Биомеханика опорно-двигательного аппарата человека

Строение и механические свойства элементов опорно-двигательного аппарата человека. Биомеханические свойства костей, суставов, сухожилий и связок. Биомеханика мышц и режимы мышечного сокращения. Роль двигательных нейронов серого вещества спинного мозга.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 30.05.2016
Размер файла 67,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Биомеханика опорно-двигательного аппарата человека

Содержание

  • 1. Состав опорно-двигательного аппарата человека
  • 2. Строение, функции и механические свойства элементов ОДА человека
  • 2.1 Кости
  • 2.2 Суставы
  • 2.3 Сухожилия и связки
  • 3. Биомеханические свойства и особенности строения ОДА человека
  • 4. Биомеханика мышц
  • 4.1 Виды работы мышц и режимы мышечного сокращения
  • 4.2 Биомеханические свойства мышц
  • Литература

1. Состав опорно-двигательного аппарата человека

Опорно-двигательный аппарат (ОДА) человека состоит из двух частей: пассивной и активной.

Пассивная часть ОДА содержит следующие элементы:

· кости скелета - 206 костей (85 парных и 36 непарных).

· соединения костей (непрерывные, полупрерывные и прерывные) - анатомические образования, позволяющие объединять кости скелета в единое целое, удерживая их друг возле друга и обеспечивая им определенную степень подвижности. Биомеханика ОДА рассматривает в основном прерывные соединения костей - суставы.

· связки - упругие образования, служащие для укрепления соединения костей и ограничения подвижности между ними.

Активная часть ОДА содержит следующие элементы:

· скелетные мышцы (более 600).

· Двигательные нервные клетки (мотонейроны). Двигательные нейроны расположены в сером веществе спинного и продолговатого мозга. По длинным отросткам (аксонам) этих клеток к мышцам поступают сигналы из центральной нервной системы (ЦНС).

· Рецепторы ОДА. Различные рецепторы, расположенные в мышцах, сухожилиях и суставах информируют ЦНС о текущем состоянии элементов ОДА.

· Чувствительные нейроны (афферентные нейроны). По чувствительным нервным клеткам информация от рецепторов мышц, сухожилий и суставов поступает в ЦНС. Тела чувствительных нейронов вынесены за пределы ЦНС и лежат в чувствительных узлах спинномозговых и черепных нервов (ганглиях).

Биомеханическими функциями ОДА являются:

· опорная - обеспечивает опору для мягких тканей и органов, а также удержание вышележащих сегментов тела;

· локомоторная (двигательная) - обеспечивает перемещение тела человека в пространстве;

· защитная - защищает внутренние органы от повреждений.

С точки зрения биомеханики, опорно-двигательный аппарат человека представляет собой управляемую систему подвижно соединенных тел, обладающих определенными размерами, массами, моментами инерции и снабженных мышечными двигателями.

2. Строение, функции и механические свойства элементов ОДА человека

2.1 Кости

Кость - элемент ОДА человека, представляющий собой жесткую конструкцию из нескольких материалов, различных по механическим свойствам. В основном кость состоит из костной ткани, которую сверху покрывает соединительнотканная оболочка - надкостница. Костная ткань образована плотным компактным и рыхлым губчатым веществом. Суставные поверхности кости покрыты суставным хрящом.

Различают механические функции костей скелета (опорную, локомоторную и защитную) и биологические (участие в минеральном обмене, кроветворную и иммунную). В биомеханике ОДА рассматриваются механические функции костей и связанные с ними механические свойства.

Опорная функция костей связана с их центральным положением внутри каждого сегмента тела человека, которое обеспечивает механическую опору другим элементам ОДА: мышцам и связкам. Кроме того, кости нижних конечностей и позвоночника обеспечивают опору для вышележащих сегментов тела. Скелетные мышцы приводят в движение костные рычаги или обеспечивают сохранение равновесия. Благодаря этому возможно выполнение двигательных действий и статических положений. В этом проявляется локомоторная функция костей. Кости черепа, грудной клетки и таза защищают внутренние органы от повреждений. В этом проявляется защитная функция костей.

Механические свойства костей определяются их разнообразными функциями. Кости ног и рук состоят из плотной костной ткани. Они продолговатые и трубчатые по строению, что позволяет, с одной стороны, противодействовать значительным внешним нагрузкам, а с другой - более чем в два раза уменьшить их массу и моменты инерции.

Основным механическим свойством костной ткани является прочность - способность материала сопротивляться разрушению под действием внешних сил. Прочность материала характеризуется пределом прочности - отношением нагрузки, необходимой для полного разрыва (разрушения испытуемого образца) к площади его поперечного сечения в месте разрыва.

Различают четыре вида механического воздействия на кость: растяжение, сжатие, изгиб и кручение.

Прочность костной ткани при растяжении составляет от 125 до 150 МПа [2]. Она выше, чем у дуба и почти такая же, как у чугуна. При сжатии прочность костей еще выше. Ее значения равны 170 МПа. Несущая способность костей при изгибе значительно меньше. Например, бедренная кость выдерживает нагрузку на изгиб до 2500 Н. Подобный вид деформации широко распространен, как в обычной жизни, так и в спорте. Например, при удержании спортсменом положения "крест" на кольцах происходит деформация костей верхней конечности на изгиб.

При движениях кости не только растягиваются, сжимаются и изгибаются, но и скручиваются. Прочность кости при кручении составляет 105,4 МПа. Она наиболее высока в 25-35 лет. С возрастом этот показатель снижается до 90 МПа.

Механические нагрузки, действующие на человека при занятиях спортом, превышают повседневные. Чтобы им противостоять, в костях происходит ряд изменений: меняются их форма и размеры а также повышается плотность костной ткани. Так, например, у тяжелоатлетов сильно меняется форма лопатки и ключицы. У теннисистов увеличиваются размеры костей предплечья, у штангистов и метателей диска утолщаются кости бедра, у бегунов и хоккеистов - кости голени, у футболистов - кости стопы (В.И. Козлов, А.А. Гладышева, 1977).

2.2 Суставы

Сустав - элемент ОДА, обеспечивающий соединение костных звеньев и создающий подвижность костей друг относительно друга. Суставы являются наиболее совершенными видами соединения костей. У человека их около 200.

Сустав образуют суставные поверхности сочлененных костных звеньев. Между суставными поверхностями имеется суставная полость, в которую поступает синовиальная жидкость. Окружает сустав суставная капсула, состоящая из плотной соединительной ткани.

Основной функцией суставов является обеспечение подвижности костных звеньев друг относительно друга. С этой целью поверхность суставов смачивается синовиальной жидкостью (смазкой), которая выделяется суставным хрящом при увеличении нагрузки на сустав. При уменьшении нагрузки синовиальная жидкость поглощается суставным хрящом. Чтобы компенсировать разрушение суставного хряща при трении в нем постоянно происходят процессы регенерации.

Присутствие синовиальной жидкости обеспечивает низкий коэффициент трения в суставе (от 0,005 до 0,02). Напомним, что коэффициент трения при ходьбе (резина по бетону) составляет 0,75.

Прочность суставного хряща составляет 25,5 МПа. Если давление на суставной хрящ превышает эти показатели, смачивание суставного хряща синовиальной жидкостью прекращается и увеличивается опасность его механического стирания. В среднем и пожилом возрасте выделение синовиальной жидкости в суставную полость уменьшается.

Опорно-двигательный аппарат человека с позиции теории машин и механизмов, можно рассматривать как сложный биомеханизм, состоящий из жестких звеньев (костей) и кинематических пар определенных классов (суставов). С этой точки зрения различают:

Одноосные суставы. Движения в них происходят только вокруг одной оси. Эти суставы обладают одной степенью свободы. В организме человека таких суставов насчитывается 85.

Двуосные суставы. Движения в них происходят вокруг двух осей. Эти суставы обладают двумя степенями свободы. В организме человека 33 двуосных сустава.

Многоосные суставы. Движения в них происходят вокруг трех осей. Эти суставы обладают тремя степенями свободы. В организме человека таких суставов 29.

Для определения числа степеней свободы ОДА человека применяют формулу Сомова-Малышева.

Число степеней свободы для модели тела человека с 148 подвижными звеньями составляет: n = 6 Ч 148 - 5 Ч 85 - 4 Ч 33 - 3 Ч 29 = 244. Это означает, что для описания положения модели тела человека в каждый момент времени необходимо иметь 244 уравнения.

Для количественных оценок параметров движения важно знать положение мгновенных осей вращения в суставе, так как это влияет на значение плеч сил отдельных мышц. Мгновенные оси вращения в суставах могут смещаться. Это происходит из-за того, что в суставах могут осуществляться три типа движения сочленяющихся поверхностей: скольжение, сдвиг и качение. Возможность таких движений обусловлена тем, что соприкасающиеся суставные поверхности не тождественны по форме.

Под влиянием занятий спортом адаптация суставов ОДА происходит разнонаправленно: в одних суставах подвижность увеличивается, в других - уменьшается. Так, у велосипедистов наибольшая подвижность отмечается в голеностопном суставе и наименьшая - в тазобедренном и плечевом (М.Г. Ткачук, И.А. Степаник, 2010).

2.3 Сухожилия и связки

Сухожилие - компонент мышцы, обеспечивающий ее соединение с костью. Основной функцией сухожилия является передача усилия мышц кости. Связки - компонент сустава, обеспечивающий его стабилизацию, посредством удержания костных звеньев в непосредственной близости друг относительно друга.

Сухожилия и связки характеризуются следующими механическими свойствами: прочностью, значением относительной деформации (е), а также упругостью, которую численно характеризует модуль продольной упругости (модуль Юнга).

Сухожилия состоят из толстых, плотно уложенных в пучки структурных единиц - фибрилл, в состав которых входят коллагеновые волокна. Основное свойство коллагена - высокая прочность на разрыв и небольшая относительная деформация (е ? 10%).

Связки, как и сухожилия, состоят главным образом из пучков коллагеновых волокон, расположенных параллельно друг другу. Однако в отличие от сухожилий в состав связок входит достаточное большое количество волокон эластина. Эластин - упругий белок, который может очень сильно растягиваться (относительная деформация составляет 200-300%).

Механические свойства сухожилий и связок зависят от их размеров и состава. Чем больше поперечное сечение и больший процент коллагеновых волокон - тем выше прочность. Чем связка длиннее, и чем больше в ней волокон эластина - тем большей значение относительной деформации.

Прочность сухожилий составляет 40-60 МПа, а связок - 25МПа. Следует заметить, что предел прочности каната из хлопка на растяжение составляет 30-60 МПа.

На прочность связок и сухожилий влияет уровень гормонов. Доказано, что систематическое введение гормонов может привести к значительному уменьшению их прочности. Значительно снижает прочность связок и сухожилий иммобилизация. И, наоборот, при исследовании животных была найдена связь между уровнем физической активности и прочностью сухожилий и связок. Доказано, что в подавляющем большинстве случаев прочность сухожилий более высока, чем прочность их прикрепления к костям. Поэтому при травмах сухожилий они не разрываются, а отрываются от места прикрепления. Следует учитывать также, что в процессе тренировок прочность сухожилий и связок увеличивается сравнительно медленно. При форсированном развитии скоростно-силовых качеств мышц может возникнуть несоответствие между возросшими скоростно-силовыми возможностями мышечного аппарата и недостаточной прочностью сухожилий и связок. Это грозит потенциальными травмами (А.С. Аруин, В.М. Зациорский, В.Н. Селуянов, 1981).

Модуль Юнга (Е) численно равен напряжению, увеличивающему длину образца в два раза. Модуль Юнга для костной ткани составляет 2000МПа, а сухожилия - 160МПа. Материал коллаген характеризуется значением модуля Юнга равным 10-100 МПа, а эластин - 0,5 МПа. Следует отметить, что значение модулем Юнга для резины составляет 5МПа, а для древесины - 1200 МПа (В.И. Дубровский, В.Н. Федорова, 2003).

Связки и сухожилия характеризуются нелинейными свойствами - модуль упругости изменяется по мере изменения их длины.

3. Биомеханические свойства и особенности строения ОДА человека

На биомеханические свойства ОДА человека оказывают влияние особенности его строения.

Во-первых, костные звенья и соединяющие их суставы представляют собой рычаги. Это означает, что результирующее действие мышцы при вращательных движениях, каковыми являются движения звеньев тела в организме человека, определяется не силой, а моментом силы (произведением силы тяги мышцы на ее плечо). Момент силы мышцы будет максимальным, если в фазы движения, соответствующие максимальным значениям силы мышц, будут достигаться максимальные значения плеч сил мышц. Однако изучение изменения длины и плеча силы тяги при выполнении двигательных действий показало (И.М. Козлов, 1984), что опорно-двигательный аппарат человека и животных устроен так, что у большинства односуставных мышц (мышц, обслуживающих движения в одном суставе) уменьшение длины мышцы (падение силы тяги) компенсируется увеличением плеча силы. Это позволяет сохранить значение суставного момента постоянным на протяжении значительного диапазона изменения длины мышцы. Для двусуставных мышц (мышц, обслуживающих движения в двух суставах) уменьшение плеча силы тяги в одном сочленении сопровождается увеличением этого параметра относительно другого сустава.

Во-вторых, ОДА человека и животных устроен таким образом, что сила мышцы, как правило, приложена на более коротком плече рычага. Поэтому мышцы, действующие на костные рычаги, почти всегда имеют проигрыш в силе, однако выигрывают в перемещении и скорости (Н.Б. Кичайкина с соавт., 2008).

Третья особенность функционирования ОДА человека и животных проявляется в том, что мышцы, обеспечивающие движения в суставах могут только тянуть, но не толкать. Поэтому для того, чтобы осуществлять движения в противоположных направлениях, необходимо, чтобы движение звеньев тела осуществлялось мышцами-антагонистами. Следует отметить, что мышцы-антагонисты обеспечивают не только движения звеньев тела в различных направлениях, но также и высокую точность двигательных действий. Это связано с тем, что звено необходимо не только привести в движение, но и затормозить в нужный момент времени.

Четвертой особенностью строения ОДА человека и животных является наличие мышц-синергистов. Наш опорно-двигательный аппарат устроен таким образом, что перемещение костных звеньев в одном направлении может осуществляться под действием различных мышц. Мышцы-синергисты перемещают звенья в одном направлении и могут функционировать как вместе, так и по отдельности. В результате синергетического действия мышц увеличивается их результирующая сила. Если же мышца травмирована или утомлена ее синергисты обеспечат выполнение двигательного действия.

Пятой особенностью строения ОДА человека и животных является наличие мышц, обладающих различной структурой: с параллельным и перистым ходом мышечных волокон. Установлено, что мышцы, имеющие параллельный ход мышечных волокон выигрывают в скорости сокращения, по сравнению с перистыми мышцами. Однако мышцы, обладающие перистым строением, дают выигрыш в силе. Поэтому антигравитационные мышцы - то есть мышцы, противодействующие силе тяжести, расположенные на нижней конечности имеют перистую структуру.

4. Биомеханика мышц

4.1 Виды работы мышц и режимы мышечного сокращения

Различают два вида работы мышц:

· статическая (звенья ОДА фиксированы, движение отсутствует);

· динамическая (звенья ОДА перемещаются относительно друг друга).

Различают три режима мышечного сокращения:

· изометрический - режим мышечного сокращения, при котором момент силы мышцы равен моменту внешней силы (длина мышцы не изменяется). Изометрический режим соответствует статической работе.

· преодолевающий (концентрический) - режим мышечного сокращения, при котором момент силы мышцы больше момента внешней силы (длина мышцы уменьшается).

· уступающий (эксцентрический) - режим мышечного сокращения, при котором момент силы мышцы меньше момента внешней силы (длина мышцы увеличивается).

Преодолевающий и уступающий режимы соответствуют динамической работе. Тренировка с использованием различных режимов мышечного сокращения может привести к различным тренировочным эффектам. Так, использование уступающего режима мышечного сокращения по сравнению с преодолевающим, приводит к большей гипертрофии скелетных мышц.

4.2 Биомеханические свойства мышц

Биомеханические свойства скелетных мышц - это характеристики, которые регистрируют при механическом воздействии на мышцу.

К биомеханическим свойствам мышц относят: сократимость, жесткость, вязкость, прочность и релаксацию.

Сократимость

Сократимость - способность мышцы укорачиваться при возбуждении, в результате чего возникает сила тяги.

Установлено, что во время сокращения (укорочения) мышцы длина толстого и тонкого филаментов не изменяется. При этом неизменной особенностью сокращения является центральное положение толстого филамента в саркомере, посередине между Z-линиями, рис.1.

Рис.1. Схема строения саркомера (G.H. Pollak, 1990)

Исходя из этих наблюдений, была выдвинута "теория скользящих нитей". В соответствии с этой теорией изменение длины саркомера обусловлено скольжением толстого и тонкого филаментов относительно друг друга (H.E. Huxley, J. Hanson., 1954; A.F. Huxley R. Niedergerke, 1954). Процесс сокращения происходит следующим образом. При активации мышцы, прикрепленные к противоположным Z-мембранам тонкие филаменты скользят вдоль толстых. Скольжение происходит благодаря наличию выступов (головок) на нитях миозина, получивших название поперечных мостиков. Так как при сокращении мышцы расстояние между Z-мембранами уменьшается, происходит уменьшение длины мышцы. В виду того, что саркомер представляет собой не плоскую, а объемную структуру, при сокращении мышцы происходит не только уменьшение ее длины, но и увеличение ее поперечного сечения (когда тонкие нити втягиваются в толстые). двигательный сустав мышца биомеханический

Установлено, что зависимость сила, развиваемая саркомером, зависит от его длины. Выявлено, что существуют критические значения длины саркомера, при которых развиваемая им сила падает до нуля. Первое критическое значение длины саркомера равно 1,27 мкм. Оно соответствует максимальному укорочению мышцы. В этом состоянии мышцы регулярность расположения нитей нарушается, они искривляются. Второе критическое значение длины равно 3,65 мкм. Оно соответствует максимальному удлинению мышцы (перекрытия толстых и тонких филаментов нет). Если длина саркомера больше 1,27 мкм и меньше чем 3,65 мкм, значение силы отличается от нуля. При длине саркомера от 1,67 до 2,25 мкм, он развивает максимальную силу.

Существует предельное значение длины саркомера, при котором происходит его разрыв. Это значение равно 3,60 мкм. Чтобы не произошел разрыв, при растягивании мышечных волокон защитную функцию берет на себя соединительный филамент - титин. Благодаря своим упругим свойствам, он предотвращает чрезмерное растяжение саркомера (М.Дж. Алтер, 2001).

Жесткость

Жесткость - характеристика тела, отражающая его сопротивление изменению формы при деформирующих воздействиях (В.Б. Коренберг, 2004). Чем больше жесткость тела, тем меньше оно деформируется под воздействием силы. Жесткость тела характеризуется коэффициентом жесткости (k). Жесткость линейной упругой системы, например пружины, есть величина постоянная на всем участке деформации.

В отличие от пружины мышца представляет собой систему с нелинейными свойствами. Это связано с тем, что структура мышцы очень сложна. Возникающая в мышце сила упругости не пропорциональна удлинению. Вначале мышца растягивается легко, а затем даже для небольшого ее растяжения необходимо прикладывать все большую силу. Поэтому часто мышцу сравнивают с трикотажным шарфом, который вначале легко растягивается, а затем становится практически нерастяжимым. Иными словами, жесткость мышцы с ее удлинением возрастает. Из этого следует, что мышца представляет собой систему, обладающую переменной жесткостью. Установлено, что жесткость мышцы в активном состоянии в 4-5 раз больше жесткости в пассивном состоянии. Коэффициент жесткости мышц варьирует от 2000 до 3000 Н/м.

Вязкость

Помимо жесткости мышца обладает еще одним важным свойством - вязкостью. Вязкость - свойство жидкостей, газов и "пластических" тел оказывать неинерционное сопротивление перемещению одной их части относительно другой (смещение смежных слоев). При этом часть механической энергии переходит в другие виды, главным образом в тепло. Это свойство сократительного аппарата мышцы вызывает потери энергии при мышечном сокращении, идущие на преодоление вязкого трения. Предполагается, что трение возникает между нитями актина и миозина при сокращении мышцы. Кроме того, трение возникает между возбужденными и невозбужденными волокнами мышцы (мышечные волокна различных типов расположены в мышце в виде мозаики) из-за наличия соединения мышечных волокон коллагеновыми фибриллами. Поэтому, если возбуждены все мышечные волокна, трение должно уменьшаться. Показано, что при сильном возбуждении мышцы, ее вязкость резко снижается (Г.В. Васюков,1967).

Мышца, обладающая большей вязкостью, будет характеризоваться большей площадью "петли гистерезиса". Вы знаете, что при выполнении физических упражнений температура мышц повышается. Повышение температуры мышц связано с упруговязкими свойствами мышцы и с потерями энергии мышечного сокращения на трение. Разогрев мышц (разминка) приводит к тому, что вязкость мышц уменьшается.

Прочность

Предел прочности мышцы оценивается значением растягивающей силы, при которой происходит ее разрыв. Установлено, что предел прочности для миофибрилл равен 16-25 КПа, мышц - 0,2-0,4 МПа, фасций - 14 МПа. Долгое время считалось (Е.К. Жуков, 1969; В.М. Зациорский, 1979), что неизменность длины мышцы при ее работе в изометрическом режиме связана с растяжением сухожилий, однако А.А. Вайном (1990) было указано на то, что прочность сухожилий (предел прочности сухожилий равен 40-60 МПа) значительно превосходит прочность мышечных волокон. Поэтому в латентный период возбуждения мышцы сухожилия практически не изменяют своей длины, и, следовательно, неизменной остается длина мышечных волокон и жестко связанных с ними миофибрилл. Это возможно в том случае, если одни, более слабые элементы миофибрилл (саркомеры) будут растягиваться, а другие, более сильные - укорачиваться.

Релаксация

Релаксация мышц - свойство, проявляющееся в уменьшении с течением времени силы мышцы при ее постоянной длине.

Для оценки релаксации используют показатель - длительность релаксации (ф), то есть промежуток времени, в течение которого сила мышцы уменьшается в е[3] раз от первоначального значения. Многочисленными исследованиями установлено, что высота выпрыгивания вверх с места зависит от длительности паузы между приседанием и отталкиванием. Чем больше эта пауза, то есть чем больше длительность работы мышцы в изометрическом режиме, тем меньше ее сила и как следствие - высота выпрыгивания.

Литература

1. Алтер М. Дж. Наука о гибкости / М. Дж. Алтер. - Киев: Олимпийская литература. - 2001. - 421 с.

2. Васюков Г.В. Исследование механических свойств скелетных мышц человека / Г.В. Васюков: Автореф. дис…канд. биол. наук. - М.,1967. - 28 с.

3. Вайн А.А. Явление передачи механического напряжения в скелетной мышце / А.А. Вайн. - Тарту: Изд. Тартуского университета, 1990. - 34 с.

4. Дубровский В.И., Федорова В.Н. Биомеханика. Учебник для высших и средних заведений.- М.: ВЛАДОС_ПРЕСС, 2003.&? 672 с.

5. Жуков Е.К. Очерки по нервно-мышечной физиологии / Е.К. Жуков.- Л.: Наука, 1969. - 288 с

6. Зациорский В.М., Аруин А.С., Селуянов В.Н. Биомеханика двигательного аппарата человека / В.М. Зациорский, А.С. Аруин, В.Н. Селуянов. - М.: Физкультура и спорт, 1981. - 143 с.

7. Зациорский, В.М. Биодинамика мышц / В.М. Зациорский // В кн.: Д.Д. Донской, В.М. Зациорский Биомеханика. Учебник для ин-тов физ. культуры. - М.: Физкультура и спорт, 1979б. - С. 45-51.

8. Кичайкина Н.Б., Степанов В.ВЛебедева., Е.В., Н.Б. Кичайкина, В.В. Степанов, Е.В. Лебедева, 1987

9. Кичайкина, Н.Б. Биомеханика физических упражнений / Н.Б. Кичайкина, И.М. Козлов, А.В. Самсонова: учебно-методическое пособие. - СПб, 2008.- 164 с.

10. Козлов, В.И. Основы спортивной морфологии: учебное пособие для ин-тов физической культуры / В.И. Козлов, А.А. Гладышева. - М.: Физкультура и спорт, 1977. - 103 с.

11. Козлов И.М. Биомеханические факторы организации движений человека: Дис… докт. биол. наук.- Л., 1984. 307 с.

12. Ткачук М.Г., Степаник И.А. Анатомия: учебник для студентов высших учеб. заведений / М.Г. Ткачук, И.А. Степаник. - М.: Советский спорт, 2010. - 392 с.

13. Huxley A.F., Nidergerke R. Structural changes in muscle during contraction; Interference microscopy of living muscle fibres / A.F. Huxley, // Nature,1954. - V.1973. - №. 4412. - P. 971-973.

14. Huxley H.E., Hanson J. Changes in the cross-striations of muscle during contractions and stretch and their structural interpretation / H.E. Huxley, J. Hanson // Nature, 1954. - V. 173. - N. 4412. - P. 973-976.

15. Pollack G.H. Muscles &? molecules: Uncovering the principles of biological motion / G.H. Pollack.- Seattle: Ebner&Sons, 1990.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение строения и характеристика элементов опорно-двигательного аппарата человека как функциональной совокупности костей скелета, сухожилий и суставов, обеспечивающих двигательные действия. Функции двигательного аппарата: опорная, защитная, рессорная.

    контрольная работа [346,0 K], добавлен 06.01.2011

  • Вязкоупругие, упруговязкие и вязкопластичные системы. Механические свойства мышц, костей, кровеносных сосудов, легких. Задачи и объекты биомеханики. Сочленения и рычаги в опорно-двигательном аппарате человека. Механические свойства тканей организма.

    реферат [163,5 K], добавлен 25.02.2011

  • Строение нервной системы человека, роль головного и спинного мозга в восприятии сенсорной информации и рефлекторной деятельности. Структура серого и белого вещества, представляющего собой скопление тел нейронов и их отростков - дендритов и аксонов.

    реферат [565,6 K], добавлен 03.02.2016

  • Изучение особенностей строения и функций мышц - активной части двигательного аппарата человека. Характеристика мышц туловища, фасций спины (поверхностных и глубоких), груди, живота, головы (мышцы лица, жевательные мышцы). Физиологические свойства мышц.

    реферат [45,4 K], добавлен 23.03.2010

  • Пассивная часть опорно-двигательного аппарата - комплекс костей и их соединений. Характеристика и классификация соединительных тканей. Строение и форма костей скелета. Функции позвоночного столба. Грудная клетка, грудина и ребра, скелет конечностей.

    реферат [24,0 K], добавлен 20.01.2011

  • Принцип саморегуляции организма. Понятие о гомеостазе и гомеокинезе. Энергетика и биомеханика мышечного сокращения. Ультраструктура скелетного мышечного волокна. Особенности строения периферических синапсов. Классификация, строение и функции нейронов.

    курс лекций [342,3 K], добавлен 14.06.2011

  • Преобразование химической энергии в механическую работу или силу как основная функции мышц, их механические свойства. Применение закона Гука в отношении малых напряжений и деформаций. Механизм мышечного сокращения. Ферментативные свойства актомиозина.

    презентация [3,0 M], добавлен 23.02.2013

  • Нейроны как основа нервной системы, их основные функции: восприятие, хранение информации. Анализ деятельности нервной системы. Структура опорно-двигательного аппарата, характеристика функций легких. Значение ферментов в пищеварительной системе человека.

    контрольная работа [400,1 K], добавлен 06.06.2012

  • Общая характеристика двигательной активности животных. Ознакомление со строением системы тканей и органов - опорно-двигательным аппаратом. Описание основных функций скелета животного. Изучение особенностей нервно-мышечной части двигательного аппарата.

    реферат [1,2 M], добавлен 26.10.2015

  • Предки современной лошади: эогиппус, тарпан. Иппотерапия как метод лечения людей с помощью лошадей (при нарушениях опорно-двигательного аппарата, атеросклерозе, черепно-мозговых травмах, полиомиелите, сколиозе). Взаимодействие всадника и лошади.

    презентация [2,8 M], добавлен 11.11.2014

  • Виды мышечных волокон: скелетные, сердечные и гладкие. Функции скелетных и гладких мышц, изометрический и изотонический режимы их сокращения. Одиночное и суммированное сокращения, строение мышечного волокна. Функциональные особенности гладких мышц.

    контрольная работа [1,4 M], добавлен 12.09.2009

  • Система органов движения: кости (скелет), связки, суставы и мышцы. Характеристика костной ткани, состоящей из клеток и межклеточного вещества. Три периода развития черепа после рождения. Возрастные особенности позвоночника и скелетной мускулатуры.

    реферат [414,6 K], добавлен 06.06.2011

  • Основные физиологические свойства мышц: возбудимость, проводимость и сократимость. Потенциал покоя и потенциал действия скелетного мышечного волокна. Механизм сокращения мышц, их работа, сила и утомление. Возбудимость и сокращение гладкой мышцы.

    курсовая работа [1,1 M], добавлен 24.06.2011

  • Строение и типы мышц. Изменение макро- и микроструктуры, массы и силы мышц в разные возрастные периоды. Основные группы мышц, их функции. Механизм мышечного сокращения. Формирование двигательных навыков. Совершенствование координации движений с возрастом.

    реферат [15,6 K], добавлен 15.07.2011

  • Определение нервной системы человека. Особые свойства нейронов. Функции и задачи нейроморфологии. Морфологическая классификация нейронов (по числу отростков). Клетки глии, синапсы, рефлекторная дуга. Эволюция нервной системы. Сегмент спинного мозга.

    презентация [1,5 M], добавлен 27.08.2013

  • Механические модели биообъектов. Закон Гука при деформации тканей. Механические свойства мышц и костей, стенки кровеносных сосудов. Основные механические процессы в легких. Молекулярные основы упругих свойств биообъектов. Движение хромосом в клетках.

    презентация [4,7 M], добавлен 14.03.2015

  • Организация и методика гигиенического обучения воспитания школьников. Гигиеническое обоснование школьного режима. Профилактика нарушения опорно-двигательного аппарата, детского травматизма, расстройства зрения. Закономерности роста и развития школьников.

    курсовая работа [49,6 K], добавлен 27.09.2009

  • Сегментарное строение и функции спинного мозга. Описание позвоночного столба и шейного среза. Проводящие пути спинного мозга: проекционные, ассоциационные, центростремительные и центробежные. Белое вещество как проводниковый аппарат спинного мозга.

    реферат [456,6 K], добавлен 17.05.2012

  • Опорно-трофические (соединительные) ткани - клетки и межклеточное вещество организма человека, их морфология и функции: опорная, защитная, трофическая (питательная). Виды тканей: жировая, пигментная, слизистая, хрящевая, костная; специальные свойства.

    реферат [20,9 K], добавлен 04.12.2011

  • Характеристика эмбриогенеза нервной системы. Спинной мозг - расположение в позвоночном канале, внутреннее строение (серое и белое вещество), проводящие пути, топография сегментов. Строение и назначение твердой, паутинной и мягкой оболочки спинного мозга.

    презентация [1,0 M], добавлен 30.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.