Обмен веществ. Питание
Определение понятия катаболизма – ферментативного расщепления в процессе окислительных реакций крупных органических молекул питательных веществ на более простые. Рассмотрение биологической ценности аминокислот. Анализ сущности азотистого баланса.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 28.11.2016 |
Размер файла | 42,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Обмен веществ. Питание
Обмен веществ и энергии представляет собой совокупность процессов превращения веществ и энергии в живых организмах, а также обмен веществами и энергией между организмом и внешней средой. В процессе обмена веществ происходит поступление питательных веществ в пищеварительный тракт, использование их тканями и клетками с последующим удалением продуктов метаболизма из организма. В результате этих процессов образуется энергия, которая используется организмом.
Обмен веществ - это совокупность изменений, которые претерпевают вещества от момента их поступления в пищеварительный тракт, до образования конечных продуктов распада, которые, способствует росту, выживанию и воспроизведению человека. Рост и обновление клеток организма возможны только в том случае, если в организме непрерывно поступают О2 и питательные вещества.
В процессе обмена веществ можно выделить несколько последовательных этапов.
На первом этапе происходит:
1. Физическая и химическая обработка пищи, которая поступает в организм;
2. Всасывание расщепленных веществ и транспорт их кровью;
3. Поступление в организм кислорода, необходимого для дыхания.
Второй этап состоит из двух процессов: катаболизма (диссимиляция) и анаболизма (ассимиляция). Эти процессы обеспечивают самообновление структур организма за счет последовательных биохимических превращений.
Катаболизм - ферментативное расщепление в процессе окислительных реакций крупных органических молекул питательных веществ на более простые, которое сопровождается высвобождением энергии.
Анаболизм - ферментативный синтез из простых органических молекул крупномолекулярных клеточных компонентов (полисахаридов, нуклеиновых кислот, белков, липидов), т.е. это совокупность процессов направленных на построение структур организма.
В организме взрослого здорового человека реакции анаболизма и катаболизма находятся в состоянии динамического равновесия. Физиологические сдвиги этого состояния в сторону преобладания процессов анаболизма отмечаются в процессе развития организма у детей, при беременности, восстановительных реакциях после тяжелых заболеваниях. Смещение динамического равновесия в сторону преобладания процессов катаболизма наблюдаются во время длительного психоэмоционального стресса, а также у пожилых людей.
Совокупность физических, химических и физиологических процессов, обеспечивающих получение и доставку к клеткам, органам и тканям энергии из экзо- и эндогенных источников, обеспечение пластических потребностей с целью обновления структур и выведения из организма продуктов обмена называется метаболизмом.
В результате процессов клеточного метаболизма происходит:
Ш извлечение энергии из внешней среды и преобразование ее в энергию высокоэргических соединений в количестве, достаточном для обеспечения всех энергетических и пластических потребностей клетки;
Ш синтез белков, нуклеиновых кислот, углеводов и липидов;
Ш синтез и разрушение специальных молекул, образование и распад которых связаны с выполнением специфических функций.
Для нормального протекания процессов клеточного метаболизма необходимо чтобы в организм поступало достаточное количество питательных веществ с пищей (пластического и энергетического материала), т.е. белков, жиров, углеводов, витаминов, минеральные вещества и воды.
Обмен белков. Ведущее место среди органических элементов организма занимают белки. Они поступают в организм с пищей. На их долю приходится более 50% сухой массы клетки или 15--20% сырой массы тканей.
Белки выполняют ряд важнейших биологических функций:
1. Пластическая или структурная. Белки входят в состав всех клеточных и межклеточных структур. Особенно велика потребность в белке в периоды роста, беременности, выздоровления после тяжелых заболеваний. В пищеварительном тракте белки расщепляются до аминокислот и простейших полипептидов. В дальнейшем из них клетками различных тканей и органов (в частности печени), синтезируются специфические белки, которые используются для восстановления разрушенных и роста новых клеток.
В организме постоянно происходит распад и синтез веществ, поэтому белки организма не находятся в статическом состоянии. Процессы обновления белков в различных тканях имеют неодинаковую скорость. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, а также других внутренних органов и плазмы крови. Медленнее обновляются белки, входящие в состав клеток мозга, сердца, половых желез и еще медленнее - белки мышц, кожи и особенно опорных тканей (сухожилий, костей и хрящей).
2. Двигательная. Все движения обеспечиваются взаимодействием сократительных белков актина и миозина.
3. Ферментативная. Белки регулируют скорость биохимических реакций в процессе дыхания, пищеварения, выделения и т.д.
4. Защитная. Иммунные белки плазмы крови (г-глобулины) и факторы гемостаза участвуют в важнейших защитных реакциях организма.
5. Энергетическая. При окислении 1 грамма белка аккумулируется 16,7 кДж энергии. Однако в качестве энергетического материала белки используются в крайнем случае. Эта функция белков особенно возрастает во время стрессорных реакций.
6. Обеспечивают онкотическое давление за счет чего, принимают участие в регуляции вводно-солевого баланса организма.
7. Входят в состав буферных систем.
8. Транспортная. Белки транспортируют газы (гемоглобин) гормоны (тиреоидные, тироксин и др.), минеральные вещества (железо, медь, водород), липиды, лекарственные вещества, токсины и др.
Биологическая ценность аминокислот. Белки это полимерами основными структурными компонентами которых являются аминокислоты. Известно около 80 аминокислот из которых только 20 являются основными. Аминокислоты организма делятся на заменимые и незаменимые. К заменимым аминокислотам, которые синтезируются в организме, относится: аланин, цистеин, глутаминовая и аспарагиновая кислота, кислоты тирозин, пролин, серин, глицин условно аргинин и гистидин. Аминокислоты, которые не могут синтезироваться, но обязательно должны поступать с пищей называются незаменимыми. К ним относятся: лейцин, изойлецин, валин, метионин, лизин, треонин, финилаланин, триптофан; условно - аргинин и гистидин. Для нормального обмена белков эти аминокислоты должны обязательно присутствовать в пище.
В связи с этим белки пищи, содержащие весь необходимый набор аминокислот, в соотношениях обеспечивающих нормальные процессы синтеза называются полноценными. К ним относят преимущественно животные белки, т.к. они способы полностью превращаться в собственные белки организма. Наибольшей биологической ценностью обладают белки яиц, мяса, рыбы, молока. Биологическая ценность растительных белков ниже т.к. часто они не содержат одну или несколько незаменимых аминокислот. Так, неполноценными белками являются желатина, в которой имеются лишь следы цистина и отсутствует триптофан и тирозин; зеин (белок, находящийся в кукурузе), содержащий мало триптофана и лизина; глиадин (белок пшеницы) и гордеин (белок ячменя), содержащие мало лизина.
Отсутствие хотя бы одной из незаменимых аминокислоты в пище приводит к задержке роста ребенка, к ослаблению организма, тяжелым расстройствам в обмене веществ, снижению иммунитета, нарушению функции желез внутренней секреции и другим заболеваниям. Например, недостаток валина - вызывает расстройство равновесия. Многие аминокислоты являются источником медиаторов ЦНС (гамма-аминомасляная кислота выполняет важную роль в процессах торможения и сна).
При смешанном питании, когда в пище есть продукты животного и растительного происхождения в организм поступает необходимый для синтеза белков набор аминокислот это особенно важно для растущего организма.
В сутки в организм взрослого человека должно поступать около 80--100 г белка и обязательно иметь в своем составе не менее 30% белков животного происхождения.
Потребность организма в белке зависит от пола, возраста, климатического региона и национальности. При физической нагрузке взрослый человек должен получать 100--120 г белка, при тяжелом труде - до 150 г.
В случае употребления в пищу только продуктов растительного происхождения (вегетарианство) необходимо, чтобы два неполноценных белка, один из которых не содержит одних аминокислот, а другой - других, в сумме могли обеспечить потребности организма.
Однообразное питание продуктами растительного происхождения у людей вызывает заболевание «квашиоркор». Оно встречается среди населения стран тропического и субтропического пояса Африки, Латинской Америки и Юго-Восточной Азии. Этим заболеванием страдают преимущественно дети в возрасте от 1 года до 5 лет.
Азотистый баланс- это разность между количеством белка усвоенного организмом и подвергнутого расщеплению. Количество усвоенного белка рассчитывается по разнице между содержанием азота принятого с пищей и выделенного из организма с калом, а количество белка подвергнутого расщеплению вычисляют по содержанию азота находящегося преимущественно в моче и частично в поте.
Для расчета азотистого баланса исходят из того факта, что в среднем в белке содержится примерно 16% азота, т.е. каждые 16 г азота соответствуют 100 г белка. Следовательно, умножив найденное количество азота на 6,25, можно определить искомое количество белка.
У взрослого здорового человека при адекватном питании количество введенного в организм азота равно количеству азота, выведенного из организма. Это состояние получило название азотистого равновесия. Если в условиях азотистого равновесия повысить количество белка в пище, то азотистое равновесие вскоре восстанавливается, но уже на новом, более высоком уровне. Таким образом, азотистое равновесие может устанавливаться при значительных колебаниях содержания белка в пище.
Состояние, при котором количество усвоенного белка превышает разрушение, называется положительным азотистым балансом. При этом синтез белка преобладает над его распадом. Устойчивый положительный азотистый баланс наблюдается всегда при увеличении массы тела. Он отмечается в период роста организма, во время беременности, в периоде выздоровления после тяжелых заболеваний, а также при усиленных спортивных тренировках, сопровождающихся увеличением мышечной массы. В этих условиях происходит задержка азота в организме (ретенция азота). катаболизм биологический аминокислота
Состояние, при котором количество разрушенного в организме белка больше усвоенного, называется отрицательным азотистым балансом. Этот вид азотистого баланса наблюдается при белковом голодании, у пожилых людей, в период тяжелых заболеваний. Отрицательный азотистый баланс развивается при полном отсутствии или недостаточном количестве белка в пище, а также при потреблении пищи, содержащей неполноценные белки. Не исключена возможность дефицита белка в организме даже при нормальном его поступлении (при значительном увеличении потребности организма в белке). Во всех этих случая имеет место белковое голодание.
При белковом голодании даже в случаях достаточного поступления в организм жиров, углеводов, минеральных солей, воды и витаминов происходит постепенно нарастающая потеря массы тела, зависящая от того, что затраты тканевых белков не компенсируются поступлением белков с пищей. Особенно тяжело переносят белковое голодание растущие организмы, у которых в этом случае происходит не только потеря массы тела, но и остановка роста, обусловленная недостатком пластического материала, необходимого для построения клеточных структур. Поэтому длительное белковое голодание, в конечном счете, так же как и полное голодание, неизбежно приводит к смерти.
Коэффициент изнашивания Рубнера. Ежедневно определенное количество структурированных белков организма (белки органов и тканей) подвергаются катаболизму. Эти белки нуждаются в постоянном обновлении. Минимальное количество белка, постоянно распадающегося в организме, называется коэффициентом изнашивания. Оно составляет примерно 0,028 -- 0,065 г азота на 1 кг массы тела в условиях покоя в сутки. Таким образом, потеря белка у человека массой 70 кг равна 23 г/сут. Поступление в организм белка в меньшем количестве ведет к отрицательному азотистому балансу, неудовлетворяющему пластические и энергетические потребности организма.
Регуляция обмена белков осуществляется нейроэндокринным путем.
Участие нервной системы в регуляции белкового обмена.
Имеются данные, что в гипоталамусе (промежуточный мозг) существуют специальные центры, регулирующие белковый обмен. Механизм влияния ЦНС осуществляется через эндокринную систему.
Гормональная регуляция метаболизма белков может приводить к увеличению его анаболической направленности (влияния соматотропина, инсулина, глюкокортикоидов, тестостерона, эстрогенов, тироксина) и реже способствует катаболическим эффектам (глюкокортикоиды, тироксин) за счет чего обеспечивает динамическое равновесие синтеза и распада белков.
Синтез белков контролируется соматотропным гормоном аденогипофиза «СТГ» или гормоном роста. Этот гормон стимулирует увеличение массы всех органов и тканей во время роста организма за счет:
1) повышения проницаемости клеточных мембран для аминокислот;
2) подавления синтеза катепсинов (внутриклеточных протеолитических ферментов);
3) катаболическое действие СТГ на жировой обмен снижает скорость окисления аминокислот, что повышает транспорт аминокислот в клетки и синтез белка;
4) Усиления синтеза РНК.
Аналогичный эффект оказывает гормон поджелудочной железы (инсулин) и гормоны мужских половых желез (андрогены). Анаболический эффект тестостерона реализуется главным образом в мышечной ткани. Эстрогены действуют подобно тестостерону, но их эффект значительно меньше. Повышение образования белков, при избытке половых гормонов, выражается в усиленном росте, увеличении массы тела. В ряде случаев, например в период полового созревания, эти явления имеют физиологический характер. В других случаях (например, при опухоли гипофиза) могут развиваться гигантизм и другие гиперпластические процессы.
Распад белка регулируется гормонами щитовидной железы - тироксином и трийодтиронином. Эти гормоны в определенных концентрациях, могут стимулировать синтез белка, и благодаря этому активизировать рост, развитие и дифференцировку тканей и органов. При ограничении поступления с пищей жиров и углеводов тироксин мобилизует белки для энергетического использования. Если же углеводов, жиров и аминокислот в организме достаточно, тироксин способствует повышению синтеза белка.
Гормоны коры надпочечников - глюкокортикоиды усиливают распад белков в тканях (особенно в мышечной и лимфоидной). Также глюкокортикоиды вызывают уменьшение концентрации белка в большинстве клеток, за счет чего повышается концентрации аминокислот в плазме крови. При этом они увеличивают синтез белка в печени и его переход в углеводы (глюконеогенез).
Гормон мозгового вещества надпочечников - инсулин повышает поступление в клетки аминокислот, но аналогичное влияние инсулина на углеводный обмен ограничивает использование аминокислот в энергетическом обмене.
Обмен жиров. Жиры - сложные химические структуры, состоящие из триглицеридов и липоидных веществ (жироподобные вещества - фосфатиды, стерины, цереброзиды и др.) объединены в одну группу по физико-химическим свойствам: они не растворяются в воде, но растворяются в органических растворителях (эфир, спирт, бензол и др.).
Жиры, поступившие в пищеварительный аппарат под действием липолитических ферментов и при участии желчи в кишечнике распадаются на глицерин и жирные кислоты. Всасывание последних осуществляется преимущественно в лимфу и частично в кровь. Через грудной лимфатический проток они попадают в венозную кровь, при этом через 1 ч после приема жирной пищи их концентрация может достигать 1--2%, а плазма крови становится мутной. Через несколько часов плазма очищается с помощью гидролиза триглицеридов липопротеиновой липазой, а также путем отложения жира в клетках печени и жировой ткани.
Липиды принимают участие в выполнении следующий функций:
1. Структурная или пластическая роль липидов состоит в том, что они входят в состав структурных компонентов клетки (фосфо- и гликолипиды), ядра, цитоплазмы, мембраны и в значительной степени определяют их свойства (в нервной ткани содержится до 25% , в клеточных мембранах до 40% жиров).
2. Энергетическая функция - обеспечивает 25--30% всей энергии необходимой организму (при расщеплении 1г жира образуется 38,9 кДж.). У взрослой женщины доля жировой ткани в организме составляет в среднем 20--25% массы тела, что почти вдовое больше, чем у мужчины (соответственно 12-- 14%). Следует полагать, что жир выполняет в женском организме еще и специфические функции. В частности, жировая ткань обеспечивает женщине резерв энергии, необходимый для вынашивания плода и грудного вскармливания.
3. Жиры являются источником образования эндогенной воды. При окислении 100 г жира выделяется 107 мл Н2О.
4. Функция запасания питательных веществ (жировое депо). Жиры являются своего рода «энергетическими консервами».
5.Защитная. Жиры защищают органы от повреждений (подушка около глаз, околопочечная капсула).
6. Выполняют транспортную функцию - носители жирорастворимых витаминов.
7. Терморегуляционная. Жиры предохраняют организм от потери тепла.
8. Жиры являются источником синтеза стероидных гормонов.
9. Участвуют в синтезе тромбопластина и миелина нервной ткани, желчных кислот, простагландинов и витамина D.
10. Существуют данные о том, что часть мужских половых стероидных гормонов в жировой ткани преобразуется в женские гормоны, что является основой косвенного участия жировой ткани в гуморальной регуляции функций организма.
Метаболизм жиров в организме. Нейтральные жиры являются важнейшим источником энергии. За счет окисления образуется 50% всей энергии необходимой организму. Нейтральные жиры, составляющие основную массу животной пищи и липидов организма (10--20% массы тела), являются источником эндогенной воды. Физиологическое депонирование нейтральных жиров выполняют липоциты, накапливая их в подкожной жировой клетчатке, сальнике, жировых капсулах различных органов - увеличиваясь в объеме. Считают, что количество жировых клеток закладывается в детском возрасте и в дальнейшем может лишь увеличиваться в размерах. Жиры, депонированные в подкожной клетчатке, предохраняют организм от потерь тепла, а окружающие внутренние органы - от механических повреждений. Жир может депонироваться в печени и мышцах. Количество жира отложенного в депо зависит от характера питания, особенностей конституции, пола, возраста, вида деятельности, образа жизни и т.д.
Фосфо- и гликолипиды входят в состав всех клеток (клеточные липиды), особенно нервных. Этот вид жиров - непременный компонент биологических мембран. Фосфолипиды синтезируются в печени и в кишечной стенке, однако только гепатоциты способны выделять их в кровь. Поэтому печень является единственным органом, определяющим уровень фосфолипидов крови.
Бурый жир представлен особой жировой тканью, располагающейся у новорожденных и грудных детей в области шеи и верхней части спины (его количество в организме 1--2% от общей массы тела). В небольшом количестве (0,1--0,2% от общей массы тела) бурый жир имеется и у взрослого человека. Особенностью состава бурого жира является огромное количество митохондрий с красновато-бурыми пигментами в которых происходят интенсивные процессы окисления, не сопряженные с образованием АТФ. Важнейшую роль в механизмах этого явления играет белок термогенин, составляющий 10--15% общего белка митохондрий бурого жира. Продукция тепла бурым жиром (на единицу массы его ткани) в 20 и более раз превышает таковую обычной жировой ткани.
У новорожденных низкая функциональная активность организма и незрелость центральных и периферических механизмов терморегуляции не обеспечивают достаточную теплопродукцию, поэтому функцию дополнительного специфического генератора тепла выполняет бурый жир. У взрослых же необходимость в дополнительном источнике тепла отпадает, так как теплопродукция обеспечивается иными, более совершенными, механизмами.
Следует отметить, что бурый жир является также источником эндогенной воды.
Высшие жирные кислоты являются основным продуктом гидролиза липидов в кишечнике. Всасывание их в кровь происходит в виде мицелярных комплексов, состоящих из жирных и желчных кислот, фосфолипидов и холестерола.
Для нормальной жизнедеятельности необходимо присутствие в пище незаменимых жирных кислот, которые не синтезируются в организме. К таким кислотам относятся олеиновая, линолевая, линоленовая и арахидоновая. Суточная потребность в них составляет 10--12 г. Линолевая и линоленовая кислоты содержатся в основном в растительных жирах, арахидоновая - только в животных. Дефицит незаменимых жирных кислот в пище приводит к замедлению роста и развития организма, снижению репродуктивной функции и различным поражениям кожи. Полиненасыщенные жирные кислоты необходимы для построения и сохранения липопротеидных клеточных мембран, для синтеза простагландинов и половых гормонов.
Жиры могут образовываться в организме из углеводов и белков при их избыточном поступлении извне. Значительное количество жиров человек получает с колбасами - от 20--40%, салом - 90% , сливочным маслом - 72--82% , сырами - 15--50%, сметаной - 20--30%.
В среднем человеку требуется 70--125 г жира в сутки, из которого 70% животного, а 30% растительного. Лишний жир откладывается в организме в определенных частях тела в виде жирового депо.
Холестерол относится к классу стеринов, включающему также стероидные гормоны, витамин D и желчные кислоты. Холестерол, поступает в организм с пищей и синтезируется в самом организме. При этом значительная его часть синтезируется в печени, где происходит и его расщепление на желчные кислоты, выделяемых в составе желчи в кишечник. Транспорт холестерола в крови осуществляется в составе липопротеидов высокой, низкой и очень низкой плотности.
Повышение фракции липопротеидов низкой плотности несет опасность развития атеросклероза вследствие их накопления в сосудистой стенке. Липопротеиды высокой плотности, напротив, способствуют удалению холестерола из клеток,
Суммарное количество жиров в организме человека составляет 10--20% массы тела. Увеличение массы тела на 20--25% считается предельно допустимой физиологической границей. Более чем у 30% населения экономически развитых стран масса тела превышает нормальные показатели.
Регуляция обмена жиров. Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами.
Участие нервной системы в регуляции жирового обмена.
Симпатические влияния тормозят синтез триглицеридов и усиливают их распад. Хронический стресс, сопровождаемый напряжением симпатико-адреналовой системы, что приводит к истощению жирового депо и потере массы тела. Имеются данные, свидетельствующие о возможности прямых нервных влияний на обмен жиров.
Парасимпатические влияния, наоборот, способствуют отложению жира. Показано, в частности, что после перерезки чревного нерва с одной стороны у голодающей кошки к концу периода голодания на деинервированной стороне в околопочечной клетчатке сохраняется значительно больше жира, чем на контрольной (не деинервированной).
Участие нервной системы, в регуляции жирового обмена было доказано в эксперименте при повреждении ядер гипоталамуса. При повреждении вентромедиального ядра (центр насыщения) у животных наблюдается ожирение, вследствие длительного повышения аппетита (гиперфагия), при поражении латерального (центр голода) - исхудание (афагия).
Влияние нервной системы на жировой обмен осуществляется путем изменений эндокринной секреции: надпочечников, гипофиза, щитовидной, поджелудочной и половых желез.
Гуморальная регуляция жирового обмена. Выраженным жиромобилизирующим действием обладают гормоны мозгового слоя надпочечников - адреналин и норадреналин. Поэтому длительная адреналинемия сопровождается уменьшением жирового депо.
Соматотропный гормон гипофиза также обладает жиромобилизующим действием. Аналогично действует тироксин, поэтому гиперфункция щитовидной железы сопровождается похуданием.
Противоположным действием обладают глюкокортикоид, которые способны несколько повышать уровень глюкозы в крови. Аналогично действует инсулин, поэтому дефицит инсулина, например при сахарном диабете, сочетается с ожирением.
Обмен жиров тесно связан с углеводным обменом. Так, повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот, тормозит синтез триглицеридов и усиливает их расщепление. Таким образом, взаимосвязь жирового и углеводного обменов направлена на обеспечение энергетических потребностей организма. При избытке углеводов в пище триглицериды депонируются в жировой ткани, при нехватке углеводов происходит расщепление триглицеридов с образованием неэстерифицированных жирных кислот, служащих источником энергии.
Таким образом, ряд гормонов способных изменять уровень глюкозы в крови оказывают влияние на обмен жиров.
Обмен углеводов. Углеводы поступают в организм в основном в виде полисахаридов растительного (крахмал) и животного (гликоген) происхождения, которые подвергаются расщеплению под действием амилолитических ферментов начиная с ротовой полости до простейших сахаров в виде которых они и всасываются в кровь. Основным конечными продуктами их гидролиза в пищеварительном тракте являются глюкоза (80%), а также фруктоза и галактоза, которые после всасывания в кровь быстро превращаются в глюкозу. Таким образом, глюкоза представляет собой общий конечный продукт транспорта углеводов кровью.
В организме человека углеводы выполняют ряд важнейших функций:
1. Биологическая роль углеводов для человека определяется прежде всего их энергетической ценностью. Процессы превращения углеводов обеспечивают до 60% суммарного энергообмена. Более 90% углеводов расходуется для выработки энергии. При окислении 1 г углеводов выделяется 16,7 кДж энергии. Углеводы используются либо как прямой источник химической энергии, либо как энергетический резерв. Основные углеводы - сахара, крахмал, клетчатка - содержатся в растительной пище, суточная потребность в которой взрослого человека составляет около 500 г в сутки (минимальная потребность -100--150 г/сут).
2. Структурная или пластическая - состоит в том, что глюкоза, галактоза и другие сахара входят в состав гликопротеинов плазмы крови, а также в состав гликопротеинов и гликолипидов, играющих важную роль в рецепторной функции клеточных мембран. Промежуточные продукты окисления глюкозы (пентозы) входят в состав нуклеотидов и нуклеиновых кислот. Глюкоза необходима для синтеза некоторых аминокислот и липидов.
3.Функция запаса питательных веществ.
4.Защитная функция. Углеводы предохраняют стенки полых органов (пищевод, кишечник, желудок, бронхи) от механических повреждений и проникновения вредных бактерий и вирусов
Метаболизм углеводов. При активной работе мышечная ткань извлекает из крови значительное количество глюкозы. Так же как и в печени, в мышцах из глюкозы синтезируется гликоген. Распад гликогена (гликолиз) является одним из источников энергии мышечного сокращения. Из продуктов гликолиза (молочной и пировиноградной кислот) в фазе покоя в мышцах вновь синтезируется гликоген. Суммарное его содержание составляет 1--2% от общей массы мышц.
В организме углеводы депонируются главным образом в виде гликогена - в печени и частично в мышцах.
Задержка глюкозы из протекающей крови различными органами неодинакова: мозг задерживает 12% глюкозы, кишечник - 9%, мышцы - 7%, почки 5%.
Концентрация глюкозы в плазме крови - важный параметр гомеостазиса. Она колеблется в пределах 3,33--5,55 ммоль/л). Прием большого количества рафинированных углеводов приводит к повышению концентрации глюкозы в крови (гипергликемия). Это состояние не опасно для жизни, но может приводить к увеличению осмотического давления плазмы крови. Ее результатом является гликозурия, т.е. выделение сахара с мочой, если уровень сахара в крови увеличивается до 8,9 ммоль/л.
Особенно чувствительной к понижению уровня сахара в крови (гипогликемия) является ЦНС. Мозг не имеет депо гликогена, вследствие чего он нуждается в постоянном поступлении глюкозы. Углеводы - единственный источник, за счет которого в норме покрываются энергетические расходы мозга. Ткань мозга поглощает около 70% глюкозы, выделяемой печенью, и за 1 мин в нем гидролизируется 75 мг глюкозы.
Уже незначительная гипогликемия проявляется общей слабостью и быстрой утомляемостью. При снижении уровня сахара в крови до 2,8--2,2 ммоль/л наступают судороги, бред, потеря сознания, а также вегетативные реакции: усиленное потоотделение, изменение просвета кожных сосудов, падение температуры и др. Резкая гипогликемия может привести к смерти. Введение в кровь глюкозы или прием сахара быстро устраняют расстройства.
При полном отсутствии углеводов в пище они образуются в организме из продуктов распада жиров и белков.
По мере убыли глюкозы в крови происходит расщепление гликогена в печени и поступление глюкозы в кровь (мобилизация гликогена). Благодаря этому сохраняется относительное постоянство содержания глюкозы в крови.
Регуляция обмена углеродов. Обмен углеводов регулируется нервным и гуморальным механизмами.
Участие нервной системы в регуляции обмена углеводов. Основным параметром регулирования углеводного обмена является поддержание уровня глюкозы в крови. Изменения в содержании глюкозы в крови воспринимаются глюкорецепторами сосредоточенными в основном в печени и сосудах, а также клетками вентромедиального отдела гипоталамуса. Показано участие ряда отделов ЦНС в регуляции углеводного обмена.
Мобилизация гликогена в печени и увеличение сахара в крови происходит при раздражении продолговатого мозга в области дна IV желудочка - сахарный укол.
Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы. В гипоталамусе имеются рецепторы реагирующие на изменения уровня глюкозы в крови. Их раздражение ведет к изменению эндокринного баланса и баланса между симпатической и парасимпатической нервными системами.
Если уровень глюкозы в крови низкий, то нарастает состояние тревожности, стресса, что увеличивает активность нервной симпатической системы, а следовательно увеличивается выработка адреналина, глюкагона, АКТГ, СТГ, т.е. увеличивается уровень катаболических гормонов и в эндогенный механизм включается внешний контур регуляции - возникает чувство голода, которое сопровождается поиском пищи.
Высшим уровнем регуляции уровня глюкозы в крови является кора больших полушарий. Участие этого отдела ЦНС в данном процессе доказывается методом условных рефлексов. Так, уровень глюкозы в крови повышается у студентов во время экзамена, у спортсменов перед ответственными соревнованиями, а также при гипнотическом внушении.
Гормональная регуляция уровня глюкозы в крови обеспечивается в основном действием инсулина и глюкагона. Если уровень глюкозы в крови высокий, то происходит уменьшение уровня катаболических гормонов, через парасимпатическую систему, блокируется выделение глюкагона и активируется секреция инсулина в крови.
Повышение секреции инсулина при гипергликемии происходит двумя путями:
1) в результате непосредственного стимулирующего действия глюкозы на в-клетки поджелудочной железы;
2) путем активирующего влияния глюкозы плазмы крови на глюкорецепторы гипоталамуса и последующего повышения парасимпатических влияний на секрецию инсулина.
Введении инсулина в кровь снижает уровень глюкозы. Это происходит за счет:
1. усиления инсулином синтеза гликогена в печени и мышцах;
2. повышения потребления глюкозы тканями организма.
Инсулин является единственным гормоном, понижающим уровень глюкозы в крови. Поэтому при уменьшении секреции этого гормона развивается стойкая гипергликемия с последующей глюкозурией (сахарное мочеизнурение).
Все остальные гормоны являются контринсулярными. При снижении уровня глюкозы в крови глюкагон, адреналин, соматотропин и кортизол «тормозят» захват глюкозы клетками и стимулируют превращение гликогена в глюкозу.
Наиболее выраженным контринсулярным действие обладают:
Глюкагон - способствует расщеплению гликогена в печени.
Адреналин - действует на печень и мышцы, вызывает мобилизацию гликогена, увеличивает сахар в крови.
Обмен воды. Баланс воды в организме складывается из ее потребления и выделения. Вода у взрослого человека составляет 55--60% веса тела, а у новорожденного - 75%. Основная масса (около 71%) всей воды в организме входит в состав внутриклеточной жидкости. Внеклеточная вода входит в состав тканевой или интерстициальной жидкости (около 21%) и воды плазмы крови (около 8%).
Взрослый человек потребляет в сутки около 2,5 л воды, дополнительно в организме образуется примерно 300 мл метаболической воды. Эта вода образуется в процессе метаболизма при окислении белков, углеводов и жиров.
Выведение воды происходит с мочой (в среднем 1,5 л в сутки), с выдыхаемым воздухом, через кожу (в условиях нейтральной температуры без потоотделения -- 0,9 л) и с калом (0,1 л). В обычных условиях количество воды, участвующей в обмене веществ в организме человека, не превышает 5% массы тела в сутки.
Функции воды в организме.
1. Вода конституционная - компонент клеток и тканей организма. Она является средой, в которой осуществляются процессы обмена веществ в клетках, органах и тканях. Непрерывное поступление воды в организм является одним из основных условий поддержания жизнедеятельности.
2. Вода - наилучший растворитель для многих биологически важных веществ, она обеспечивает условия для образования дисперсных форм липидов и белков; является основной средой и обязательной участницей многих биохимических реакций (свободная вода).
3. Недостаточное содержание в организме воды (дегидратация) может приводить к сгущению крови, ухудшению ее реологических свойств, нарушению кровотока. При снижении количества воды на 20% наступает смерть. Избыток воды может приводить к развитию водной интоксикации, проявляющейся, в частности, в набухании клеток, снижении в них осмотического давления. Особенно чувствительны к таким изменениям нервные клетки мозга.
4. Способствуя гидратации макромолекул, вода участвует в их активации (связанная вода).
5. Растворяя конечные продукты обмена веществ, вода способствует их экскреции почками и другими органами выделения.
6. Вода обеспечивает приспособление организма к высокой температуре окружающей среды.
Биологическая ценность воды. Питьевая вода является важнейшим источником кальция, магния, ряда микроэлементов. Их усвоение и биологическая ценность могут быть выше, чем при их всасывании из продуктов расщепления пищевых веществ. Поскольку в кипяченой воде содержание минеральных компонентов снижено, ее постоянное использование вместо сырой воды повышает нагрузку на органы водно-солевого обмена за счет реабсорбции ионов, что увеличивает риск развития некоторых заболеваний.
В живом организме часть воды, взаимодействуя с тканями, упорядочивает свою структуру. Структурированную воду человек получает со свежими растительными и животными продуктами, а также при питье свежеталой воды, которая обладает более высокой биологической активностью, чем обычная. В экспериментах на животных показано ее действие на микросомы и митохондрии гепатоцитов, тормозящее влияние на всасывание из кишечника углеводов, повышение устойчивости эритроцитов, адаптогенное действие. Рабочие горячих цехов под влиянием такой воды лучше переносят воздействие на организм отрицательных факторов производственной среды.
Тяжелая вода, отличающаяся от обычной большим содержанием окиси дейтерия (тяжелого изотопа водорода) и большим удельным весом, обладает иным биологическим действием по сравнению с обычной водой, При экспериментальном повышении в воде концентрации окиси дейтерия увеличивается возбудимость ЦНС, усиливаются выбросы адреналина на стрессорные раздражители. Тяжелая вода, как выяснилось, обладает радиозащитным эффектом.
Поступление воды регулируется ее потребностью, проявляющейся чувством жажды. Жажда это реакция организма на повышение осмотического давления и снижение объемов жидкостей.
Жажда может возникать в результате:
1. Повышение осмотического давления клеточной жидкости, уменьшения объема клеток, уменьшение объема внеклеточной жидкости. Эти изменения могут развиваться взаимосвязано.
2. Высыхания слизистой оболочки рта; последнее является результатом уменьшения слюноотделения, следствием потери жидкости при разговоре, одышке, курении и др.
3. Действия ангиотензина и натрийуретического гормона.
Субъективно жажда переживается как одно из наиболее сильных влечений человека.
Механизм утоления жажды, или водного насыщения, до конца не раскрыт. В виде первичного насыщения оно возникает в процессе питья до всасывания воды. По-видимому, это явление, как и первичное насыщение пищей, развивается благодаря растяжению стенок желудка и возбуждению его механорецепторов. Вторичное (истинное) водное насыщение формируется при восстановлении параметров водно-солевого гомеостаза в результате всасывания принятой воды.
Точная локализация в мозге центра волюморегуляции до настоящего времени не установлена. Предполагают, что он находится в составе ядер гипоталамуса и среднего мозга. Этот центр имеет афферентные связи с периферией, реализующиеся с помощью объемных рецепторов (волюморецепторов) и осморецепторов. Рецепторы объема обнаружены главным образом в сосудах низкого давления (легочных венах) и в предсердиях. Они реагируют на значительные объемные сдвиги, достигающие ± 10%.
Организм нуждается в постоянном поступлении не только воды, но и минеральных солей.
Минеральный обмен. Процессы всасывания, усвоения, распределения, превращения и выделения из организма неорганических соединений составляют в совокупности минеральный обмен. Минеральные вещества в составе биологических жидкостей играют основную роль в создании внутренней среды организма с постоянными физико-химическими свойствами.
Минеральных веществ в организме всасываются в пищеварительном тракте и поступают в кровь и лимфу. Ионы кальция, железа, кобальта, цинка в процессе или после всасывания соединяются со специфическими белками плазмы крови и тканей. Например, ионы кальция соединяются с кальцийсвязывающим белком эпителия слизистой оболочки кишечника; железо соединяется с белком апоферритином в тех же клетках, а затем транспортируется кровью в составе белка трансферритина; 95% меди входят в состав белка крови церулоплазмина.
Избыток минеральных веществ выводится через почки (ионы натрия, гидрокарбоната, хлора, йода), а также через кишечник (ионы кальция, железа, меди).
Основными источниками минеральных веществ являются пищевые продукты: мясо, молоко, черный хлеб, бобовые, овощи. Соли должны составлять около 4% сухой массы пищи.
Суточная потребность в минеральных веществах варьирует у человека от нескольких микрограммов до нескольких граммов в сутки.
Наиболее важное значение для организма имеют натрий, калий, хлор, кальций, магний, фосфор, железо, йод, фтор.
Основные функции минеральных веществ.
1). Играют роль кофакторов в энзиматических реакциях. Так, многие ионы образуют комплексы с белками, в том числе ферментами. Последние для полного проявления своей каталитической активности нуждаются в присутствии минеральных кофакторов - ионов калия, кальция, натрия, магния, железа. Ионы железа, меди и особенно магния необходимы для активации ферментов, связанных с переносом и высвобождением энергии, транспорта и связывания кислорода.
2). Принимают участие в поддержание осмотического давления и кислотно-основного равновесия (фосфатный и гидрокарбонатный буферы).
3). Обеспечивают процессы свертывания крови,
4). Создают мембранный потенциал и потенциал действия возбудимых клеток
5). Минеральные вещества входят в структуры самых различных органов тела. Неорганические вещества могут иметь в организме форму нерастворимых соединений (например, в костной и хрящевой тканях).
6). Участвуют в окислительно-восстановительных реакциях и др.
Большую роль в минеральном обмене играют ионы натрия и калия. Эти катионы определяют величину рН, осмотическое давление, объем жидкостей тела. Они участвуют в формировании биоэлектрических потенциалов, в транспорте аминокислот, сахаров и ионов через мембрану клеток. Натрий составляет 93% всех катионов плазмы крови, его концентрация в плазме крови равна 135--145 ммоль/л. Калий - в основном внутриклеточный катион, в плазме крови его концентрация равна 3,3--4,9 ммоль/л.
В организме здорового человека массой тела около 70 кг содержится 150--170 г натрия. Из них 25--30% входят в состав костей и непосредственного участия в метаболизме не принимают. Около 70% общего натрия в организме составляет собственно обменный натрий.
Дневной пищевой рацион жителей цивилизованных стран содержит в среднем 10--12 г хлорида натрия, однако истинная потребность человека в нем значительно ниже и приближается к 4--7 г. Это количество хлорида натрия содержится в обычной пище, что ставит под сомнение необходимость ее дополнительного подсаливания.
Избыточный прием поваренной соли может приводить к увеличению объемов жидкостей тела, повышению нагрузки на сердце и почки. Увеличение в этих условиях проникновения натрия, а с ним и воды в межклеточные промежутки тканей стенки кровеносных сосудов способствует их набуханию и утолщению, а также сужению просвета сосудов.
Постоянство содержания ионов натрия и калия в плазме крови поддерживается в основном почками. При снижении концентрации натрия и увеличении калия повышается реабсорбция натрия и снижается реабсорбция калия, а также растет секреция калия в почечных канальцах под влиянием минералокортикоида коры надпочечников альдостерона.
В организме здорового человека массой 70 кг содержится 45--35 ммоль/кг калия. Из них всего 50--60 ммоль находятся во внеклеточном пространстве, а остальной калий сосредоточен в клетках. Таким образом, калий является основным внутриклеточным катионом. С возрастом общее содержание калия в организме уменьшается.
Суточное потребление калия составляет 60--100 ммоль; почти столько же выводится почками и лишь немного (2%) - с каловыми массами.
Физиологическая роль калия заключается в его участии во всех видах обмена веществ, в синтезе АТФ и поэтому он влияет на сократимость. Недостаток его вызывает атонию скелетных мышц, умеренный избыток - повышение тонуса, а очень высокое содержание парализует мышечное волокно. Калий вызывает расширение сосудов. Также он участвует в синтезе ацетилхолина, в разрушении холинэстеразы и, следовательно, влияет на синаптическую передачу возбуждения. Вместе с другими ионами он обеспечивает клетке способность к возбуждению.
Хлор является вторым после натрия внеклеточным анионом. Его концентрация во внеклеточной жидкости и плазме составляет 103--110 ммоль/л. Общее содержание хлора в организме около 30 ммоль/кг. Значительное количество хлора обнаружено только в клетках слизистой оболочки желудка. Именно он является резервом для синтеза соляной кислоты желудочного сока, соединяясь с ионами водорода, которые извлекаются из крови клетками слизистой оболочки и выводятся в просвет желудка.
Содержание кальция в плазме является одним из жестких гомеостатических показателей. Сдвиги его сопряжены с нарушениями возбудимости нервных клеток, процессов мышечного сокращения, сердечной деятельности и др.
Общее содержание кальция в организме определить невозможно, так как основная его часть фиксирована в костях и в обмене не участвует.
Нормальное содержание кальция в плазме 2,1--2,6 ммоль/л. Из них 50% связаны с белками плазмы (особенно альбуминами), 10% входят в состав растворимых комплексов, 40% находятся в свободной ионизированной форме, которая с клинической точки зрения представляет наибольший интерес.
Физиологически активными являются только свободные ионы Са2+, поэтому регуляция обмена направлена на поддержание постоянства концентрации в плазме не общего кальция, а только его физиологически активной фракции.
Наибольшей функциональной активностью обладают ионы кальция, связанные с ионом фосфора. Кальций принимает активное участие в процессах возбуждения, синаптической передачи, мышечного сокращения, сердечной деятельности, участвует в окислительном фосфорилировании углеводов и жиров, в свертывании крови, влияет на проницаемость клеточных мембран, формирует структурную основу костного скелета. Значительная часть внутриклеточного кальция находится в эндоплазматической сети (Т-цистерны).
Главная роль в регуляции равновесия между кальцием плазмы и кальцием костей принадлежит гормону околощитовидных желез (паратирин).
При употреблении пищи, содержащей значительное количество кальция, большая его часть выделяется через кишечник в результате осаждения в основной кишечной среде в виде нерастворимых соединений.
Фосфор поступает в организм главным образом с молочными, мясными, рыбными и зернобобовыми продуктами. Его концентрация в сыворотке крови равна 0,81--1,45 ммоль/л. Суточная потребность в фосфоре составляет примерно 1,2 г, у беременных и кормящих женщин - до 1,6--1,8 г. Фосфор является анионом внутриклеточной жидкости, макроэргических соединений, коферментов тканевого дыхания и гликолиза. Нерастворимые фосфаты кальция составляют основную часть минерального компонента костей, придавая им прочность и твердость. Соли фосфорной кислоты и ее эфиров являются компонентами буферных систем поддержания кислотно-основного состояния тканей.
Железо необходимо для транспорта кислорода и для окислительных реакций, так как оно входит в состав гемоглобина и цитохромов митохондрий. Его концентрация в крови в комплексе с транспортным белком трансферрином в норме равна 1,0--1,5 мг/л. Суточная потребность в железе для мужчин соответствует 10 мг, для женщин детородного возраста в связи с менструальными кровопотерями эта величина значительно больше и приближается к 18 мг. Для беременных и кормящих женщин в связи с потребностями детского организма этот параметр приближается соответственно к 33 и 38 мг. Железо содержится в мясе, печени, зернобобовых продуктах, гречневой и пшенной крупах. Недостаточность поступления железа в организм встречается часто. Так, у 10--30% женщин детородного возраста выявляется железодефицитная анемия.
Йод представляет собой единственный из известных микроэлементов, участвующих в построении молекул гормонов. Источниками йода являются морские растения и морская рыба, мясо и молочные продукты. Концентрация йода в плазме крови равна 10--15 мкг/л. Суточная потребность составляет 100--150 мкг, для беременных и кормящих женщин - 180--200 мкг. До 90% циркулирующего в крови органического йода приходится на долю тироксина и трийодтиронина. Недостаточное поступление в организм йода может быть причиной нарушения функций щитовидной железы.
Фтор обеспечивает защиту зубов от кариеса. Суточная потребность во фторе равна 0,5--1,0 мг. Он поступает в организм с питьевой водой, рыбой, орехами, печенью, мясом, продуктами из овса. Предполагают, что он блокирует микроэлементы, необходимые для активации бактериальных ферментов. Фтор стимулирует кроветворение, реакции иммунитета, предупреждает развитие старческого остеопороза.
Магний - внутриклеточный катион (Mg2+), содержащийся в организме в количестве 30 ммоль/кг массы тела. Концентрация магния в плазме крови равна 0,65--1,10 ммоль/л. Суточная потребность в нем - около 0,4 г. Магний является катализатором многих внутриклеточных процессов, особенно связанных с углеводным обменом. Он снижает возбудимость нервной системы и сократительную активность скелетных мышц, способствует расширению кровеносных сосудов, уменьшению частоты сокращений сердца и снижению артериального давления.
Размещено на Allbest.ru
...Подобные документы
Сущность понятия "биоэнергетика". Существенные признаки живого. Внешний и промежуточный обмен веществ и энергии. Метаболизм: понятие, функции. Три стадии катаболических превращений основных питательных веществ в клетке. Отличия катаболизма от анаболизма.
презентация [3,9 M], добавлен 05.01.2014Метаболизм (обмен веществ и энергии) как совокупность химических реакций, протекающих в клетках и в целостном организме, заключающихся в синтезе сложных молекул и новой протоплазмы (анаболизм) и в распаде молекул с освобождением энергии (катаболизм).
реферат [221,8 K], добавлен 27.01.2010Метаболизм как обмен питательных веществ в организме. Организация химических реакций в метаболические пути. Принципы регуляции метаболических путей. Внутриклеточная локализация ферментов. Схема положительной и отрицательной регуляции катаболизма глюкозы.
реферат [1,2 M], добавлен 26.11.2014Энергетический обмен как часть общего метаболизма клетки, совокупность реакций окисления органических веществ и синтеза богатых энергией молекул АТФ. Основные этапы энергетического обмена: подготовительный, гликолиз, кислородный (клеточное дыхание).
презентация [363,9 K], добавлен 03.12.2011Биологическое значение нуклеиновых кислот. Строение ДНК, взгляд на нее с химической точки зрения. Обмен веществ и энергии в клетке. Совокупность реакций расщепления, пластический и энергетический обмены (реакции ассимиляции и диссимиляции) в клетке.
реферат [31,6 K], добавлен 07.10.2009Типовые нарушения белкового обмена. Несоответствие поступления белка потреблению. Нарушение расщепления белка в ЖКТ и содержания белка в плазме крови. Расстройство конечных этапов катаболизма белка и метаболизма аминокислот. Нарушения липидного обмена.
презентация [201,8 K], добавлен 21.10.2014Изучение функций белков - высокомолекулярных органических веществ, построенных из остатков аминокислот, которые составляют основу жизнедеятельности всех органов. Значение аминокислот - органических веществ, которые содержат амин- и карбоксильную группы.
презентация [847,2 K], добавлен 25.01.2011Роль обмена веществ в обеспечении пластических и энергетических потребностей организма. Особенности теплопродукции и теплоотдачи. Обмен веществ и энергии при различных уровнях функциональной активности организма. Температура тела человека и ее регуляция.
реферат [22,5 K], добавлен 09.09.2009Понятие обмена веществ, анаболизма и катаболизма. Виды обменных процессов в теле человека. Потребность организма в витаминах и пищевых волокнах. Обмен энергии в состоянии покоя и при условии мышечной работы. Регуляция обменных процессов веществ и энергии.
презентация [18,7 K], добавлен 05.03.2015Функции пищевых веществ. Возникновение чувства голода и насыщения. Возрастные и половые особенности основного обмена. Специфически-динамическое действие пищи. Метод непрямой калориметрии для исследования уровня обмена. Сущность процесса терморегуляции.
презентация [303,4 K], добавлен 29.08.2013Формирование у учащихся навыков работы в группе и ответственности за конечный результат. Разработка правил интеллектуальной игры по теме: "Питание. Пищеварение. Обмен веществ". Основные типы вопросов в игре. Получение ответов от игроков и их команд.
презентация [2,3 M], добавлен 13.12.2011Понятие питания растений. Важнейшие элементы, используемые в питательных растворах, принцип их действия на растение. Фотосинтез как основной процесс, приводящий к образованию органических веществ. Корневое питание, роль удобрений в развитии растений.
реферат [30,9 K], добавлен 05.06.2010Характеристика обмена веществ, сущность которого состоит в постоянном обмене веществами между организмом и внешней средой. Отличительные черты процесса ассимиляции (усвоение веществ клетками) и диссимиляции (распад веществ). Особенности терморегуляции.
реферат [32,3 K], добавлен 23.03.2010Обмен веществ в организме - взаимосвязанное единое целое. Взаимопереходы между отдельными классами органических соединений - естественное, неизбежное и крупномасштабное явление в живой природе. Взаимосвязь обменов нуклеиновых кислот, углеводов и липидов.
презентация [919,4 K], добавлен 13.10.2013Клетка как основная единица живого. Химический состав клетки, ее элементарные частицы и характер протекающих внутри процессов. Роль и значение воды в жизнедеятельности клетки. Этапы энергетического обмена клетки, реакций расщепления (диссимиляции).
реферат [28,2 K], добавлен 11.07.2010Структурные элементы питания рыб. Взаимосвязь обмена веществ рыб и химического состава воды. Поддержание солевого баланса и система осмотической регуляцииу рыб. Зависимость обмена веществ у рыб от температуры воды, влияния растворенных в воде газов.
курсовая работа [84,9 K], добавлен 14.10.2007Промежуточный обмен аминокислот в тканях. Общие пути обмена аминокислот. Обезвреживание аммиака в организме. Орнитиновый цикл мочевинообразования. Типы азотистого обмена. Общие пути превращения аминокислот включают реакции дезаминирования.
реферат [7,6 K], добавлен 18.04.2004Прокариоты и эукариоты, строение и функции клетки. Наружная клеточная мембрана, эндоплазматическая сеть, их основные функции. Обмен веществ и превращения энергии в клетке. Энергетический и пластический обмен. Фотосинтез, биосинтез белка и его этапы.
реферат [20,8 K], добавлен 06.07.2010Изучение проблемы обмена веществ как основной функции организма человека в научной литературе. Обмен углеводов как совокупность процессов их превращения в организме, его фазы. Источник образования и поступления витаминов. Регуляция обмена веществ.
курсовая работа [415,4 K], добавлен 01.02.2014Органы дыхания: строение и функции. Дыхательные движения и их регуляция. Пищевые продукты и питательные вещества. Пищеварение в полости рта, глотание. Кишечное пищеварение, всасывание. Виды обмена веществ, две стороны единого процесса обмена веществ.
реферат [14,0 K], добавлен 06.07.2010