Молекулярные основы деления клеток

Характеристика фаз жизненного цикла клетки. Циклины и циклин-зависимые киназы, последовательность активации различных комплексов циклин-CdK. Биологическое значение и стадии митоза. Функции и структура конденсинов и когезинов. Редукционное деление клетки.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 19.06.2016
Размер файла 983,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Молекулярные основы деления клеток

План

1. Химия клеточного цикла

2. Циклины и циклин-зависимые киназы (Cdk)

3. Cdk-ингибиторы (белки р21, р27)

4. Митоз

5. Мультипротеиновые комплексы - кохезин и конденсин

6. Цитокинез, тубулин и микротрубки

7. Мейоз

1. Химия клеточного цикла

Характерным свойством пролиферирующих клеток является их способность к делению.

У животных клеток интервал между митозами (клеточный цикл, точнее митотический цикл) составляет примерно 10-24 ч (в примере, приведенном на схеме, 24 ч). За это время клетка проходит четыре фазы жизненного цикла: G1-фазу начального роста, S-фазу удвоения молекул ДНК (репликации, см. рис. 239), G2-фазу роста и М-фазу клеточного деления. Наиболее детально изучена фаза клеточного деления, митоз (М-фаза). В G1-фазе, продолжительность которой может сильно варьировать, происходит синтез мРНК, белков и других компонентов клетки. У некоторых клеток в жизненном цикле может отсутствовать G1-фаза. Клетки, которые прошли дифференцировку и больше не делятся, постоянно находятся в фазе покоя G0 . При стимуляции митогенами (например, ростовыми факторами, онкогенными вирусами) покоящиеся клетки могут вернуться в состояние, свойственное фазе G1. ЕСЛИ такие клетки пройдут критическую точку, они вступают в S-фазу. G2-фаза является конечным этапом подготовки клетки к делению.

В совокупности фазы G1, G0, S и G2 носят название интерфазы. В клеточном цикле интерфаза сменяется существенно более короткой фазой митоза (М).

Регуляция клеточного цикла

Регуляция клеточного цикла осуществляется посредством обратимого фосфорилирования/дефосфорилирования регуляторных белков (см. рис. 117). Ключевым белком, регулирующим вступление клетки в митоз (G2/M-переход), является специфическая серин/треонин-протеинкиназа, которая носит название фактор созревания [ФС (MPF, от англ. maturation promoting factor)]. В активной форме фермент катализирует фосфорилирование многих белков, принимающих участие в митозе, таких, например, как входящий в состав хроматина гистон H1 (см. с. 236), ламин (компонент цитоскелета, обнаруженный в ядерной мембране), факторы транскрипции, белки митотического веретена и ряд ферментов. Фосфорилирование этих белков запускает процесс митоза. После завершения митоза регуляторная субъединица ФС, циклин, маркируется убиквитином и подвергается протеолизу (см. с. 178). Теперь наступает очередь протеинфосфатаз, которые дефосфори пируют белки, принимавшие участие в митозе, после чего клетка возвращается в состояние интерфазы.

ФС -- гетеродимерный фермент, включающий регуляторную субъединицу, циклин, и каталитическую субъединицу, циклинзависимую киназу [ЦЗК (CDK от англ. cyclin dependent kinase) или p34cdc2; 34 кДа]. Активной формой фермента является лишь димер ЦЗК+циклин. Кроме того, активность протеинкиназы регулируется путем обратимого фосфорилирования самого фермента (на схеме представлен предельно простой вариант этого процесса).

В клетках позвоночных присутствует ряд различных циклинов и циклинзависимых киназ. Разнообразные сочетания двух субъединиц фермента регулируют запуск митоза, начало процесса транскрипции в G1-фазе, переход критической точки после завершения транскрипции, начало процесса репликации ДНК в S-периоде интерфазы (стартовый переход) и другие ключевые переходы клеточного цикла (на схеме не приведены).

В ооцитах лягушки вступление в митоз (G2/M-переход) регулируется путем изменения концентрации циклина. Циклин непрерывно синтезируется в интерфазе до достижения максимальной концентрации в фазе М, когда запускается весь каскад фосфорилирования белков, катализируемый ФС. К окончанию митоза циклин быстро разрушается протеиназами, также активируемыми ФС. В других клеточных системах активность ФС регулируется за счет различной степени фосфорилирования самого фермента.

2. Циклины и циклин-зависимые киназы (Cdk)

Циклин зависимые киназы (Cdk) - это клеточные машины, которые запускают события клеточного цикла и являются своеобразными часами этих событий. Кроме того, они выполняют функцию информационных процессоров, которые интегрируют внеклеточные и внутриклеточные сигналы для тонкой координации событий клеточного цикла. Изучение Cdk необходимо для понимания фундаментальных механизмов контроля клеточного цикла.

Каталитическая активность Cdk обеспечивается высокоспецифичными сайтами связывания, что позволяет двум субстратам правильно расположиться относительно друг друга и произвести перенос фосфата АТФ на кислород ОН группы белка-субстрата. Типичная каталитическая субъединица чуть больше, чем минимальный протеинкиназный домен. Члены семейства Cdk состоят из примерно 300 остатков аминокислот. Из них 35-65% идентичны прототипу cdc2/cdc28. Каталитические субъединицы Cdk не действуют в одиночку. Их способность включать события клеточного цикла полностью зависит от взаимодействия с циклиновыми субъединицами. Отсюда и происходит название cyclin dependent kinase. Хотя связывание с циклином и является определяющим, существуют дополнительные регуляторные субъединицы и протеин киназы, которые модулируют активность CDK, распознавание субстрата и субклеточную локализацию. Cdk определяются как белковые киназные каталитические субъединицы. Продукт cdc2 гена, р34, считается прототипом циклин-киназной единицы и служит эталоном для сравнения других циклин-киназ.

В регуляции клеточного цикла дрожжей участвует всего одна циклин зависимая киназа -р34. В разные периоды клеточного цикла она активируется присоединением соответствующего циклина и фосфорилирует специфические для этого периода субстраты (рис. 32). Видно, что периоды активностей Cdk перекрываются.

У позвоночных открыто более десяти белков подобных cdc2/cdc28. Большинство Cdk являются некритическими регуляторами клеточного цикла. Лишь Cdk1 и Cdk2, структурные гомологи cdc2/cdc28, выполняют в нем главную роль. В настоящее время известно восемь циклинов, обозначаемых латинскими буквами от А до Н. Все циклины имеют общую последовательность длиной 100-150 аминокислотных остатков, называемую циклиновым боксом, которая необходима для связывания с CDK. На основании анализа кристаллической структуры циклин А1 состоит из двух компактных центральных доменов, каждый из которых представлен пятью спиралями, и двух дополнительных спиралей у С- и N-конца.

Рис. 1 Движение по клеточному циклу определяется последовательной активацией различных комплексов циклин-CdK. Большинство из них - мишени активирующего действия онкогенов или ингибирующего действия опухолевых супрессоров.

Эти данные позволяют предположить, что пятиспиральный домен является ядром всех циклинов. Циклин подобные домены имеют некоторые pRb белки (р35) и фактор транскрипции TFIIB.

3. Cdk-ингибиторы (белки р21, р27)

CDKN1A (англ. cyclin-dependent kinase inhibitor 1A, p21, Cip1) -- внутриклеточный белок-ингибитор циклин-зависимой киназы 1A, играет критическую роль в клеточном ответе на повреждение ДНК. Уровень белка повышен в клетках, находящихся в стадии покоя, таких как дифференцированные клетки организма. Один из 9 известных белковых ингибиторов циклин-зависимой киназы.

Клиническое значение p21 обеспечивает устойчивость гематопоэтических клеток к инфицированию ВИЧ за счёт связывания с вирусной интегразой, предотвращая таким образом встраивание провируса в хромосомный аппарат клетки.

Ген CDKN1A как правило не инактивируется полностью в злокачественных опухолях. Точная роль p21 в канцерогенезе до конца пока не установлена. Исследования показывают, что при некоторых типах опухолей потеря p21 является признаком плохих шансов на выживание. Однако известны ситуации, когда повышенная концентрация этого белка в клетках положительно коррелирует с агрессивностью опухоли и её способностью к метастазированию. Это особенно относится к тем случаям, когда p21 накапливается в цитоплазме, а не в ядре клетки

Гены р21 (WAF1, С1Р1), р27 (К1Р1) и р57 (KIP2). Еще одним представителем класса ингибиторов циклинозависимых киназ является WAF1, известный и как CIPI, CDII или mda-6|. Он кодирует белок р21. Повреждение ДНК вызывает индукцию р21, которая приводит к задержке процесса удвоения ДНК и, как следствие этого, - к ингибированию прохождения клетками цикла деления. Активация р21 может быть вызвана как суперэкспрессией гена р53, так и митогенами, агентами, индуцирующими дифференнировку или ведущими к угнетению роста клеток путем нарушения структуры ДНК. Белок р21, а также родственные ему р27 и р57 связывают и инг ибируют ряд комплексов CDK. Кроме того, р21 и р27 подавляют активацию DK, блокируя их фосфорилирование. Гиперэкспрессия любого представителя этого семейства вызывает задержку клеточного цикла в фазе G1.

4. Митомз

Митомз (др.-греч. мЯфпт -- нить) -- непрямое деление клетки, наиболее распространенный способ репродукции эукариотических клеток. Биологическое значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений.[1]

Митоз -- один из фундаментальных процессов онтогенеза. Митотическое деление обеспечивает рост многоклеточных эукариот за счёт увеличения популяций клеток тканей. В результате митотического деления клеток меристем увеличивается количество клеток тканей растений. Дробление оплодотворённого яйца и рост большинства тканей у животных также происходит путём митотических делений.

На основании морфологических особенностей митоз условно подразделяется на стадии: профазу, прометафазу, метафазу, анафазу, телофазу. Первые описания фаз митоза и установление их последовательности были предприняты в 70--80-х годах XIX века. В конце 1870-х -- начале 1880-х годов немецкий гистолог Вальтер Флемминг для обозначения процесса непрямого деления клетки ввёл термин «митоз».

Продолжительность митоза в среднем составляет 1--2 часа. Митоз клеток животных, как правило, длится 30--60 минут, а растений -- 2--3 часа.За 70 лет в теле человека суммарно осуществляется порядка 1014 клеточных делений

5. Мультипротеиновые комплексы - кохезин и конденсин

Конденсины -- большие белковые комплексы, которые играют главную роль в расхождении хромосом во время митоза и мейоза.

Субъединичный состав

Большинство эукариотических клеток имеют два вида конденсиновых комплексов, которые называются конденсин I и конденсин II. Каждый из них состоит из пяти субъединиц. Конденсины I и II имеют общую пару субъединиц, SMC2 и SMC4, которые принадлежат к большому семейству хромосомных АТФаз, известному как SMC-белки (англ. Structural Maintenance of Chromosomes). Каждый из этих комплексов содержит определённый набор регуляторных субъединиц (кляйзиновую субъединицу и пару субъединиц с HEAT-повторами). У нематоды Caenorhabditis elegans есть третий конденсиновый комплекс (родственный конденсину I), который участвует в дозовой компенсации. Этот комплекс называется конденсин IDC, и в нём субъединица SMC4 заменена на схожий белок DPY-27.

Структура и функции конденсина I неизменны от дрожжей к человеку, но у дрожжей нет конденсина II. По всей видимости нет никакой связи между наличием у эукариотического организма конденсина II и размером его генома. Напротив, у примитивной красной водоросли Cyanidioschyzon merolae есть конденсины I и II, хотя размер её генома мал даже по сравнению с дрожжами.

Пркариотические конденсины

У прокариот есть конденсин-подобные комплексы, которые также обеспечивают организацию и расхождение хромосом. Прокариотические конденсины можно разделить на два типа: SMC-ScpAB и MukBEF. У большинства видов эубактерий и архей присутствуют конденсины SMC-ScpAB, а у г-протеобактерий -- MukBEF.Механизм действия

Одиночное конденсиновое кольцо окружает два участка двухцепочечной ДНК, а затем замыкается при помощи дополнительных не SMC субъединиц. Таким образом эти белки обеспечивают конденсацию хроматина, образование петель и правильную укладку ДНК в хроматиде.

Активность

Очиненный конденсин I использует энергию АТФ, что бы создавать на ДНК положительные супервитки. Он проявляет ДНК-зависимую АТФазную активность in vitro. Димер SMC2-SMC4 способен ренатурировать комплементарную одноцепочечную ДНК. Для этой активности ему не требуется АТФ.

Структура

Димеры SMC, которые являются центральными субъединицами конденсинов, имеют уникальную V-образную форму. Такую форму удалось определить у конденсина I с помощью электронной микроскопии.

Функции в митозе

Распределение конденсина I (зелёный) и конденсина II (красный) в метафазных хромосомах человека. Штрих = 1 мm.

В культуре клеток человека, конденсиновые комплексы по-разному регулируются в процессе прохождения клеточного цикла. В течение интерфазы конденсин II находится в ядре и принимает участие в начальных стадиях конденсации хромосом во время профазы. Конденсин I, напротив, в течение интерфазы находится в цитоплазме, попадает к хромосома только после исчезновения ядерной оболочки в конце профазы. В течение прометафазы и метафазы, оба конденсина участвуют в конденсации хромосом, в которых сестренские хроматиды полностью оформелены[4]. Оба комплекса по-видимому остаются связными с хромосомами даже после расхождения сестринских хроматид в анафазе. По крайней мере одна субъединица конденсина I напрямую взаимодействует с циклин-зависимой киназой (Cdk).

Другие функции

Недавние исследования показали, что конденсины участвуют широком спектре процессов, происходящих в хромосомах вне митоза и мейоза. У почкующихся дрожжей, например, конденсин I (единственный конденсин этого организма) помогает в регулировании числа копий тандемных повторов рибосомного ДНК[20], а также в кластеризации генов тРНК. У дрозофиллы субъединицы конденсина II участвуют в растворении политенных хромосом и формировании хромосомной территории в клетках-кормилках. Также существуют доказательств, что они соуществляют негативную регуляцию генетической трансвекции диплоидных клеток. У A. thaliana конденсин II необходим для устойчивости растения к бору, возможно, он предотвращает повреждение ДНК. Было показано, что в клетках человека вклад конденсина II в расхождение сестринских хроматид ощутим уже в S-фазе.

Когезин -- это комплекс белков, который регулирует процесс разделения сестринских хроматид в ходе деления клетки (как мейоза, так и митоза).

Структура

Когезин состоит из четырех составляющих: Scc1, Scc3, Smc1, Smc3. Белки Smc имеют две главные характеристики: АТФазную активность домена, образующегося при взаимодействии С-конца и N-конца белка) и петлеобразную зону, позволяющую димеризацию Smc. Домен АТФазы и петля соединяются между собой через длинную антипаралелльную "спираль из спиралей". Общая структура димера имеет центральную петлю, окруженную АТФазами. В присутствии АТФ два домена АТФазы могут связываться, формируя структуру кольца. Гидролиз АТФ может вызвать открывание или закрывание кольца.

Scc1 и Scc3 соединяют АТФазные домены Smc1 и Smc3, стабилизируя структуру кольца. N- и C-концы Scc1 соединяются с Smc1 и Smc3. Когда Scc1 соединяется с белком SMC, Scc3 также может присоединиться, соединяясь с С-концевым участком Scc1. Когда Scc1 соединяется и с Smc1, и с Smc3, комплекс когезина формирует закрытую форму кольца. Если же он соединяется только с одним из белков SMC, то образуется структура открытого кольца. Недавно было обнаружено, что кольца когезина могут димеризироваться, образуя структуру из двух колец, скрепленных частью Scc3 в форме наручников, причем в каждом кольце проходит нить ДНК.

Функции

У кольца когезина есть три функции:

* Используется для удержания сестринских хроматид, соединенными друг с другом в течение метафазы, гарантируя их соединение в процессе митоза(мейоза). После разделения две хроматиды движутся к противоположным полюсам клетки. Без когезина клетка не смогла бы контролировать изоляцию сестринских хроматид.

* Облегчает присоединение веретена деления к хромосомам

* облегчает восстановление ДНК путём рекомбинации

Механизм действия

Сейчас еще не очень понятно, как кольца когезина соединяют сестринские хроматиды. Предполагают два возможных варианта:

1 Части когезина присоединяются к каждой хроматиде и формируют мост между двумя из них.

2 После образования у когезина структуры кольца появляется возможность заключать хроматиды в эти кольца.

По современным данным, второй вариант более вероятен. Белки, которые необходимы для когезии сестринских хроматид, такие как Smc3 и Scc1, не регулируют образование ковалентных связей между когезином и ДНК, показывая, что взаимодействия с ДНК не достаточно для процесса когезии. В дополнение к этому, разрушение структуры кольца в когезине через расщепление Smc3 или Scc1 вызывает преждевременную изоляцию сестринских хроматид. Это показывает, что образование кольца когезина важно для выполнения его функций.

До сих пор еще не известно, сколько колец когезина требуется для удержания сестринских хроматид вместе. По одной из версий, одно кольцо окружает хроматиды. Другая версия допускает образование димера, где каждое кольцо окружает одну сестринскую хроматиду. Эти два кольца соединены друг с другом через мост, который удерживает две хроматиды вместе.

Комплекс когезии образуется на начальных этапах S-фазы. Комплексы взаимодействуют с хромосомами перед началом копированием ДНК. Когда клетка начинает дупликацию ДНК, кольца когезина закрываются и соединяют сестринские хроматиды вместе. Комплексы когезина обязательно должны присутствовать в течение S-фазы для того, чтобы когезия имела место. Однако непонятно, как когезин прикрепляется к хромосомам в течение фазы G1. Сейчас существуют две гипотезы:

1. АТФазы белков SMC взаимодействуют с ДНК, и это взаимодействие опосредует присоединение колец когезина к хромосомам.

2. Некоторые дополнительные белки помогают процессу загрузки.

6. Цитокинез, тубулин и микротрубки

Цитокинез, цитотомия -- деление тела эукариотической клетки. Цитокинез обычно происходит после того, как клетка претерпела деление ядра (кариокинез) в ходе митоза или мейоза. В большинстве случаев цитоплазма и органоиды клетки распределяются между дочерними клетками приблизительно поровну. клетка деление митоз циклин

Важное исключение представляет собой оогенез, с его предельно асимметричными делениями, в ходе которых будущая яйцеклетка получает практически всю цитоплазму и органоиды, в то время как вторая из клеток в каждом из двух делений мейоза (так называемое полярное или редукционное тельце) почти не содержит цитоплазмы и вскоре отмирает.

В тех случаях, когда деление ядра не сопровождается цитокинезом, образуются многоядерные клетки (симпласты).

Тубулимн -- это белок, из которого построены микротрубочки. В них, а также в цитоплазме клеток он находится в форме димера, состоящего из двух форм -- б- и в-тубулина. Одна молекула б-тубулина и одна молекула в-тубулина в цитоплазме клеток объединяются в димер. В составе такого димера к каждой молекуле тубулина присоединено по одной молекуле ГТФ. У каждой из этих субъединиц выделяют три домена. Форма г-тубулина принимает участие в нуклеации микротрубочек, то есть образовании затравки, с которой начинается рост. Тубулин способен связывать в растворе с молекулы ГТФ. Рост микротрубочек осуществляется только за счет присоединения димеров тубулина, в которых обе субъединицы связаны с молекулами ГТФ. В стенках микротрубочек происходит гидролиз ГТФ, связанной с в-субъединицей, до ГДФ (связанная с б-субъединицей ГТФ стабильна). Связанная с ГДФ форма тубулина легче отделяется от микротрубочек, что определяет динамическую нестабильность микротрубочек -- при определенных условиях они быстро распадаются почти полностью.

Долгое время полагали, что тубулин характерен только для эукариотических клеток. Однако недавние исследования обнаружили участвующий в делении прокариотов гомологичный белок FtsZ, который может быть эволюционным предшественником тубулина.

Дельта и эпсилон формы тубулины были найдены в центриолях и, по-видимому, принимают участие в образовании веретена деления.

Молекулярный вес в-тубулина порядка 55 кДа. Продольный размер -- 8 нм.

Тубулин является мишенью для противоопухолевых препаратов (таксол, доцетаксел, паклитаксел) и колхицина. Колхицин связывается с тубулином, препятствуя формированию микротрубочек. Это его свойство используется для получения искусственных полиплоидов и в терапии подагры (колхицин снижает подвижности нейтрофилов, тем самым способствуя спаду воспалительного процесса).

Микротрубочки -- белковые внутриклеточные структуры, входящие в состав цитоскелета.

Микротрубочки представляют собой полые внутри цилиндры диаметром 25 нм. Длина их может быть от нескольких микрометров до, вероятно, нескольких миллиметров в аксонах нервных клеток. Их стенка образована димерами тубулина. Микротрубочки, подобно актиновым микрофиламентам, полярны: на одном конце происходит самосборка микротрубочки, на другом -- разборка. В клетках микротрубочки играют роль структурных во многих клеточных процессах.

Строение

Микротрубочки -- это структуры, в которых 13 протофиламентов, состоящих из гетеродимеров б- и в-тубулина, уложены по окружности полого цилиндра. Внешний диаметр цилиндра около 25 нм, внутренний -- около 15.

Один из концов микротрубочки, называемый плюс-концом, постоянно присоединяет к себе свободный тубулин. От противоположного конца -- минус-конца -- тубулиновые единицы отщепляются.

в-тубулин.

В образовании микротрубочки выделяют три фазы:

* замедленная фаза, или нуклеация. Это этап зарождения микротрубочки, когда молекулы тубулина начинают соединяться в более крупные образования. Такое соединение происходит медленнее, чем присоединение тубулина к уже собранной микротрубочке, поэтому фаза и называется замедленной;

* фаза полимеризации, или элонгация. Если концентрация свободного тубулина высока, его полимеризация происходит быстрее, чем деполимеризация на минус-конце, за счет чего микротрубочка удлиняется. По мере её роста концентрация тубулина падает до критической и скорость роста замедляется вплоть до вступления в следующую фазу;

* фаза стабильного состояния. Деполимеризация уравновешивает полимеризацию, и рост микротрубочки останавливается.

Лабораторные исследования показывают, что сборка микротрубочек из тубулинов происходит только в присутствии гуанозинтрифосфата и ионов магния.

Динамическая нестабильность

Микротрубочки являются динамическими структурами и в клетке постоянно полимеризуются и деполимеризуются. Центросома, локализованная вблизи ядра, выступает в клетках животных и многих протистов как центр организации микротрубочек (ЦОМТ): они растут от неё к периферии клетки. В то же время микротрубочки могут внезапно прекратить свой рост и укоротиться обратно по направлению к центросоме вплоть до полного разрушения, а затем вырасти снова. При присоединении к микротрубочке молекулы тубулина, несущие ГТФ, образуют «шапочку», которая обеспечивает рост микротрубочки. Если локальная концентрация тубулина падает, связанная с бета-тубулином ГТФ постепенно гидролизуется. Если полностью гидролизуется ГТФ «шапочки» на +-конце, это приводит к быстрому распаду микротрубочки. Таким образом, сборка и разборка микротрубочек связана с затратами энергии ГТФ.

Динамическая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена.

Функция

Микротрубочки в клетке используются в качестве «рельсов» для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными. Это высокомолекулярные соединения, состоящие из двух тяжёлых (массой около 300 кДа) и нескольких лёгких цепей. В тяжёлых цепях выделяют головной и хвостовой домены. Два головных домена связываются с микротрубочками и являются собственно двигателями, а хвостовые -- связываются с органеллами и другими внутриклеточными образованиями, подлежащими транспортировке.

Выделяют два вида моторных белков:

* цитоплазматические динеины;

* кинезины.

Динеины перемещают груз только от плюс-конца к минус-концу микротрубочки, то есть из периферийных областей клетки к центросоме. Кинезины, напротив, перемещаются к плюс-концу, то есть к клеточной периферии.

Перемещение осуществляется за счёт энергии АТФ. Головные домены моторных белков для этого содержат АТФ-связывающие участки.

Помимо транспортной функции, микротрубочки формируют центральную структуру ресничек и жгутиков -- аксонему. Типичная аксонема содержит 9 пар объединённых микротрубочек по периферии и две полных микротрубочки в центре. Из микротрубочек состоят также центриоли и веретено деления, обеспечивающее расхождение хромосом к полюсам клетки при митозе и мейозе. Микротрубочки участвуют в поддержании формы клетки и расположения органоидов (в частности, аппарата Гольджи) в цитоплазме клеток.

7. Мейоз

Мейомз (от др.-греч. меЯщуйт -- уменьшение), или редукциомнное делемние клетки -- деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом -- образованием специализированных половых клеток, или гамет, из недифференцированных стволовых.

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса.

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов. Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет (основным средством борьбы с этой проблемой является применение полиплоидных хромосомных наборов, поскольку в данном случае каждая хромосома конъюгирует с соответствующей хромосомой своего набора) . Определённые ограничения на конъюгацию хромосом накладывают и хромосомные перестройки (масштабные делеции, дупликации, инверсии или транслокации).

Фазы мейоза

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

* Профаза I -- профаза первого деления очень сложная и состоит из 5 стадий:

* Лептотена или лептонема -- упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).

* Зиготена или зигонема -- происходит конъюгация -- соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.

* Пахитена или пахинема -- (самая длительная стадия) -- в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы. В них происходит кроссинговер -- обмен участками между гомологичными хромосомами.

* Диплотена или диплонема -- происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.

* Диакинез -- ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

* Метафаза I -- бивалентные хромосомы выстраиваются вдоль экватора клетки.

* Анафаза I -- микротрубочки сокращаются, биваленты делятся, и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.

* Телофаза I -- хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

* Профаза II -- происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.

* Метафаза II -- унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

* Анафаза II -- униваленты делятся и хроматиды расходятся к полюсам.

* Телофаза II -- хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).

Варианты

У некоторых простейших мейоз протекает иначе, чем описанный выше типичный мейоз многоклеточных. Например, может протекать только одно, а не два последовательных, мейотических деления, а кроссинговер -- проходить во время другой фазы мейоза[1]. Предполагается, что такой одноступенчатый мейоз примитивен и предшествовал возникновению двухступенчатого мейоза, обеспечивающего эффективную рекомбинацию генома.

Значение

* У организмов, размножающихся половым путём, предотвращается удвоение числа хромосом в каждом поколении, так как при образовании половых клеток мейозом происходит редукция числа хромосом.

* Мейоз создает возможность для возникновения новых комбинаций генов (комбинативная изменчивость), так как происходит образование генетически различных гамет.

* Редукция числа хромосом приводит к образованию «чистых гамет», несущих только один аллель соответствующего локуса.

* Расположение бивалентов экваториальной пластинки веретена деления в метафазе 1 и хромосом в метафазе 2 определяется случайным образом. Последующее расхождение хромосом в анафазе приводит к образованию новых комбинаций аллелей в гаметах.

Размещено на Allbest.ru

...

Подобные документы

  • Периоды и фазы клеточного цикла. Последовательное прохождение клеткой периодов цикла без пропуска или возврата к предыдущим стадиям. Деление исходной клетки на две дочерние клетки. Циклины и циклин-зависимые киназы; деление эукариотической клетки; митоз.

    контрольная работа [25,0 K], добавлен 21.11.2009

  • Сущность клеточного цикла - периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.

    презентация [823,0 K], добавлен 28.10.2014

  • Изучение процесса митоза как непрямого деления клетки и распространенного способа репродукции эукариотических клеток, его биологическое значение. Мейоз как редукционное деление клетки. Интерфаза, профаза, метафаза, анафаза и телофаза мейоза и митоза.

    презентация [7,6 M], добавлен 21.02.2013

  • Характеристика жизненного цикла клетки, особенности периодов ее существования от деления до следующего деления или смерти. Стадии митоза, их продолжительность, сущность и роль амитоза. Биологическое значение мейоза, его основные этапы и разновидности.

    лекция [169,6 K], добавлен 27.07.2013

  • Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.

    презентация [1,1 M], добавлен 07.12.2014

  • Основные фазы клеточного цикла: интерфаза и митоз. Определение понятия "митоз" как непрямого деления клетки, наиболее распространенного способа репродукции эукариотических клеток. Характеристика и особенности процессов деления: амитоза и мейоза.

    презентация [799,4 K], добавлен 25.10.2011

  • Митоз как непрямое деление клетки, в результате которого образуются соматические клетки. Стадии клеточного цикла. Подготовка к делению эукариотических организмов. Основные этапы кариокинеза. Разделение цитоплазмы с органоидами между дочерними клетками.

    презентация [2,3 M], добавлен 06.11.2013

  • Ядро эукариотической клетки. Клетки, имеющие более двух наборов хромосом. Процесс деления у эукариот. Объединенные пары гомологичных хромосом. Онтогенез растительной клетки. Процесс разъединения клеток в результате разрушения срединной пластинки.

    реферат [759,3 K], добавлен 28.01.2011

  • Значение роста и развития клеток. Жизненный и митотический циклы клеток. Продолжительность жизни разных типов клеток в многоклеточном организме. Рассмотрение митоза как универсального способа размножения, сохраняющего постоянство числа хромосом в клетках.

    презентация [4,1 M], добавлен 05.12.2014

  • Методы изучения клетки: микроспектромериз, цитофотометрия, флуоресцентная и ультрафиолетовая микроскопия. Способы деления клеток, их сходство и различия. Функции биологических мембран, диффузия (пассивная и облегченная) и активный транспорт молекул.

    контрольная работа [39,9 K], добавлен 01.06.2010

  • Основы гистологической техники. Цитохимические методы исследования клеток и тканей. Наружная цитоплазматическая мембрана, типы и происхождение пластид, их строение и функции. Мейоз (редукционное деление клетки), его фазы и биологический смысл.

    контрольная работа [22,7 K], добавлен 07.06.2010

  • Период жизнедеятельности клетки, в котором происходят все обменные процессы и деление. Интерфаза, метафаза и анафаза, деление клетки. Биологический смысл митоза. Вирусы и бактериофаги как неклеточные формы жизни. Виды и формы размножения организмов.

    реферат [20,3 K], добавлен 06.07.2010

  • Последовательность событий в процессе деления новой клетки. Накопление критической клеточной массы, репликация ДНК, построение новой клеточной оболочки. Характер взаимосвязи процессов клеточного деления. Управление скоростью роста микроорганизмов.

    реферат [1014,9 K], добавлен 26.07.2009

  • Характеристика редукционного деления, его биологическое значение. Образование мегаспор и формирование зародышего мешка в семязачатке цветкового растения. Жизненный цикл сосны обыкновенной. Типы и строение сочных плодов. Характеристика семейства Капустные.

    контрольная работа [992,3 K], добавлен 01.02.2012

  • Последовательность образования антител. Дентдритные клетки и их классификация. Клетки Лангерганса, их происхождение и функции, методы выявления. Презентация антигена. Роль клеток в формировании клеточного и гуморального антивирусного иммунитета.

    реферат [896,5 K], добавлен 09.02.2012

  • Митотическое деление клетки, особенности ее строения. Митоз как универсальный способ деления клеток растений и животных. Постоянство количества и индивидуальность хромосом. Продолжительность жизни, старение и смерть клеток. Формы размножения организмов.

    реферат [22,8 K], добавлен 07.10.2009

  • Строение и функции оболочки клетки. Химический состав клетки. Содержание химических элементов. Биология опухолевой клетки. Клонирование клеток животных. А была ли Долли? Клонирование - ключ к вечной молодости? Культивирование клеток растений.

    реферат [27,3 K], добавлен 16.01.2005

  • Анализ особенностей онтогенеза растительной клетки. Возникновение и накопление различий между клетками, образовавшимися в результате деления. Эмбриональная фаза онтогенеза, фазы растяжения, дифференцировки клетки, зрелости. Старение и смерть клетки.

    доклад [553,2 K], добавлен 28.04.2014

  • Изобретение Захарием Янсеном примитивного микроскопа. Исследование срезов растительных и животных тканей Робертом Гуком. Обнаружение Карлом Максимовичем Бэром яйцеклетки млекопитающих. Создание клеточной теории. Процесс деления клетки. Роль ядра клетки.

    презентация [1,4 M], добавлен 28.11.2013

  • Тканеспецифичные стволовые клетки, стволовые клетки крови млекопитающих. Базальные кератиноциты - стволовые клетки эпидермиса. Способность клеток к специализации (дифференцировке). Регенерация сердечной ткани. Перспективы применения стволовых клеток.

    реферат [25,2 K], добавлен 07.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.