Биохимия гормонов гипофиза и гипоталамуса
Изучение сущности и физиологии гипофиза. Анализ врожденной гипофизарной карликовости. Стимуляция роста молочных желез с помощью пролактина. Регуляция секреции фолликулостимулирующего и лютеинизирующего гормонов. Участие окситоцина в процессе лактации.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 17.01.2017 |
Размер файла | 29,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
УО «ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ ОРДЕНА ДРУЖБЫ НАРОДОВ
МЕДИЦИНСКИЙ УНИВЕРСИТЕТ»
КАФЕДРА БИОЛОГИЧЕСКОЙ ХИМИИ
РЕФЕРАТ
НА ТЕМУ: «Биохимия гормонов гипофиза и гипоталамуса»
Исполнитель:
Райчёнок Е.Ю.
Руководитель:
Козловская С. П.
Витебск 2016 г
Содержание
Введение
1. Гипофиз
2. Гормоны передней доли гипофиза
2.1 Соматотропный гормон (СТГ, гормон роста, соматотропин)
2.2 Пролактин
2.3 Фолликулостимулирующий гормон. Лютеинизирующий гормон
2.4 Тиреотропный гормон
2.5 Адренокортикотропный гормон
3. Гормоны задней доли гипофиза
3.1 Антидиуретический гормон (АДГ), или вазопрессин
3.2 Окситоцин
4. Гипоталамус. Строение. Функции
5. Гормоны гипоталамуса
5.1 Тиролиберин
Заключение
Список литературы
Введение
Эндокринная система - система желез, вырабатывающих гормоны, и выделяющих их непосредственно в кровь. Эти железы, называемые эндокринными или железами внутренней секреции, не имеют выводных протоков; они расположены в разных частях тела, но функционально тесно взаимосвязаны.
Эндокринная система организма в целом поддерживает постоянство во внутренней среде, необходимое для нормального протекания физиологических процессов. Помимо этого, эндокринная система совместно с нервной и иммунной системами обеспечивают репродуктивную функцию, рост и развитие организма, образование, утилизацию и сохранение (“про запас” в виде гликогена или жировой клетчатки) энергии.
Гормоны - органические соединения, вырабатываемые определенными клетками и предназначенные для управления функциями организма, их регуляции и координации.
Гормоны - биологические активные вещества, обладающие строго специфическим и избирательным действием, способные повышать или понижать уровень жизнедеятельности организма.
Все гормоны делятся на:
--Стероидные гормоны - производятся из холестерина в коре надпочечников, в половых железах.
--Полипептидные гормоны - белковые гормоны (инсулин, пролактин, АКТГ и др.)
--Гормоны производные аминокислот - адреналин, норадреналин, дофамин, и др.
--Гормоны производные жирных кислот - простагландины.
По физиологическому действию гормоны подразделяются на:
--Пусковые (гормоны гипофиза, эпифиза, гипоталамуса). Воздействуют на другие железы внутренней секреции
--Исполнители - воздействуют на отдельные процессы в тканях и органах
Физиологическое действие гормонов направлено на:
1. обеспечение гуморальной, т.е. осуществляемой через кровь, регуляции биологических процессов;
2. поддержание целостности и постоянства внутренней среды, гармоничного взаимодействия между клеточными компонентами тела;
3. регуляцию процессов роста, созревания и репродукции.
Гормоны регулируют активность всех клеток организма. Они влияют на остроту мышления и физическую подвижность, телосложение и рост, определяют рост волос, тональность голоса, половое влечение и поведение. Благодаря эндокринной системе человек может приспосабливаться к сильным температурным колебаниям, излишку или недостатку пищи, к физическим и эмоциональным стрессам. Изучение физиологического действия эндокринных желез позволило раскрыть секреты половой функции и чудо рождения детей, а также ответить на вопрос, почему одни люди высокого роста, а другие низкого, одни полные, другие худые, одни медлительные, другие проворные, одни сильные, другие слабые.
1. Гипофиз
Гипофиз регулирует активность ряда желез внутренней секреции и служит местом выделения гипоталамических гормонов крупноклеточных ядер гипоталамуса. Состоит из двух эмбриологически, структурно и функционально различных частей - нейрогипофиза - выроста промежуточного мозга и аденогипофиза, ведущей тканью которого служит эпителий. Аденогидофиз разделяется на более крупную переднюю долю, узкую промежуточную и слабо развитую туберальную часть.
Гипофиз покрыт капсулой из плотной волокнистой ткани. Его строма представлена очень тонкими прослойками рыхлой соединительной ткани, связанными с сетью ретикулярных волокон, которая в аденогипофизе окружает тяжи эпителиальных клеток и мелкие сосуды.
Передняя доля гипофиза у человека составляет около 75% его массы; она образована анастомозирующими тяжами (трабекулами) аденоцитов, тесно связанными с системой синусоидных капилляров. Форма аденоцитов варьирует от овальной до полигональной. На основании особенностей окраски их цитоплазмы выделяют:
1)хромофильные (интенсивно окрашивающиеся)
2)хромофобные (слабо воспринимающие красители) клетки, которые содержатся примерно в равных количеств.
Промежуточная доля у человека развита очень слабо и состоит из узких прерывистых тяжей базофильных и хромофобных клеток, которые секретируют МСГ - меланоцитостимулирующий гормон (активирует меланоциты) и ЛПГ - липотропный гормон (стимулирует обмен жиров). МСГ и ЛПГ (как и АКТГ) являются продуктами расщепления ПОМК. Встречаются кистозные полости, выстланные реснитчатыми клетками и содержащие негормональное белковое вещество - коллоид.
Туберальная часть в виде тонкого (25-60 мкм) рукава покрывает гипофизарную ножку, отделяясь от нее узким слоем соединительной ткани. Она состоит из тяжей хромофобных и хромофильных клеток.
Задняя доля содержит:
отростки и терминалы нейросекреторных клеток СОЯ и ПВЯ гипоталамуса, по которым транспортируются и вьщеляются в кровь АДГ и окситоцин; расширенные участки по ходу отростков и в области терминалей называются накопительными нейросекреторными тельцами (Херринга);
многочисленные фенестрированные капилляры;
питуициты - отростчатые глиальные клетки (занимают до 25-30% объема доли) - образуют 3-мерные сети, охватывают аксоны и терминали нейросекреторных клеток и выполняют поддерживающую и трофическую функции, а также,
возможно, влияют на процессы выделения нейросекрета.
Физиология гипофиза.
Гипофизу принадлежит особая роль в системе желез внутренней секреции. С помощью своих гормонов он регулирует деятельность других эндокринных желез.
В гипофизе синтезируется ряд биологически активных гормонов белковой и пептидной природы, оказывающих стимулирующий эффект на различные физиологические и биохимические процессы в тканях-мишенях. В зависимости от места синтеза различают гормоны передней, задней и промежуточной долей гипофиза. В передней доле вырабатываются в основном белковые и полипептидные гормоны, называемые тропными гормонами, или тропинами, вследствие их стимулирующего действия на ряд других эндокринных желез. В частности, гормон, стимулирующий секрецию гормонов щитовидной железы, получил название «тиротропин».
В последние годы из ткани мозга животных было выделено более 50 пептидов, получивших название нейропептидов и определяющих поведенческие реакции. Показано, что эти вещества влияют на некоторые формы поведения, процессы обучения и запоминания, регулируют сон и снимают, подобно морфину, боль. Так, выделенный эндорфин (31 аминокислотный остаток с выясненной последовательностью) оказался почти в 30 раз активнее морфина в качестве обезболивающего средства. Ряд других пептидов оказывает снотворное действие, а 16-членный пептид, вызывающий у крыс страх темноты, был назван скотофобином. Выделен полипептид амелетин, который, наоборот, отучает крыс бояться резкого звука электрического звонка. Работы в этом направлении интенсивно ведутся во многих лабораториях.
Вполне возможно, что скоро будут выделены и соответственно синтезированы искусственно для каждой формы поведения соответствующие нейропептиды, включая пептиды памяти.
2. Гормоны передней доли гипофиза
2.1 Соматотропный гормон (СТГ, гормон роста, соматотропин)
Гормон роста был открыт в экстрактах передней доли гипофиза еще в 1921г. Однако в химически чистом виде получен только в 1956-1957 г. СТГ синтезируется в ацидофильных клетках передней доли гипофиза; концентрация его в гипофизе составляет 5-15 мг на 1г ткани, что в 1000 раз превышает концентрацию других гормонов гипофиза. К настоящему времени полностью выяснена первичная структура белковой молекулы СТГ человека, быка и овцы. СТГ человека состоит из 191 аминокислоты и содержит две дисульфидные связи; N- и С-концевые аминокислоты представлены фенилаланином. СТГ обладает широким спектром биологического действия. Он влияет на все клетки организма, определяя интенсивность обмена углеводов, белков, липидов и минеральных веществ.
Он усиливает биосинтез белка, ДНК, РНК и гликогена и в то же время способствует мобилизации жиров из депо и распаду высших жирных кислот и глюкозы в тканях. Помимо активации процессов ассимиляции, сопровождающихся увеличением размеров тела, ростом скелета, СТГ координирует и регулирует скорость протекания обменных процессов. Кроме того, СТГ человека и приматов (но не других животных) обладает измеримой лактогенной активностью.
Предполагают, что многие биологические эффекты этого гормона осуществляются через особый белковый фактор, образующийся в печени под влиянием гормона. Этот фактор был назван сульфирующим или тимидиловым, поскольку он стимулирует включение сульфата в хрящи, тимидина - в ДНК, уридина - в РНК и пролина - в коллаген. По своей природе этот фактор оказался пептидом с мол. массой 8000.
СТГ регулирует процессы роста и развития всего организма, что подтверждается клиническими наблюдениями.
Так, при гипофизарной карликовости (патология, известная в литературе как пангипопитуитаризм; связана с врожденным недоразвитием гипофиза) отмечается пропорциональное недоразвитие всего тела, в том числе скелета, хотя существенных отклонений в развитии психической деятельности не наблюдается.
У взрослого человека также развивается ряд нарушений, связанных с гипо- или гиперфункцией гипофиза. Известно заболевание акромегалия (от греч. akros - конечность, megas - большой), характеризующееся непропорцио- нально интенсивным ростом отдельных частей тела, например рук, ног, подбородка, надбровных дуг, носа, языка, и разрастанием внутренних органов. Болезнь вызвана, по-видимому, опухолевым поражением передней доли гипофиза.
2.2 Пролактин
Пролактин стимулирует рост молочных желез и способствует образованию молока.
Гормон стимулирует синтез белка -- лактальбумина, жиров и углеводов молока. Пролактин стимулирует также образование желтого тела и выработку им прогестерона. Влияет на водно-солевой обмен организма, задерживая воду и натрий в организме, усиливает эффекты альдостерона и вазопрессина, повышает образование жира из углеводов.
Образование пролактина регулируется пролактолиберином и пролактостатином гипоталамуса. Установлено также, что стимуляцию секреции пролактина вызывают и другие пептиды, выделяющиеся гипоталамусом: тиреолиберин, вазоактивный интестинальный полипептид (ВИП), ангиотензин II, вероятно, эндогенный опиоидный пептид В-эндорфин.
Секреция пролактина усиливается после родов и рефлекторно стимулируется при кормлении грудью. Эстрогены стимулируют синтез и секрецию пролактина.
Угнетает продукцию пролактина дофамин гипоталамуса, который, вероятно, также тормозит клетки гипоталамуса, секретирующие гонадолиберин, что приводит к нарушению менструального цикла -- лактогенной аменорее. Избыток пролактина наблюдается при доброкачественной аденоме гипофиза (гиперпролактинемическая аменорея), при менингитах, энцефалитах, травмах мозга, избытке эстрогенов, при применении некоторых противозачаточных средств. К его проявлениям относятся выделение молока у некормящих женщин (галакторея) и аменорея. Лекарственные вещества, блокирующие рецепторы дофамина (особенно часто психотропного действия), также приводят к повышению секреции пролактина, следствием чего могут быть галакторея и аменорея.
2.3 Фолликулостимулирующий гормон. Лютеинизирующий гормон
Фолликулостимулирующий гормон (ФСГ), или фоллитропин, вызывает рост и созревание фолликулов яичников и их подготовку к овуляции. У мужчин под влиянием ФСГ происходит образование сперматозоидов. Лютеинизирующий гормон (ЛГ), или лютропин, способствует разрыву оболочки созревшего фолликула, т.е. овуляции и образованию желтого тела. ЛГ стимулирует образование женских половых гормонов -- эстрогенов. У мужчин этот гормон способствует образованию мужских половых гормонов -- андрогенов.
Секреция ФСГ и ЛС регулируется гонадолиберином гипоталамуса. Образование гонадолиберина, ФСГ и ЛГ зависит от уровня эстрогенов и андрогенов и регулируется по механизму обратной связи. Гормон аденогипофиза пролактин угнетает продукцию гонадотропных гормонов. Тормозное действие на выделение ЛГ оказывают глюкокортикоиды.
2.4 Тиреотропный гормон
Тиреотропный гормон (ТТГ), или тиреотропин, активирует функцию щитовидной железы, вызывает гиперплазию ее железистой ткани, стимулирует выработку тироксина и трийодтиронина. Образование тиреотропина стимулируется тиреолиберином гипоталамуса, а угнетается соматостатином.
Секреция тиреолиберина и тиреотропина регулируется йодсодержащими гормонами щитовидной железы по механизму обратной связи. Секреция тиреотропина усиливается также при охлаждении организма, что приводит к повышению выработки гормонов щитовидной железы и повышению тепла.
Глюкокортикоиды тормозят продукцию тиреотропина. Секреция тиреотропина угнетается также при травме, боли, наркозе. Избыток тиреотропина проявляется гиперфункцией щитовидной железы, клинической картиной тиреотоксикоза.
2.5 Адренокортикотропный гормон
Адренокортикотропный гормон (АКТГ), или кортикотропин, оказывает стимулирующее действие на кору надпочечников. В большей степени его влияние выражено на пучковую зону, что приводит к увеличению образования глюкокортикоидов, в меньшей -- на клубочковую и сетчатую зоны. гипофиз фолликулостимулирующий гормон окситоцин
За счет повышения синтеза белка (цАМФ-зависимая активация) происходит гиперплазия коркового вещества надпочечников. АКТГ усиливает синтез холестерина и скорость образования прегненолона из холестерина. Вненадпочечниковые эффекты АКТГ заключаются в стимуляции липолиза (мобилизует жиры из жировых депо и способствует окислению жиров), увеличении секреции инсулина и соматотропина, накоплении гликогена в клетках мышечной ткани, гипогликемии, что связано с повышенной секрецией инсулина, усилении пигментации за счет действия на пигментные клетки меланофоры.
Продукция АКТГ подвержена суточной периодичности, что связано с ритмичностью выделения кортиколиберина.
Максимальные концентрации АКТГ отмечаются утром в б -- 8 часов, минимальные -- с 18 до 23 часов. Образование АКТГ регулируется кортиколиберином гипоталамуса. Секреция АКТГ усиливается при стрессе, а также под влиянием факторов, вызывающих стрессогенные состояния: холод, боль, физические нагрузки, эмоции. Гипогликемия способствует увеличению продукции АКТГ. Торможение продукции АКТГ происходит под влиянием самих глюкокортикоидов по механизму обратной связи.
Избыток АКТГ приводит к гиперкортицизму, т.е. увеличенной продукции кортикостероидов, преимущественно глюкокортикоидов. Это заболевание развивается при аденоме гипофиза и носит название болезни Иценко--Кушинга. Основные проявления ее: гипертония, ожирение, имеющее локальный характер (лицо и туловище), гипергликемия, снижение иммунной защиты организма.
Недостаток гормона ведет к уменьшению продукции глюкокортикоидов, что проявляется нарушением метаболизма и снижением устойчивости организма к различным влияниям среды.
3. Гормоны задней доли гипофиза
3.1 Антидиуретический гормон (АДГ), или вазопрессин
Осуществляет в организме 2 основные функции. Первая функция заключается в его антидиуретическом действии, которое выражается в стимуляции реабсорбции воды в дистальном отделе нефрона. Это действие осуществляется благодаря взаимодействию гормона с вазопрессиновыми рецепторами типа V-2, что приводит к повышению проницаемости стенки канальцев и собирательных трубочек для воды, ее реабсорбции и концентрированию мочи.
В клетках канальцев происходит также активация гиалуронидазы, что приводит к усилению деполимеризации гиалуроновой кислоты, в результате чего повышается реабсорбция воды и увеличивается объем циркулирующей жидкости. В больших дозах (фармакологических) АДГ суживает артериолы, в результате чего повышается артериальное давление. Поэтому его также называют вазопрессином.
В обычных условиях при его физиологических концентрациях в крови это действие не имеет существенного значения. Однако при кровопотере, болевом шоке происходит увеличение выброса АДГ. Сужение сосудов в этих случаях может иметь адаптивное значение. Образование АДГ усиливается при повышении осмотического давления крови, уменьшении объема внеклеточной и внутриклеточной жидкости, снижении артериального давления, при активации ренин-ангиотензиновой системы и симпатической нервной системы. При недостаточности образования АДГ развивается несахарный диабет, или несахарное мочеизнурение, который проявляется выделением больших количеств мочи (до 25 л в сутки) низкой плотности, повышенной жаждой. Причинами несахарного диабета могут быть острые и хронические инфекции, при которых поражается гипоталамус (грипп, корь, малярия), черепно-мозговые травмы, опухоль гипоталамуса. Избыточная секреция АДГ ведет, напротив, к задержке воды в организме.
3.2 Окситоцин
Окситоцин избирательно действует на гладкую мускулатуру матки, вызывая ее сокращения при родах. На поверхностной мембране клеток существуют специальные окситоциновые рецепторы. Во время беременности окситоцин не повышает сократительную активность матки, но перед родами под влиянием высоких концентраций эстрогенов резко возрастает чувствительность матки к окситоцину.
Окситоцин участвует в процессе лактации. Усиливая сокращения миоэпителиальных клеток в молочных железах, он способствует выделению молока. Увеличение секреции окситоцина происходит под влиянием импульсов от рецепторов шейки матки, а также механорецепторов сосков грудной железы при кормлении грудью. Эстрогены усиливают секрецию окситоцина. Функции окситоцина в мужском организме изучены не достаточно. Считают, что он является антагонистом АДГ. Недостаток продукции окситоцина вызывает слабость родовой деятельности.
4. Гипоталамус. Строение. Функции
Гипоталамус, подбугровая область, часть головного мозга, расположенная под зрительными буграми; входит в состав промежуточного мозга, образует стенки и дно 3-го желудочка (диэнцефальная область). Гипоталамус не имеет четких границ, его можно рассматривать как часть сети нейронов, протягивающейся от среднего мозга через гипоталамус к глубинным отделам переднего мозга. Его вес составляет примерно 5 г. От гипоталамуса на тонкой ножке свисает нижний мозговой придаток - гипофиз.
Гипоталамус - совокупность высших адаптивных центров, осуществляющих интеграцию и приспособление функций к целостной деятельности организма. Ему принадлежит основная роль в поддержании уровня обмена веществ, в регуляции деятельности пищеварительной, сердечно-сосудистой, эндокринной и др. физиологических систем. Гипоталамус - одно из важнейших звеньев функциональной системы, координирующей вегетативные функции с психическими и соматическими. Он связан большим числом нервных путей с выше- и нижележащими отделами центральной нервной системы. В нервных клетках ядер гипоталамуса образуются некоторые гормоны (например, вазопрессин), а также различные биологически активные вещества, поступающие по сосудам и нервным волокнам в гипофиз и способствующие выделению его гормонов.
Гипоталамус осуществляет нейрогуморально-гормональный контроль функций, регулирует деятельность желёз внутренней секреции в соответствии с потребностями клеток, органов, физиологических систем, целостного организма. Гипоталамус снабжен богатой сетью сосудов и рецепторов, улавливающих тончайшие сдвиги температуры, содержания сахара, солей, воды, гормонов и др. во внутренней среде организма. Колебания в составе и свойствах внутренней среды обусловливают запуск соответствующих механизмов, организующих пищевое и сексуальное поведение, создают условия для поддержания постоянства температуры тела. В гипоталамусе представлены также структуры, входящие в сложную систему, регулирующую смену и поддержание сна и бодрствования. В задних отделах гипоталамуса представлены главным образом структуры, осуществляющие с помощью периферических симпатоадреналовых аппаратов вегетативно-эндокринное обеспечение активной физической и психической деятельности, приспособление организма к изменениям внешней и внутренней среды.
Передние отделы гипоталамуса регулируют преимущественно восстановительные, ассимиляторные процессы (т. н. трофотропное состояние организма) и поддержание относительного постоянства внутренней среды организма (гомеостаз). При повреждениях гипоталамуса возникают эндокринные, обменно-трофические или вегетативные нарушения, в том числе сдвиги терморегуляции, сна и бодрствования, эмоциональной сферы.
5. Гормоны гипоталамуса
Гипоталамус служит местом непосредственного взаимодействия высших отделов ЦНС и эндокринной системы. Природа связей, существующих между ЦНС и эндокринной системой, стала проясняться в последние десятилетия, когда из гипоталамуса были выделены первые гуморальные факторы, оказавшиеся гормональными веществами с чрезвычайно высокой биологической активностью. Потребовалось немало труда и экспериментального мастерства, чтобы доказать, что эти вещества образуются в нервных клетках гипоталамуса, откуда по системе портальных капилляров достигают гипофиза и регулируют секрецию гипофизарных гормонов, точнее их освобождение (возможно, и биосинтез). Эти вещества получили сначала наименование нейрогормонов, а затем рилизинг-факторов (от англ. release - освобождать), или либеринов. Вещества с противоположным действием, т.е. угнетающие освобождение (и, возможно, биосинтез) гипофизарных гормонов, стали называть ингибирующими факторами, или статинами. Таким образом, гормонам гипоталамуса принадлежит ключевая роль в физиологической системе гормональной регуляции многосторонних биологических функций отдельных органов, тканей и целостного организма.
К настоящему времени в гипоталамусе открыто 7 стимуляторов (либерины) и 3 ингибитора (статины) секреции гормонов гипофиза, а именно: кортиколиберин, тиролиберин, люлиберин, фоллилиберин, соматолиберин, пролактолиберин, меланолиберин, соматостатин, пролактостатин и меланостатин. В чистом виде выделено 5 гормонов, для которых установлена первичная структура, подтвержденная химическим синтезом.
Следует отметить, что не все гормоны гипоталамуса, по-видимому, строго специфичны в отношении одного какого-либо гипофизарного гормона. В частности, для тиролиберина показана способность освобождать, помимо тиротропина, также пролактин, а для люлиберина, помимо лютеинизирующего гормона, - также фолликулостимулирующий гормон.
Установлено, что по химическому строению все гормоны гипоталамуса являются низкомолекулярными пептидами, так называемыми олигопептидами необычного строения, хотя точный аминокислотный состав и первичная структура выяснены не для всех.
5.1 Тиролиберин
(Пиро-Глу-Гис-Про-NH2)
Тиролиберин представлен трипептидом, состоящим из пироглутаминовой (циклической) кислоты, гистидина и пролинамида, соединенных пептидными связями. В отличие от классических пептидов он не содержит свободных NH2- и СООН-групп у N- и С-концевых аминокислот.
1.1. Гонадолиберин является декапептидом, состоящим из 10 аминокислот в последовательности:
Пиро-Глу-Гис-Трп-Сер-Тир-Гли-Лей-Арг-Про-Гли-NН2
Концевая С-аминокислота представлена глицинамидом.
1.2. Соматостатин является циклическим тетрадекапептидом (состоит из 14 аминокислотных остатков).
Отличается этот гормон от двух предыдущих, помимо циклической структуры, тем, что не содержит на N-конце пироглутаминовой кислоты: дисульфидная связь образуется между двумя остатками цистеина в 3-м и 14-м положениях. Следует отметить, что синтетический линейный аналог соматостатина также наделен аналогичной биологической активностью, что свидетельствует о несущественности дисульфидного мостика природного гормона. Помимо гипоталамуса, соматостатин продуцируется нейронами центральной и периферической нервных систем, а также синтезируется в S-клетках панкреатических островков (островков Лангерганса) в поджелудочной железе и клетках кишечника. Он оказывает широкий спектр биологического действия; в частности, показано ингибирующее действие на синтез гормона роста в аденогипофизе, а также прямое тормозящее действие его на биосинтез инсулина и глюкагона в в- и б-клетках островков Лангерганса.
1.3. Соматолиберин недавно выделен из природных источников.
Он представлен 44 аминокислотными остатками с полностью раскрытой последовательностью. Биологической активностью соматолиберина наделен, кроме того, химически синтезированный декапептид:
Н-Вал-Гис-Лей-Сер-Ала-Глу-Глн-Лиз-Глу-Ала-ОН.
Этот декапептид стимулирует синтез и секрецию гормона роста гипофиза соматотропина.
1.4. Меланолиберин, химическая структура которого аналогична структуре открытого кольца гормона окситоцина (без трипептидной боковой цепи), имеет следующее строение:
Н-Цис-Тир-Иле-Глн-Асн-Цис-ОН.
1.5. Меланостатин (меланотропинингибирующий фактор) представлен или трипептидом: Пиро-Глу-Лей-Гли-NН2, или пентапептидом со следующей последовательностью: Пиро-Глу-Гис-Фен-Aрг-Гли-NН2.
Необходимо отметить, что меланолиберин оказывает стимулирующее действие, а меланостатин, напротив, ингибирующее действие на синтез и секрецию меланотропина в передней доле гипофиза.
Помимо перечисленных гипоталамических гормонов, интенсивно изучалась химическая природа другого гормона - кортиколиберина . Активные препараты его были выделены как из ткани гипоталамуса, так и из задней доли гипофиза; существует мнение, что последняя может служить депо гормона для вазопрессина и окситоцина. Недавно выделен состоящий из 41 аминокислоты с выясненной последовательностью кортиколиберин из гипоталамуса овцы.
Местом синтеза гипоталамических гормонов, вероятнее всего, являются нервные окончания - синаптосомы гипоталамуса, поскольку именно там отмечена наибольшая концентрация гормонов и биогенных аминов. Последние рассматриваются наряду с гормонами периферических желез внутренней секреции, действующих по принципу обратной связи, в качестве основных регуляторов секреции и синтеза гормонов гипоталамуса. Механизм биосинтеза тиролиберина, осуществляющегося, скорее всего, нерибо-собальным путем, включает участие SH-содержащей синтетазы или комплекса ферментов, катализирующих циклизацию глутаминовой кислоты в пироглутаминовую, образование пептидной связи и амидирование проли-на в присутствии глутамина. Существование подобного механизма биосинтеза с участием соответствующих синтетаз допускается также в отношении гонадолиберина и соматолиберина.
Пути инактивации гормонов гипоталамуса изучены недостаточно. Период полураспада тиролиберина в крови крысы составляет 4 мин. Инактивация наступает как при разрыве пептидной связи (под действием экзо-и эндопептидаз сыворотки крови крысы и человека), так и при отщеплении амидной группы в молекуле пролинамида. В гипоталамусе человека и ряда животных открыт специфический фермент пироглутамилпептидаза, которая катализирует отщепление от тиролиберина или гонадолиберина молекулы пироглутаминовой кислоты.
Гипоталамические гормоны непосредственно влияют на секрецию (точнее, освобождение) «готовых» гормонов и биосинтез этих гормонов de novo. Доказано, что цАМФ участвует в передаче гормонального сигнала. Показано существование в плазматических мембранах клеток гипофиза специфических аденогипофизарных рецепторов, с которыми связываются гормоны гипоталамуса, после чего через систему аденилатциклазы и мембранных комплексов Са2+-АТФ и Mg2+-АТФ освобождаются ионы Са2+ и цАМФ; последний действует как на освобождение, так и на синтез соответствующего гормона гипофиза путем активирования протеинкиназы (см. далее).
Для выяснения механизма действия рилизинг-факторов, включая их взаимодействие с соответствующими рецепторами, большую роль сыграли структурные аналогитиролиберинаигонадолиберина. Некоторые из этих аналогов обладают даже более высокой гормональнойактивностьюи пролонгированным действием, чем природныегормоныгипоталамуса. Однако предстоит еще большая работа по выяснению химического строения уже открытых рилизинг-факторов и расшифровке молекулярных механизмов их действия.
Заключение
В нормальном состоянии существует гармоничный баланс между активностью эндокринных желез, состоянием нервной системы и ответом тканей-мишеней (тканей, на которые направлено воздействие). Любое нарушение в каждом из этих звеньев быстро приводит к отклонениям от нормы. Избыточная или недостаточная продукция гормонов служит причиной различных заболеваний, сопровождающихся глубокими химическими изменениями в организме.
Изучением роли гормонов в жизнедеятельности организма и нормальной и патологической физиологией желез внутренней секреции занимается эндокринология.
Как медицинская дисциплина она появилась только в 20 в., однако эндокринологические наблюдения известны со времен античности. Гиппократ полагал, что здоровье человека и его темперамент зависят от особых гуморальных веществ. Аристотель обратил внимание на то, что кастрированный теленок, вырастая, отличается в половом поведении от кастрированного быка тем, что даже не пытается взбираться на корову. Кроме того, на протяжении веков кастрация практиковалась как для приручения и одомашнивания животных, так и для превращения человека в покорного раба.
Список литературы
1. Большая Советская Энциклопедия
2. Механизм действия гормонов, Ташкент, 1976;
3. Агажданян Н.А. Катков А.Ю. Резервы нашего организма. - М.: Знание, 1990
4. Этинген Л.Е. Как же вы устроены, господин Тело? - М.: Линка - Пресс, 1997.
Размещено на Allbest.ru
...Подобные документы
Изучение строения гипофиза как эндокринной железы. Определение степени влияния гормонов на функции человеческого организма. Механизм выработки пролактина, лютеинизирующего, тиреотропного и аренокортикотропного гормонов. Недостаточность функции гипофиза.
презентация [996,0 K], добавлен 15.09.2014Особенности желез внутренней секреции. Методы исследования функции желез внутренней секреции. Физиологические свойства гормонов. Типы влияния гормонов. Классификация гормонов по химической структуре и направленности действия. Пути действия гормонов.
презентация [2,2 M], добавлен 23.12.2016Железы внутренней секреции у животных. Механизм действия гормонов и их свойства. Функции гипоталамуса, гипофиза, эпифиза, зобной и щитовидной железы, надпочечников. Островковый аппарат поджелудочной железы. Яичники, желтое тело, плацента, семенники.
курсовая работа [422,0 K], добавлен 07.08.2009Эндокринная система - железы внутренней секреции, выделяющие в организм физиологически активные вещества и не имеющие выводных протоков. Функции гормонов в организме человека. Строение гипоталамуса и гипофиза. Несахарный диабет. Паращитовидная железа.
презентация [12,3 M], добавлен 07.11.2012Регуляция деятельности внутренних органов посредством гормонов, выделяемых эндокринными клетками непосредственно в кровь. Основные функции эндокринной системы. Основные задачи гипофиза, гипоталамуса, щитовидной железы, надпочечника, поджелудочной железы.
презентация [704,1 K], добавлен 22.10.2017Понятие о гормонах, их основных свойствах и механизме действия. Гормональная регуляция обмена веществ и метаболизма. Гипоталамо-гипофизарная система. Гормоны периферических желез. Классификация гормонов по химической природе и по выполняемым функциям.
презентация [5,9 M], добавлен 21.11.2013Понятие внутренней секреции как процесса выработки и выделения активных веществ эндокринными железами. Выделение гормонов непосредственно в кровь в процессе внутренней секреции. Виды желез внутренней секреции, гормонов и их функции в организме человека.
учебное пособие [20,2 K], добавлен 23.03.2010Химическая природа и классификация гормонов. Биороль простагландинов и тромбоксанов. Регуляция секреции гормонов. Гормональная регуляция углеводного, липидного, белкового и водно-солевого обмена. Роль циклазной системы в механизме действия гормонов.
курсовая работа [769,0 K], добавлен 18.02.2010Общая характеристика желез внутренней секреции. Исследование механизма действия гормонов. Гипоталамо-гипофизарная система. Основные функции желез внутренней секреции. Состав щитовидной железы. Аутокринная, паракринная и эндокринная гормональная регуляция.
презентация [1,2 M], добавлен 05.03.2015Изучение строения периферических органов внутренней секреции: щитовидной и околощитовидной желез, надпочечников. Характеристика регулирующего действия эпифиза, гипофиза и гипоталамуса на жировой, минеральный обмен, биоритмы обмена веществ в организме.
реферат [20,0 K], добавлен 21.01.2012Гликопротеиды, секретируемые аденогипофизом под действием гипоталамического релизинг-фактора. Понятие клеток-мишеней. Молекулярный полиморфизм пролактина. Синтез люлиберина в нервных клетках гипоталамуса. Классификация стероидных гормонов по субклассам.
реферат [645,6 K], добавлен 06.09.2009Изучение эндокринных желез человека как желез внутренней секреции, синтезирующих гормоны, выделяемые в кровеносные и лимфатические капилляры. Развитие и возрастные особенности гипофиза, щитовидной, паращитовидной, шишковидной, вилочковой и половой желез.
учебное пособие [4,1 M], добавлен 09.01.2012История открытия гормона роста соматотропина, адренокортикотропного гормона и пролактина. Общая характеристика тропных гормонов; изучение их химического состава, строения, химических процессов, протекающих с участием гормонов в живых организмах.
курсовая работа [557,1 K], добавлен 30.05.2015Классификация органов эндокринной системы. Регуляция деятельности эндокринных желез и их связей с центральной нервной системой посредством гипоталамуса. Функции и расположение гипофиза, развитие и строение эпифиза. Особенности эндокринных желез птиц.
курсовая работа [2,5 M], добавлен 15.12.2011Система регуляции деятельности внутренних органов посредством гормонов. Особенность кровоснабжения гипофиза. Артериальные анастомозы и соединения капиллярного русла частей гипофиза. Щитовидная и поджелудочная железы, надпочечники. Лимфоотток и иннервация.
презентация [5,2 M], добавлен 03.12.2014Описание сущности и устройства желез. Классификация этих органов в человеческом организме. Причины гипофункции и гиперфункции желез. Функции гипофиза. Роль щитовидной железы в эндокринной системе. Деятельность надпочечников, поджелудочной железы.
презентация [2,7 M], добавлен 10.09.2014Общее понятие о гуморальной регуляции, принципы организации. Главные свойства гормонов. Сложные интегральные белки. Значение вторичных посредников. Стероидные и тиреоидные гормоны. Ядерные и цитоплазматические рецепторы. Связи гипоталамуса и гипофиза.
презентация [5,3 M], добавлен 05.01.2014Определение понятия "гормон". Ознакомление с историей изучения эндокринных желез и гормонов, составлением их общей классификации. Рассмотрение специфических особенностей биологического действия гормонов. Описание роли рецепторов в данном процессе.
презентация [144,7 K], добавлен 23.11.2015Определение гуморальной регуляции как механизма координации процессов жизнедеятельности, осуществляемых через жидкие среды организма. Значение щитовидной и поджелудочной железы, эпифиза, гипофиза, надпочечников и тимуса для выработки гормонов человека.
презентация [418,1 K], добавлен 20.04.2012Гормональная регуляция обмена веществ. Биохимические механизмы регуляции пищеварения. Характеристика гастроинтестинальных гормонов. Центральные рефлекторные влияния в верхней части пищеварительного тракта. Процесс переваривания белков и поступление пищи.
презентация [282,9 K], добавлен 22.02.2017