болезнь новорождённого, ведущим симптомом которой является тяжёлая анемия. В настоящее время успешно применяются различн. способы борьбы с этой патологией (например, переливание новорождённому младенцу резус-отрицательной крови).

В отсутствие медпомощи новорождённый с гемолитической болезнью часто погибал. Со смертью таких организмов (гетерозиготных по аллелю Dd) из популяции удаляется равное кол-во доминантных и рецессивных аллельных генов локуса «резус». Такой направленный против гетерозигот отбор приводит к уменьшению частоты более редкого (рецессивного, d) аллеля в европейской популяции. Теоретически в ряду из 600 поколений доля рецессивного гена может снизиться с 15% до 1%, на что потребуется около 15000 лет…. Эти селективные факторы влияют на частоту аллелей, определяющих группы крови.

Особой жёсткостью выдел-ся отбор, направл-й против гомозигот: гомозиготы по многим рецессивным аутосомным заболеваниям обычно элиминируются, не достигнув репродуктивного возраста. Так, гомозиготы по аллелю серповидноклеточности эритроцитов (HbS/HbS) умирают от серповидноклеточной анемии в детском возрасте. Каждая такая смерть элиминирует из популяции аллели одного вида (рецессивные), что приводит к сравнительно быстрому снижению изменчивости по соотв-му локусу. Во многих популяциях людей частота аллелей аномальных гемоглобинов (включая аллель HbS) не превышает 1%. Отбор против гомозигот обусловлен также повышенной жизн. силой гетерозигот (явление гетерозиса).Действию отбора, снижающего в генофондах некоторых популяций людей концентрацию опред-х аллелей, может противостоять контротбор, который, наоборот, поддерживает частоту этих аллелей на высок. уровне.

Проведённые в Сев. Греции обследования показали, что больные серповидноклеточной анемией (гете-розиготы с генотипом HbS/HbA) болеют малярией в 13 раз реже, чем нормальные люди (НЬА/НЬА). ..Генофонд популяций чел-ка является рез-том наложения многочисл-х и разнонаправл-х векторов отбора, обеспечив-го сохранение в каждом поколении сравнительно приспособл-х к данным условиям генотипов. При этом со временем влияние отбора на генетич. структуру популяций людей снижается в основном благодаря успехам лечебной и профилак-й медицины, а также социально-экономич. преобразованиям цивилизации.

7. Отбор и контротбор

Факторы контротбора в отношении признака серповидноклеточности эритроцитов. В малярийных районах отрицательный отбор в отношении аллеля S перекрывается мощным положительным отбором гетерозигот HbА/HbS (контротбор), благодаря высокой жизнеспособности последних в очагах тропической малярии. Устранение фактора контротбора (заболевания, в данном случае малярии) приводит к снижению частоты аллеля серповидноклеточности. Этой причиной, действующей на протяжении уже нескольких столетий, объясняют относительно низкую частоту гетерозигот HbА/HbS среди североамериканских негров (8-9%) в сравнении с африканскими неграми (около 20%). В приведенных примерах действию отрицательного отбора, снижающего в генофондах некоторых популяций людей концентрацию определенных аллелей, противостоят контротборы, которые поддерживают частоту этих аллелей на достаточно высоком уровне.

8. Генетический полиморфизм

Полиморфным признаком называют менделеевский (моногенный) признак, по которому в популяции присутствуют как минимум два фенотипа (и, следовательно, как минимум два аллеля), причём ни один из них не встречается с частотой менее 1% (т.е. не является редким). Эти два фенотипа (и, соответственно, генотипа) находятся в состоянии длительного равновесия. Наследственный полиморфизм создаётся мутациями и комбинативной изменчивостью. Часто в популяциях присутствует больше двух аллелей по данному локусу и, соответственно, более чем два фенотипа. Альтернативное полиморфизму явление - существование редких генетических вариантов, присутствующих в популяции с частотой менее 1%.

Первый полиморфный признак (система групп крови АВО) был открыт в 1900 г. австрийским учёным К. Ландштейнером (1868-1943). В 1955 году с открытием методики электрофореза белков в крахмальном геле на примере гаптоглобина (сывороточного белка, связывающего гемоглобин) был выявлен самый простой вариант полиморфизма - полиморфизм белков.

К настоящему времени описано множество таких полиморфных признаков у человека:

1) сывороточные белки: церулоплазмин (2 аллеля - CP3, СРС\ а также более редкий аллель австралонегроидов - CP4); гаптоглобин (3 аллеля -

HplS нр1Р^ нр2^ иммуноглобины (4 аллеля и очень сложная система более редких аллелей);

2) поверхностные антигены эритроцитов (группы крови): АВО (4 аллеля: Ai, А2, В, 0); секреция АВН (2 аллеля); антиген Келл (2 аллеля - К, к), антиген Льюис (2 аллеля - Lea, Leb); антиген резус (сложный комплекс аллелей);

3) ферменты эритроцитов: кислая фосфостаза-1 (3 аллеля); эстераза-D (2 аллеля); пептидаза-А (2 аллеля); аденозиндезаминаза (2+2 редких аллеля) и др.;

4) другие ферменты: сывороточная холинэстераза-1 (3 аллеля); алко-гольдегидрогеназа (2 аллеля).

Различают наследственный и адаптационный полиморфизм. Наследственный полиморфизм создаётся мутациями и комбинативной изменчивостью. Адаптационный полиморфизм обусловлен тем, что естественный отбор благоприятствует разным генотипам из-за разнообразия условий среды в пределах ареала вида или сезонной смены условий. Например, в популяциях двухточечной божьей коровки (Adalia bipunc-tata) при уходе на зимовку преобладают чёрные жуки, а весной - красные особи. Это обусловлено тем, что чёрные жуки интенсивнее размножаются, а красные особи лучше переносят холод.

Разновидностью адаптационного полиморфизма является балансированный полиморфизм, возникающий в случаях, когда отбор благоприятствует гетерозиготным формам по сравнению с доминантными и рецессивными гомозиготами. В основе балансированного отбора может лежать сверхдоминирование - явление селективного преимущества гетерозигот (в том числе и над доминантными гомозиготами).

Различают следующие механизмы балансированного отбора:

1) обусловленность селективного преимущества гетерозигот их повышенной жизнеспособностью, основанной на явлении гетерозиса; повышение жизнеспособности происходит, очевидно, в результате взаимодействия аллельных генов во многих гетерозиготных локусах;

2) возникающие на основе гетерозиготности более редкие фенотипы могут получить в популяции селективные преимущества по двум причинам:

а) самцы более редких (привлекательных) фенотипов имеют обычно повышенную конкурентоспособность в борьбе за самок и поэтому более значительный репродуктивный успех;

б) хищники предпочитают более обычные для популяции фенотипические формы, не замечая редкие, возникшие на основе гетерозиготности;

3) любые мутации нарушают нормальную сбалансированность генотипа и фенотипа, поэтому они являются (чаще всего) вредными для организма и не могут быть сразу поддержаны отбором; в гетерозиготном же состоянии вредные мутации не проявляются, поэтому естественный отбор вначале благоприятствует не гомозиготным формам, несущим мутантный признак, а гетерозиготам, скрывающим этот признак от действия отбора.

Человечеству свойственен высокий уровень наследственного разнообразия. Кроме упомянутых выше многочисленных вариантов отдельных белков (простых признаков, прямо отражающих генетическую конституцию организма), люди отличаются друг от друга цветом кожи, глаз и волос, формой носа и ушной раковины, рисунком эпидермальных гребней на подушечках пальцев и другими сложными признаками. У людей не совпадают группы крови по системам эритроцитарных антигенов резус (Rh), ABO и другим. Известно более 130 вариантов гемоглобина, но лишь 4 обнаруживаются в нескольких популяциях в высокой концентрации: HbS (тропическая Африка, Средиземноморье), НЬС (Западная Африка), HbD (Индия), НЬЕ (тропическая и субтропическая зоны Юго-Восточной Азии).

Вариабельность распространения аллелей в популяциях людей зависит от действия элементарных эволюционных факторов особенно таких, как мутационный процесс и естественный отбор, а также дрейфа генов (генетико-автоматических процессов) и миграции особей. Межпопуляционным различиям в концентрации определённых аллелей способствует стабилизирующая форма естественного отбора. В основе стойкого сохранения в популяции людей одновременно нескольких аллелей одного гена лежит, как правило, отбор в пользу гетерозигот, который ведёт к состоянию балансированного полиморфизма.

Многие факторы отбора, действие которых создало современную картину распределения аллелей в популяциях людей, для большинства локусов не установлены, однако известна их экологическая природа. Экологическим проявлением отбора могут выступать инфекционные или паразитарные заболевания. В вышеприведённом описании заболеваемости серповидно-клеточной анемией экологическим проявлением отбора гемоглобинов S, С и Е являлась малярия. Заболевания оказывают влияние также на распространение аллелей АВО (рис. 153). Так, люди с группой крови 0 более восприимчивы к чуме, чем люди с группой крови В. Однако вероятность заболеть раком желудка, ревматизмом, ишемической болезнью сердца, холециститом, желчнокаменной болезнью для них примерно на 20% ниже, чем для лиц с группой крови А.

Полиморфизм человечества по отдельным локусам мог быть унаследован от далёких предков. Так, полиморфизм по таким системам групп крови, как АВО и резус, обнаружен у человекообразных обезьян. Учитывая плохие экономические и гигиенические условия жизни основной массы населения Земли на протяжении значительной части истории человечества, можно полагать, что наследственный полиморфизм благоприятствовал выживанию в разных экологических ситуациях и способствовал расселению людей. Вклад в наблюдаемое сейчас распределение аллелей внесли массовые миграции населения и сопутствующая им метисация: смешение больших контингентов людей разной расовой принадлежности имело место в Восточной Африке, Индии, Индокитае, Южной и Центральной Америке.

Генетический полиморфизм служит основной межпопуляционной и внутрипопуляционной изменчивости людей. Эта изменчивость, в частности, проявляется:

1) в разной степени предрасположенности людей к определённым болезням;

2) неравномерном распределении по планете некоторых заболеваний;

3) неодинаковой тяжести их течения в разных человеческих популяциях;

4) индивидуальных особенностях течения патологических процессов;

5) различиях индивидуальной реакции на одно и то же лечебное воздействие.

Генетический полиморфизм создаёт серьёзные трудности в решении проблемы пересадок тканей и органов.

Многие из нас в детстве делали себе шалаши из мебели и одеял и представляли, что сидят в палатки среди дикой природы.

Но у современных детей появилась возможность иметь такой шалаш заводского производства.

Поэтому детская палатка будет великолепным подарком вашему ребенку.

9. Генетический груз

Ныне много делается для анализа характера и степени нарушений, вызванных в биосфере; к сожалению, гораздо меньше исследований посвящено изучению того, как эти изменения влияют на биологические особенности человека и других организмов. Особенно это касается генетических последствий загрязнений, хотя они могут оказать определяющее влияние на судьбу человечества в целом. Мутагены среды способны проникать в клетки и поражать их генетическую программу (вызывать мутации). В том случае, когда поражение затрагивает ДНК, которая находится в зародышевых клетках человека, гибнут эмбрионы или рождаются младенцы, имеющие наследственные дефекты. Мутации в клетках тела организма (соматических клетках) вызывают рак, поражения иммунной системы, уменьшают продолжительность жизни.

Генетический груз. Социальные и биологические критерии качества человека не совпадают, но и не так уж далеки друг от друга. Генетический груз. Постоянное давление мутаций и миграции генов, а также выщепление биологически менее приспособленных генотипов по сбалансированным полиморфным локусам. Понятие генетического груза ввел Г. Мёллер в 1950 г. в работе «Наш груз мутаций». Средняя величина генетического груза у человека равна 3-5 летальным эквивалентам. ГЕНЕТИЧЕСКИЙ ГРУЗ -- часть наследственной изменчивости популяций (генетической информации), которая определяет появление менее приспособленных особей, погибающих в процессе естественного отбора. Изучение Г.г. в виде вредных мутаций у человека (наследственные заболевания, врожденные пороки развития) важно для практических вопросов медицинской генетики. С ростом загрязнения окружающей среды частота вредных мутаций увеличивается. Генетический груз во многих семьях наиболее явно проявляется при рождении детей с разного рода генетическими отклонениями в виде физических и психических дефектов. Ныне таких детей рождается 10%, т.е. среди миллиона детей сто тысяч рождается с разными отклонениями от нормального развития.

Генетический груз -- постоянное присутствие в генофонде популяции или вида (в т.ч. человека) вредных мутантных (измененных) генов, возникающих обычно под воздействием различных мутагенных факторов окружающей среды. Генетический груз -- наличие и накопление в популяции негативных генетических изменений, летальных мутаций, ведущее к увеличению частоты наследственных заболеваний и снижению жизнеспособности в ряде поколений.

Генетический груз -- совокупность неблагоприятных генов, унаследованных людьми современных поколений от людей предыдущих поколений, а также возникающих в результате мутаций в каждом новом поколении. Этот «генетический груз» дорого обходится людям как экономически, так и психологически. Считается, что критическая величина частоты генетических нарушений у новорожденных составляет 13%. Это означает, что генетический груз уже настолько велик, что вырождение популяции становится неизбежным. Кстати, это было одним из главных соображений, заставивших противостоявшие друг другу ядерные державы еще в 60-е годы договориться о прекращении испытаний этого оружия в воздухе, на земле и на воде. Тем не менее радиоактивное загрязнение среды снова возрастает. Кроме того, многие химические вещества, загрязняющие воздух, воду и пищу, обладают сильным мутагенным действием. Это ставит под угрозу сохранение генофонда человечества.

Методика генетического мониторинга начинает реально разрабатываться, он ставит перед собой задачу определения объемов и динамики нарушения наследственного здоровья людей, обусловленного влиянием генетического груза. Генетические последствия загрязнения среды обитания человека изучены пока недостаточно. Воздействие генетического груза на экономику, трудовые и оборонные ресурсы очень велико. Только содержание больных синдромом Дауна и фенилкетонурией, которых в московские дома для инвалидов в период с 1964 по 1979 г. поступило 75680 человек, обошлось государству в миллиард рублей (в ценах того времени).

Мутационный груз характеризуется наличием в геноме хромосомных и генных мутаций, в основном доминантных, с явным летальным исходом, з современных популяциях человека он имеет тенденцию к значительному росту. Давление мутаций на каждое поколение людей очень велико. У человека частота мутаций в среднем составляет 5 10.

В его половых клетках имеется около 100 тыс. генов. Каждая оплодотворенная яйцеклетка получает в среднем еще 10 новых мутаций (Н.П. Дубинин, 1990). Было установлено, что в каждом поколении 50% оплодотворенных яйцеклеток или гибнут, или возникшие из них организмы не оставляют потомства. При этом 12% браков бесплодны вследствие дефектов воспроизводительной системы. По мнению Н.П. Дубинина, удвоение объема естественных мутаций недопустимо для человека, особенно если учесть, что генетический груз наиболее явно проявляется при рождении детей с разными генетическими отклонениями в виде физических и психических дефектов (10%).

Все нарушения в генетической информации человека, подрывающие наследственное здоровье населения, объединяются под названием генетического груза (Н.П. Дубинин, 1978,1990). Внедрение эколого-генетического мониторинга позволит выяснить патогенез нарушений в генофонде человека под влиянием все нарастающего прессинга деформированной загрязненной среды. Действие радиации и генетический груз в популяциях человека». Жизнь в атомном и химическом мире». Различают сегрегационный и мутационный груз. Сегрегационный груз -- это часть генетического груза, унаследованная людьми современных поколений от людей, принадлежавших к поколениям, жившим на протяжении многих предыдущих веков. Возможно, этот груз пришел к предыдущим и современным поколениям от предков, живших на разных этапах антропогенеза. Можно сказать, что сегрегационный груз представлен «старыми» мутациями.

Мутационный груз -- это часть генетического груза, которая обусловлена «новыми», т. е. «свежими» мутациями генов и хромосом, возникающими заново в каждом новом поколении. К сожалению, реальная величина вреда, наносимого генетическим грузом, возникающим в каждом поколении, наследственному здоровью населения, не оценена до сего времени достоверно. От атомной индустрии к началу XXI века, по оценкам Р. Бертелл, генетически пострадало не менее 223 млн. человек (Bertell, in litt., 2000). При этом надо учесть, что эти генетические изменения могут передаться из поколения в поколение.

В результате генетический груз в популяциях человека может достигнуть через несколько поколений катастрофических величин. В настоящее время важна комплексная система мероприятий по генетическому мониторингу популяций в сочетании со скринингом химических соединений на мутагенную активность. Выше приведена в наиболее общей форме ее схема. В основу схемы положен принцип мониторинга -- непрерывного слежения. На уровне глобальных и локальных загрязнений биосферы выделяется интегральный мониторинг за ростом врожденных дефектов в популяциях человека. Эта часть задачи может частично решаться с помощью уже известных методов учета числа врожденных заболеваний и аномалий в популяциях, путем биохимического скрининга по изоморфным белкам и цитогенетического скрининга. Известную пользу могут принести данные о динамике злокачественных новообразований и изменений в продолжительности жизни.

Параллельно необходимо оценивать генетический груз в популяциях животных и растений. При изучении зависимости между состоянием среды обитания и генетическим грузом выявляется особая уязвимость нервно-психических функций человека. По общемировым данным, наблюдается ежегодный рост количества неполноценных детей. Так, по минимальным оценкам, нарушения психики отмечаются примерно у 10% населения нашей страны, что составляет около 15 млн. человек. Только в 1990 г. в средней школе обучалось 0,8 млн. детей с ослабленными умственными способностями. Содержание умственно отсталых детей обходится государству в сотни миллионов рублей, т.е. существенно сказывается на его экономике. Один из этих подходов связан с учетом популяционных характеристик. В качестве показателя оценки генетического груза используют медико-статистические показатели (частота спонтанных абортов, частота мертворождений, вес детей при рождении, вероятность выживания, соотношение полов, частота заболеваний врожденных и приобретенных, показатели роста и развития детей).

В соответствии с вышеизложенным Н. П. Дубинин делает очень важный вывод о необходимости организации государственной службы генетического мониторинга, призванной реально определить объем и рост генетического груза в соответствии со степенями экологического напряжения и разработать рекомендации по недопущению факторов, ведущих к его возрастанию. Основная трудность, препятствующая мониторингу за проявлением новых мутаций в популяции человека, состоит в огромном разнообразии генетических особенностей людей и в том, что эти популяции уже накопили большой генетический груз.

О его величине свидетельствуют показатели частоты наследственных заболеваний и врожденных уродств. В ряде стран Европы и США ежегодно рождается от 3 до 7%, а в Японии до 10% детей с генетически контролируемыми врожденными заболеваниями. Эти величины возрастут, если добавить довольно большое число наследственных заболеваний, проявляющихся к концу первого года развития, не выявляющихся при рождении. Всякая живая система, используя обратные связи, всегда стремится к самосохранению. Система обратных связей в биосфере направлена на элиминацию1 человека как вида. Увеличивается генетический «груз» человечества, отмечается рост психических и нервных заболеваний, снижается общая сопротивляемость болезням, усиливается стресс перенаселения в городах, агрессия, страх и т. д. Человек для оправдания названия своего вида «Человек разумный» должен планировать дальнейшую деятельность так, чтобы сохранить оставшуюся и по возможности восстановить утраченную биоту планеты за счет естественной саморегуляции природной среды.

Если уродства возникают в течение эмбриогенеза, то в природе такие маленькие человеческие существа были бы нежизнеспособны. Однако современная медицина позволяет им выжить. Такие люди, несущие уродства или мутантные гены, иногда могут давать потомство, тем самым отягощая генетический груз человечества. Н. П. Дубинин пишет: «По данным московских домов для инвалидов, по умственной отсталости за период с 1964 по 1979 г. в эти дома поступило 75680 больных фенилкетонурией и с синдромом Дауна. Их содержание за это время обошлось государству в миллиард рублей. Такова цена двух болезней. На самом деле число людей в нашей стране, подверженных влиянию генетического груза, исчисляется десятками миллионов. Человечество становится все более больным и дегенеративным. Одна из главных причин антропоэкологического напряжения и утомления -- несоответствие между адаптационными возможностями организма человека, формировавшегося в процессе эволюции на протяжении многих тысячелетий, и современными условиями среды его обитания, способной резко изменяться в течение нескольких десятков лет.

Именно эта диспропорция может служить причиной генетического напряжения и утомления, что является выражением генетического груза. Если «средние» оценки влияния загрязнения среды на заболеваемость имеют какое-то значение, то независимо от частных значений этой связи в разных случаях, специалисты единодушны в том, что степень этого влияния во многих странах в последние десятилетия быстро нарастает. В главе 1 уже говорилось, что избавление человека от естественного отбора привело к увеличению неблагоприятного генетического груза и ослаблению естественных защитных сил организма. На этом фоне ухудшение качества среды оказывает все возрастающее действие на здоровье людей. Многие такие состояния субъективно не воспринимаются как обусловленные загрязнением среды.

Однако искусственный отбор и селекция в некоторых случаях имели негативные последствия. В аграрных ландшафтах успешнее размножались животные, приспособленные для жизни в условиях, созданных человеком (пастбища, хлевы и т. д.). С увеличением зависимости от искусственных условий местообитания и питания сохранились такие генотипы, которые вряд ли выжили бы в дикой природе. При заботе со стороны человека генетически неполноценные животные обычно не вымирают. При этом «неполноценные», «вредные», «отрицательные» гены не исчезают, а продолжают накапливаться и размножаться в популяциях. Это привело к возникновению и накоплению наследственного бремени («генетического груза») в животноводстве. Детеныши, больные из-за мутантных генов (хромосомных изменений), а также в результате нарушений развития в течение эмбриогенеза, нежизнеспособны в условиях дикой природы и, скорее всего, были бы ею «отбракованы». Однако развитие медицины и общее повышение уровня жизни человека, особенно в XIX и XX вв., вывело человеческую популяцию из-под влияния естественного отбора, и поэтому у человечества накопился достаточно значительный генетический груз. В наше время известно более двух тысяч наследственных болезней человека, вызванных различными мутациями.

Эволюционные изменения связаны не только с образованием и вымиранием видов, преобразованием органов, но и с перестройкой онтогенетического развития.

Онтогенез - это индивидуальное развитие, оно представляет собой неотъемлемое свойство жизни, как эволюция, и её продукт. Организм в онтогенезе ни на одной из стадий развития не является мозаикой частей, органов или признаков. Морфологическая и функциональная целостность организма в его жизненных проявлениях не вызывает никаких сомнений. Еще Аристотель при сравнении различных организмов установил единство их строения и обосновал учение о морфологическом сходстве. Большое значение в истории вопроса о взаимозависимостях частей организма имели взгляды Ж. Кювье. По его представлениям, организм является целостной системой, строение которой определяется ее функцией; отдельные части и органы находятся во взаимной связи, их функции согласованы и приспособлены к известным условиям внешней среды. Ч. Дарвин отмечал, что координация частей есть результат исторического процесса приспособления организма к условиям жизни. В дальнейшем многие ученые подчеркивали тот факт, что организм всегда развивается как целое. Онтогенез можно определить как усложнение организации данного поколения. Процесс онтогенеза представляет собой реализацию генетической информации.

Онтогенез - есть предопределенный процесс, и, в отличие от эволюции, является развитием по программе, развитием, направленным к определенной конечной цели, которой является достижение половозрелости и размножения. Чем сложнее организация взрослого организма, а это является отражением эволюции, тем сложнее и длительнее процесс его онтогенеза.

Онтогенез состоит из этапов (одна особенность онтогенеза): эмбриональный этап, постэмбриональное развитие и жизнь взрослого организма. Крупные этапы (периоды) развития можно подразделить на более дробные стадии, как в эмбриональном развитии позвоночных - бластулы, гаструлы, нейрулы. Стадию дробления, в свою очередь, можно разделить на стадии двух, четырех, восьми и более бластомеров. В результате представление об этапности онтогенеза теряется и вырисовывается вполне плавный процесс индивидуального развития. Изменение группы в филогенезе могут возникнуть лишь посредством изменения в онтогенезе, обычно эти изменения индивидуального развития касаются поздних стадий развития, что отмечалось выше. Впервые взаимосвязь онтогенеза и филогенеза раскрыл в ряде положений К. Бэр, которым Ч. Дарвин дал обобщенное название «Закон зародышевого сходства». В 1864 г. Ф. Мюллер сформулировал положение о том, что филогенетические преобразования связаны с онтогенетическими изменениями и что эта связь проявляется двумя путями.

Работы Ф. Мюллера послужили основой для формулировки Э. Геккелем (1866 г.) биогенетического закона, согласно которому «онтогенез есть краткое и быстрое повторение филогенеза». Основа биогенетического закона, как и рекапитуляции, заключается в эмпирической закономерности, отраженной в законе зародышевого сходства К. Бэра. Суть его заключается в следующем: самая ранняя стадия сохраняет значительное сходство с соответствующими стадиями развития родственных форм.

...

Подобные документы

  • Связь проблем смешения и адаптации у человека современного вида с проблемой миграций и мигрантных групп. Адаптация и антропологические особенности миграции. Смешение и генный поток как факторы изменчивости. Понятие изоляции от остального мира и политипия.

    реферат [26,5 K], добавлен 29.07.2010

  • Особенности и этапы развития популяционной генетики животных. Характер наследования сцепленных с полом генов окраски меха у кошек. Механизмы наследования аутосомных генов влияющих на длину и цветовую вариацию меха у кошек. Геногеография данных животных.

    курсовая работа [37,4 K], добавлен 11.09.2012

  • Естественные мутаций и индуцированный мутагенез. Влияние лучистой энергии на наследственность. Химические и радиационные мутагены. Природа молекулярных изменений генов во время мутагенеза. Ферменты темновой репарации. Условие появления полной мутации.

    реферат [18,7 K], добавлен 13.10.2009

  • Сущность и источники генетической изменчивости в природных популяциях. Характеристика комбинативного и мутационного видов наследственной изменчивости. Особенности фенотипической изменчивости, происходящей в результате влияния условий окружающей среды.

    курсовая работа [1,2 M], добавлен 14.09.2011

  • Формы взаимодействия аллельных генов: полное и неполное доминирование; кодоминирование. Основные типы взаимодействия неаллельных генов: комплементарность; эпистаз; полимерия; гены-модификаторы. Особенности влияния факторов внешней среды на действие генов.

    курсовая работа [601,5 K], добавлен 21.09.2010

  • Анализ данных о зависимости состоянии здоровья группы людей при неблагоприятных в метеорологическом плане днями. Обсуждение появления риска зависимости самочувствия от метеоусловий и его увеличение с возрастом при заболеваниях сердечнососудистой системы.

    реферат [152,2 K], добавлен 18.01.2011

  • Популяция - элементарная единица эволюционного процесса. Случайный и ненаправленный характер мутационного процесса, волн численности, изоляции и естественного отбора. Мутации - главная причина эволюции. Факторы, способствующие возникновению изменчивости.

    эссе [19,2 K], добавлен 28.12.2010

  • Основные положения и этапы процесса экспрессии генов. Перенос информации о нуклеотидной последовательности ДНК на уровень РНК. Процессинг РНК у прокариот. Генетический код, его назначение и порядок формирования. Общие особенности процесса трансляции.

    курсовая работа [54,6 K], добавлен 27.07.2009

  • Дифференциальная экспрессия генов и ее значение в жизнедеятельности организмов. Особенности регуляции активности генов у эукариот и их характеристики. Индуцибельные и репрессибельные опероны. Уровни и механизмы регуляции экспрессии генов у прокариот.

    лекция [2,8 M], добавлен 31.10.2016

  • Генетический полиморфизм и его причины. Взаимодействие рецептора и гормона. Основные примеры полиморфных маркеров, ассоциированных с поведенческими реакциями. Анализ ассоциаций изученных полиморфных локусов с различными формами агрессивного поведения.

    дипломная работа [667,1 K], добавлен 02.02.2018

  • Роль исторического развития человечества в эволюции биосферы, закономерности ее перехода в ноосферу, в учении Вернадского. Проблема поиска связей земных и космических явлений, влияние солнечного излучения на психическое состояние и поведение людей.

    реферат [661,4 K], добавлен 10.08.2015

  • Ознакомление с историей появления людей, изучение теорий науки и религии. Описание внешнего вида древних людей, первых орудий труда, жилищных условий. Исследование овладения огнём, возникновение человека разумного. Переход от стада к родовой общине.

    презентация [669,2 K], добавлен 18.04.2015

  • Особенности транскрипции генов оперонов на примере пластома ячменя. Структурно-термодинамические исследования генов. Поиск, картирование элементов геномных последовательностей. Анализ гена растительных изопероксидаз. Характеристика модифицированных генов.

    реферат [23,2 K], добавлен 12.04.2010

  • Общая характеристика теорий эволюции Дарвина, Харди. Особенности существования древнейших людей. Причины возникновения вертикальной походки и изменения волосяного покрова. Сущность теории креоценизма, внешнего вмешательства и пространственных аномалий.

    реферат [54,8 K], добавлен 22.11.2010

  • Анализ частоты встречаемости разных видов представителей семейства Сoccinelidea. Представители божиих коровок, собранных на территории Краснодарского края станицы Каневской и прилегающих к ней реках Мылый Челбас, Сухой Челбас, Мигуты, их разнообразие.

    дипломная работа [888,4 K], добавлен 25.05.2015

  • Инсерционный мутагенез как метод прямой и обратной генетики. Типы инсерционных мутагенов и их особенности. Использование инсерционного мутагенеза для инактивации генов на основе явления РНК-интерференции. Выделение генов, маркированных инсерцией.

    контрольная работа [1,3 M], добавлен 25.03.2016

  • Принцип преимущественного размножения наиболее жизнеспособных. Эволюция человечества по пути увеличения генетической дифференциации субпопуляций. Особенности свободного дифференцированного выбора человеком себе подобных для передачи генов потомкам.

    лекция [293,8 K], добавлен 10.09.2009

  • Характеристика основных экологических факторов и их группы. Влияние экологического фактора. Понятие ограниченного действия одного из фактора внешней среды. Примеры взаимодействия факторов. Влияние фотопериода на состояние человеческого организма.

    контрольная работа [17,0 K], добавлен 22.06.2015

  • Классификация и свойства генов, особенности структурных и регуляторных генов. Структурные единицы наследственности организмов. Особенности генома человека. Наследственный материал, заключенный в клетке человека. Уровни структурной организации хромосом.

    презентация [564,6 K], добавлен 28.10.2014

  • Понятие "ген", развитие представлений о нем, раскрытие фундаментального понятия современной генетики. Структура генов и генетическая информация о первичной структуре белка. Структурные гены, характеризующиеся уникальными последовательностями нуклеотидов.

    реферат [167,3 K], добавлен 29.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.