Микро-, макро-, мегамир

Изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов. Понятие микромира, макромира и мегамира. Звездная форма бытия космической материи. Описание современных космологических моделей Вселенной.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 13.02.2017
Размер файла 38,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Новосибирский государственный аграрный университет

Институт заочного образования и повышения квалификации

Кафедра мировой экономики

Реферат

По дисциплине: «Концепции современного естествознания»

На тему: «Микро-, макро-, мегамир»

Выполнила: студентка 1 курса 4131 группы

Арыстанбек Пери

Новосибирск 2017

Содержание

Введение

1. Понятие микромира

2. Открытие микромира (тайны атома)

3. Понятие макромира

4. Понятие мегамира

5. Звездная форма бытия космической материи

6. Планеты

7. Современные космологические модели Вселенной

Заключение

Список литературы

Введение

Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта. Применяя системный подход, естествознание не просто выделяет типы материальных систем, а раскрывает их связь и соотношение.

Наша Вселенная разделена человеком на различные составляющие объективной реальности, распределена на ряд миров. Для удобства принято использовать такие понятия, как мегамир, макромир и микромир. Для полного понимания значения этих терминов необходимо перевести слова в понятную нам лексику. Приставка "мега" - происходит от греческого мЭгбт, что обозначает "большой". Макро - в переводе с греческого мЬкспт (макрос) -- "большой", "длинный". Микро - происходит от греческого мйксьт и означает "маленький".

Мегамир включает галактики и звезды. Макромир - планетные системы звезд, планеты, окружающие нас тела. Микромир - молекулы, атомы, ядра атомов, элементарные частицы.

Целью моей работы является изучение микромира, макромира, мегамира.

Задачи:

1. Исследовать понятие микромира и его открытие.

2. Изучить понятие макромира и рассмотреть его объекты.

3. Определить понятие мегамира

1)

1. Понятие микромира

Мы уже знаем, что все мы живем в макромире, но кроме нашего мира существует еще один, очень важный мир.

Микромир - это мир предельно малых объектов, в котором живут атомы, молекулы и другие частички, которые нельзя увидеть без специальных приборов. В микромире не только очень маленькие размеры, но и время в нем сжато. То, что для нас секунда, для микромира - вечность. Поэтому его «жители» живут, по нашим меркам, очень мало - сотые и тысячные доли секунды.

Объектами микромира являются фундаментальные и элементарные частицы, ядра, атомы и молекулы.

Для описания явлений микромира обычно привлекают квантовую механику, законы которой составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение атомных ядер, изучать свойства элементарных частиц.

Завораживающие факты о невообразимо маленьких объектах:

· Внутри человеческого тела обитает целый квадриллион бактерий, а их общий вес составляет 2 килограмма. Их, собственно, даже больше, чем клеток самого тела. Так что вполне можно сказать, что человек -- это просто такой организм, состоящий из бактерий и вирусов с небольшими вкраплениями чего-то еще.

· Иногда задают вопрос, как выглядит атом или какого он цвета. На самом деле, атом не выглядит никак. Просто вообще никак. И не потому, что у нас недостаточно хорошие микроскопы, а потому что размеры атома меньше расстояния, для которого существует само понятие «видимости»

· Вдоль окружности земного шара можно плотно разместить 400 триллионов вирусов. Много. Такое расстояние в километрах свет проходит за 40 лет. Но если собрать их всех вместе, то они легко поместятся на кончике пальца.

· Если положить в ряд 400 млрд песчинок, их ряд обогнёт весь земной шар по экватору. А если собрать эти же 400 млрд в мешок, весить он будет около тонны.

2. Открытие микромира (тайны атома)

До конца XIX века в науке господствовало убеждение, что все физические тела состоят из очень маленьких частиц - молекул, не видимых глазу, но доступных наблюдению в мощный микроскоп. Однако сами молекулы состоят из еще более мелких частиц - атомов. Например, молекула воды состоит из одного атома кислорода и двух водорода. Атомы, считались в науке прошлых столетий, - последний предел делимости вещества. Они представляют собой простейшие, мельчайшие и неделимые частицы, которые лежат в основе любого физического тела. Кроме того, если они неделимы, значит, постоянны и неизменны. Само вещество может меняться или превращаться как угодно, благодаря всевозможным атомным взаимодействиям. Сами же атомы пребывают всегда в одном и том же состоянии. Будучи неделимой вечной мировой основой, они не могут распадаться на части, рождаться, исчезать, переходить в другие формы и так далее. Вспомним, что слово «атом» было впервые употреблено древним философом Демокритом. Его идеи об атомах как последнем пределе вещества с небольшими изменениями существовали более двух тысяч лет. Они легли в основу механицизма классического естествознания, были в нем развиты и продолжены. В XIX в. эти представления доживали последние дни. Открытия в физике, сделанные на рубеже прошлого и нынешнего столетий, разрушили многовековые представления об атомах, произвели настоящую революцию в науке.

В самом конце XIX в. английский физик Джон Томсон открыл существование в атоме отрицательно заряженных частиц, которые получили название электроны. Поскольку атом в целом электрически нейтрален, то было сделано предположение, что помимо электронов в нем существуют также положительно заряженные частицы. Опыты английского физика Эрнеста Резерфорда привели его к выводу о том, что в любом атоме существует ядро - положительно заряженная частица, размер которой очень мал по сравнению с размерами всего атома. Кроме того, было обнаружено, что атомы одних элементов могут самопроизвольно превращаться в атомы других в результате ядерных излучений. Это явление, впервые открытое французским физиком Антуаном Анри Беккерелем, получило название радиоактивность (от лат. radiare - испускать лучи и activus - деятельный).

Эти открытия убедительно показали, что атомы - сложные, делимые и способные к превращению микрообъекты, имеющие определенное устройство. Одним из первых попытался выяснить строение атома Эрнест Резерфорд. В атоме действуют электрические силы: положительный заряд атомного ядра уравновешивается суммой зарядов электронов, и поэтому атом электрически нейтрален. У Резерфорда получилось, что каждый атом - это целый сложно устроенный мир, только очень малых размеров. Его модель атома, просто и наглядно говорившая о его устройстве, была родом из макромира, ведь она сравнивала его с Солнечной системой.

Новую модель атома построил известный датский физик Нильс Бор.

По его представлениям электрон - это не столько точка или твердый шарик, движущийся вокруг атомного ядра, сколько некий сгусток энергии, как бы размазанный вокруг ядра, но не равномерно, а с большей или меньшей плотностью на разных участках. Кроме того, надо говорить не об орбите движения электрона, а о его стационарном (неизменном) состоянии, в котором он может находиться, не излучая энергии. Если же это положение меняется, то есть электрон как бы переходит из одного стационарного состояния в другое, то он излучает или поглощает порцию энергии. Как видим, модель, предложенная Бором, была более сложной и менее понятной, чем Резерфорда, но и она не смогла с успехом объяснить атомное строение, потому что во многом использовала макроязык и макропонятия. Отказавшись полностью от понятного естественного языка и наглядных моделей при изучении микромира, наука все более стала пользоваться абстрактным языком математики. Атом усилиями физиков-теоретиков постепенно превращался в ненаблюдаемый набор уравнений.

Мы уже говорили, что к концу XIX в. наука установила два вида существования материи - вещество и поле, во всем отличные и противоположные (вещество обладает корпускулярными свойствами, а поле - волновыми). На рубеже XIX-XX вв. выяснилось, что два эти вида материи не исключают один другого. Как это ни удивительно, но одни и те же объекты могут иметь как корпускулярные, так и волновые качества. Известный немецкий физик Макс Планк, исследуя процессы теплового излучения, пришел к выводу, что при излучении энергия отдается или поглощается небольшими и неделимыми порциями, которые он назвал квантами (от лат. quantum - сколько). Квант - это порция энергии. Вдумаемся в это определение. Его первая часть - порция - подразумевает нечто определенное, ограниченное, вещественное, имеющее некие размеры, то есть частицу, или корпускулу. Вторая часть - энергия - подразумевает нечто непрерывное, безразмерное, невещественное, то есть поле. Стало быть, квант - это такой объект физической реальности, в котором совпадают или одновременно представлены и вещество, и поле, - объект, отличающийся корпускулярно-волновым дуализмом.

Эйнштейн перенес идею о квантах на область света и создал новое учение о нем. Вспомним, что Ньютон считал свет потоком корпускул, Гюйгенс и Юнг рассматривали его как волны, а Фарадей и Максвелл - как колебания электромагнитного поля. Эйнштейн совместил все эти представления и создал теорию, по которой свет имеет корпускулярно-волновую природу. Он распространяется квантами, то есть энергетическими порциями, которые были названы фотонами (от греч. photos - свет). С одной стороны, фотон - именно порция энергии и поэтому является своего рода частицей, или корпускулой, а с другой - порция именно энергии и поэтому является своего рода волной. Свет, по Эйнштейну, - это поток энергетических зерен, световых квантов или своеобразный фотонный дождь.

Представление Эйнштейна о световых квантах помогло понять и наглядно представить явление фотоэффекта, сущность которого заключается в выбивании электронов из вещества под действием световых волн (каждый электрон вырывается одним фотоном). Все это убедительно подтвердило идею Эйнштейна, что свет ведет себя не только как волна, но и как поток корпускул. В опытах по дифракции и интерференции проявляются его волновые свойства, а при фотоэффекте - корпускулярные. Фотонная теория Эйнштейна относится к наиболее экспериментально подтвержденным физическим теориям.

Идея о квантах была перенесена и на представления об атоме, в результате чего появилась специфическая дисциплина - квантовая механика - наука, описывающая процессы, происходящие в микромире. Одним из ее основных утверждений является мысль о том, что микрообъекты (электроны, например) обладают, подобно свету, корпускулярными и волновыми свойствами, и только при учете этой двойственности можно более или менее успешно получить общую картину микромира. Современная наука ждет от нее ответов на многие сложные вопросы, связанные не только с микромиром, но также касающиеся макро- и мегамиров, ведь три эти области существуют не изолированно, а представляют собой единую физическую реальность.

3. Понятие макромира

Макромир - это часть реальной объективности мира, в котором существует человек. Оглянитесь вокруг, макромир - это все, что вы видите, и все, что окружает вас. В нашей части объективной реальности существуют как объекты, так и целые системы. Они включают также живые, неживые и искусственные объекты.

Существует еще одно, очень интересное, определение макромира.

Макромир - это мир, который существовал до появления науки квантовая физика. В макромире объекты и предметы исследовали старыми методами физики, которые не давали полного представления о том или ином предмете. материальный макромир космологический вселенная

Например, сапог - считали предметом, который сделан из кожи и сшит нитками. Ученые не знали, что кожа состоит из молекул, которые в свою очередь состоят из атомов, которые опять же состоят из множества частиц. Такой сапог - предмет из макромира. Однако такое определение используют только ученые физики.

Объекты макромира - макрообъекты, образуют сложные системы, функционирование которых зависит от множества входящих в них элементов. Так, например, закон сохранения энергии не работает в квантовой физике. В целом же, физика макромира это совокупность тех физических законов, согласно которым происходят те или иные явления, создаются машины и механизмы.

Но макромир не может существовать вне мегамира и микромира. Человечество живет на планете Земля, которая является одной из планет Солнечной системы, относящейся к бесконечно огромному космосу.

Частицами, связывающими микро- и макроуровни материи, считают молекулы. Они, состоящие из атомов, построены аналогично, но объем, занимаемый здесь электронными орбиталями, несколько больше, и молекулярные орбитали ориентированы в пространстве. В результате каждая молекула имеет определенную форму. Для сложных молекул, особенно органических, форма имеет решающее значение. Состав, пространственное строение молекул определяют свойства вещества. Виды связей ионов, структуру веществ и молекул, химические системы и химические реакции рассмотрим позже при изучении темы «Химические системы и процессы».

При определенных условиях однотипные атомы и молекулы могут собираться в огромные совокупности -- макроскопические тела (вещество). Вещество -- вид материи; то, из чего состоит весь окружающий мир. Вещества состоят из мельчайших частиц -- атомов, молекул, ионов, элементарных частиц, имеющих массу и находящихся в постоянном движении и взаимодействии. Существует огромное множество веществ, различных по составу и свойствам. Вещества делятся на простые, сложные, чистые, неорганические и органические. Свойства веществ можно объяснить и предсказать на основе их состава и строения.

Вещество простое состоит из частиц (атомов или молекул), образованных атомами одного химического элемента. Например, 02 (кислород), 03 (озон), S (сера), Ne (неон) -- простые вещества.

Вещество сложное состоит из частиц, образованных атомами различных химических элементов. Например, H2S04 (серная кислота); FeS (сульфид железа); СН4 (метан) -- сложные вещества.

Вещество чистое -- вещество, состоящее из одинаковых частиц (молекул, атомов, ионов), обладающее определенными специфическими свойствами. Для очистки веществ от примесей используют различные методы: перекристаллизацию, дистилляцию, фильтрование.

Вещества неорганические -- это химические соединения, образуемые всеми химическими элементами (кроме соединений углерода, относящихся к органическим веществам). Неорганические вещества образуются на Земле и в космосе под воздействием природных физико-химических факторов. Известно около 300 тысяч неорганических соединений. Они образуют практически всю литосферу, гидросферу и атмосферу Земли. В их состав могут входить атомы всех химических элементов, известных в настоящее время, в различных сочетаниях и количественных соотношениях. Кроме того, огромное количество неорганических веществ получают в научных лабораториях и на химических предприятиях искусственно. Все неорганические вещества делятся на группы со сходными свойствами (классы неорганических соединений).

Вещества органические -- это соединения углерода с некоторыми другими элементами: водородом, кислородом, азотом, серой. Из соединений углерода к органическим не относятся оксиды углерода, угольная кислота и ее соли, являющиеся неорганическими соединениями. Название "органические" эти соединения получили в связи с тем, что первые представители этой группы веществ были выделены из тканей организмов. Долгое время считалось, что подобные соединения нельзя синтезировать в пробирке, вне живого организма. Однако в первой половине XIX в. ученым удалось получить искусственно вещества, которые ранее извлекали только из тканей животных и растений или продуктов их жизнедеятельности: мочевину, жир и сахаристое вещество. Это послужило доказательством возможности искусственного получения органических веществ и началом новых наук -- органической химии и биохимии. Органические вещества обладают рядом свойств, отличающих их от неорганических веществ: они неустойчивы к действию высоких температур; реакции с их участием протекают медленно и требуют особых условий. К органическим соединениям относятся нуклеиновые кислоты, белки, углеводы, липиды, гормоны, витамины и многие другие вещества, играющие основную роль в построении и жизнедеятельности растительных и животных организмов. Пища, топливо, многие лекарства, одежда -- все это состоит из органических веществ.

Наиболее важными объектами макромира выступают: индивид, вид, популяция и биосфера.

Индивид (индивидуум, особь) -- элементарная неделимая единица жизни на Земле. Разделить индивид на части без потери "индивидуальности" невозможно. Конечно, в ряде случаев вопрос об определении границ индивида, особи не столь прост и самоочевиден. С эволюционной точки зрения индивидуумом следует считать все морфофизиологические единицы, происходящие от одной зиготы, гаметы, споры, почки и индивидуально подлежащие действию элементарных факторов. На онтогенетическом уровне единицей жизни служит индивид с момента ее возникновения до смерти. Через оценку индивидуума в процессе естественного отбора происходит проверка жизнеспособности данного генотипа. Индивиды в природе не абсолютно изолированы друг от друга, а объединены более высоким рангом биологической организации на популяционно-видовом уровне.

Вид. Сущность биологической концепции вида заключается в признании того, что виды реальны, состоят из популяций, а все особи вида имеют общую генетическую программу, которая возникла в ходе предшествующей эволюции. Виды определяются не столько различиями, сколько обособленностью. Из биологической концепции вида вытекают критерии, позволяющие отличать один вид от другого:

1. Морфологический критерий вида есть характеристика особенностей строения, совокупность его признаков.

2. Генетический критерий утверждает, что каждый вид имеет свойственный ему набор хромосом, характеризующийся определенным числом хромосом, их структурой и дифференциальной окраской.

3. Эколого-географический критерий вида включает как ареал обитания, так и непосредственную среду обитания вида -- его экологическую нишу.

4. К важнейшей характеристике вида, размножающегося половым путем, относится репродуктивная изоляция.

Он является результатом эволюции всей генетической системы данного вида и охраняет его от проникновения генетической информации извне. Итак, каждый критерий в отдельности недостаточен для определения вида, только в совокупности они позволяют точно выяснить видовую принадлежность живого организма. Наиболее существенной характеристикой вида является то, что он представляет собой генетически единую систему.

Таким образом, вид -- совокупность географически и экологически близких популяций, способных в природных условиях скрещиваться между собой, имеющих единый генетический фонд, обладающих общими морфофизиологическими признаками, биологически изолированных от популяций других видов.

Популяция. Совокупность особей одного вида, длительно населяющих определенное пространство, размножающихся путем свободного скрещивания и в той или иной степени изолированных друг от друга, называют популяцией. В генетическом смысле популяция -- это пространственно-временная группа скрещивающихся между собой особей одного вида. Популяция является элементарной биологической структурой, способной к эволюционным изменениям. Популяции оказываются элементарными единицами, а виды -- качественными этапами процесса эволюции. Совокупность генотипов всех особей популяции об разует генофонд.

Популяции разных видов всегда образуют в биосфере Земли сложные сообщества -- биоценозы. Биоценоз -- совокупность растений, животных, грибов и прокариот, населяющих участок суши или водоема и находящихся в определенных отношениях между собой. Вместе с конкретными участками земной поверхности, занимаемыми биоценозами, и атмосферой сообщество составляет экосистему. Экосистема -- взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом веществ и энергий. Биогеоценоз -- это такая экосистема, внутри которой не проходят биогенетические, микроклиматические, почвенные и гидрологические границы. Биогеоценоз -- одна из наиболее сложных природных систем. Внешне заметные границы биогеоценозов чаще всего совпадают с границами растительных сообществ. Все группы экосистемы -- продукт совместного исторического развития видов, различающихся по систематическому положению.

Биосфера. Взаимосвязь разных сообществ, обмен между ними веществом и энергией позволяют рассматривать все живые организмы Земли и среду их обитания как одну очень протяженную и разнообразную экосистему -- биосферу. Биосфера -- те части земных оболочек (лито, гидро- и атмосферы), которые на протяжении геологической истории подвергались влиянию живых организмов и несут следы их жизнедеятельности. Биогеоценозы, образующие в совокупности биосферу нашей планеты, взаимосвязаны круговоротом веществ и энергии. В этом круговороте жизнь на Земле выступает как ведущий компонент биосферы. Биогеоценоз представляет собой незамкнутую систему, имеющую энергетические "входы" и "выходы", связывающие соседние биогеоценозы. Обмен веществ между соседними биогеоценозами может осуществляться в газообразной, жидкой и твердой фазах, а также в форме живого вещества (миграции животных). Кроме живого вещества в составе биосферы есть косное (неживое) вещество, а также сложные по своей природе биокосные тела. В их состав входят как живые организмы, так и видоизмененное неживое вещество. К биокосным телам относятся почвы, илы, природные воды.

4. Понятие мегамира

Мегамир -- мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов -- миллионами и миллиардами лет.

Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел.

Все существующие галактики входят в систему самого высокого порядка -- Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15-- 20 млрд. световых лет.

Понятия «Вселенная» и «Метагалактика» -- очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие «Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» -- тот же мир, но с точки зрения его структуры -- как упорядоченную систему галактик.

Строение и эволюция Вселенной изучаются космологией. Космология как раздел естествознания, находится на своеобразном стыке науки, религии и философии. В основе космологических моделей Вселенной лежат определенные мировоззренческие предпосылки, а сами эти модели имеют большое мировоззренческое значение.

5. Звездная форма бытия космической материи

На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоянии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих, если не у большинства других галактик, "звездная субстанция" составляет более чем 99,9% их массы.

В недрах звезд при температуре порядка 10 млн град, и при очень высокой плотности атомы находятся в ионизированном состоянии: электроны почти полностью или абсолютно все отделены от своих атомов. Оставшиеся ядра вступают во взаимодействие друг с другом, благодаря чему водород, имеющийся в изобилии в большинстве звезд, превращается при участии углерода в гелий. Эти и подобные ядерные превращения являются источником колоссального количества энергии, уносимой излучением звезд.

Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы -- так называемые кратные системы, состоящие из двух, трех, четырех, пяти и больше звезд, обращающихся вокруг общего центра тяжести. Компоненты некоторых кратных систем окружены общей оболочкой диффузной материи, источником которой, по-видимому, являются сами звезды, выбрасывающие ее в пространство и виде мощного потока газа. Звезды объединены также в еще большие группы - звездные скопления, которые могут иметь "рассеянную" или "шаровую" структуру. Рассеянные звездные скопления насчитывают несколько сотен отельных звезд, шаровые скопления -- многие сотни тысяч.

Перечисленные звездные системы являются частями более общей системы -- Галактики, включающей в себя помимо звезд и диффузную материю. По своей форме галактики разделяются на три основных типа: эллиптические, спиральные и неправильные. В неправильных галактиках наблюдаются вихревые движения газов и тенденция к вращению, вероятно, ведущие к образованию спиральных ветвей. В настоящее время астрономы насчитывают около 10 млрд галактик.

Большинство галактик имеет эллиптическую или спиралевидную форму. Галактика, внутри которой расположена Солнечная система, является спиральной системой, состоящей приблизительно из 120 млрд звезд. Она имеет форму утолщенного диска. Наибольший диаметр равен 100 тыс. световых лет.

Наша Галактика состоит из звезд и диффузной материи. Ее звезды разделяются различными способами на подсистемы. В ней насчитывается приблизительно 20 тыс. рассеянных и около 100 шаровых скоплений звезд. Кроме того, можно выделить звезды, концентрирующиеся в галактической плоскости и образующие плоскую систему и сферическую форму пространственного распределения звезд, образующую ядро галактики.

По радиоастрономическим наблюдениям сделано заключение, что наша Галактика имеет четыре спиральные ветви. Ближайшей галактической системой является туманность Андромеды, находящаяся от нас на расстоянии 2 700 000 световых лет. Нашу Галактику и туманность Андромеды можно причислить к самым большим из известных в настоящее время галактик.

Галактики, как правило, встречаются в виде так называемых "облаков" или "скоплений галактик". Эти "облака" содержат до нескольких тысяч отдельных систем. Распределение галактик в пространстве указывает на существование определенной упорядоченной системы -- Метагалактики. Метагалактика, или система галактик, включает в себя все известные космические объекты.

Для объяснения структуры мегамира наиболее важным является гравитационное взаимодействие. Всякое тело притягивает другое тело, но сила гравитации, согласно закону всемирного тяготения, быстро уменьшается с увеличением расстояния между ними. В газово-пылевых туманностях под действием сил гравитации происходит формирование неустойчивых неоднородностей, благодаря чему диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. Важно отметить, что происходит процесс рождения не отдельной изолированной звезды, а звездных ассоциаций. Образовавшиеся газовые тела притягиваются друг к другу, но не обязательно объединяются в одно громадное тело. Вместо этого они, как правило, начинают вращаться относительно друг друга, и центробежная сила этого движения противодействует силе притяжения, ведущей к дальнейшей концентрации. Звезды эволюционируют от протозвезд, гигантских газовых шаров, слабо светящихся и с низкой температурой, к звездам -- плотным плазменным телам с температурой внутри в миллионы градусов. Затем начинается процесс ядерных превращений, описываемый в ядерной физике. Основная эволюция вещества во Вселенной происходила и происходит в недрах звезд. Именно там находится тот "плавильный тигель", который обусловил химическую эволюцию вещества во Вселенной.

Огромная энергия, излучаемая звездами, образуется в результате ядерных процессов, происходящих внутри звезд.

Ассоциации, или скопления звезд, также не являются неизменно или вечно существующими. Через определенное количество времени, исчисляемое миллионами лет, они рассеиваются силами галактического вращения.

6. Планеты

Особый теоретический, а также практическим интерес имеет для обитателей Земли вопрос о возникновении космических объектов, имеющих размеры планет.

Отличительной чертой планетоподобных несветящихся тел является величина их массы. Все различия между звездами и планетами являются следствием различия их масс. Особенности планет как объектов мегамира можно понять в рамках общего космогонического процесса, в силу которого вблизи определенных звезд возникает система планет -- вращающихся вокруг них темных небесных тел.

Первые теории происхождения солнечной системы были выдвинуты немецким философом И. Кантом и французским математиком П.С. Лапласом. Их теории вошли в науку как некая коллективная космогоническая гипотеза Канта -- Лапласа, хотя разрабатывались они независимо друг от друга.

И. Кант выдвинул гипотезу, согласно которой перед образованием планет Солнечной системы пространство, где теперь она существует, было заполнено рассеянной материей, находившейся во вращательном движении вокруг уже возникшего в виде центрального сгущения Солнца. С течением времени вследствие притяжения и отталкивания между частицами рассеянной материи (туманности) возникли планеты. И. Кант впервые выдвинул предположение, что Солнечная система не существовала вечно. Процесс ее возникновения он связывал с существованием сил взаимодействия, присущих частицам туманности. При этом гипотеза И. Канта не противоречила наблюдаемому расположению орбит планет Солнечной системы приблизительно и одной плоскости и существованию спутников.

Приблизительно через 50 лет после этого П.С. Лаплас выдвинул свою гипотезу, во многом сходную с предположением И. Канта. Космогоническая гипотеза П.С. Лапласа основывалась на том, что Солнечная система образовалась из уже вращающейся газовой туманности. По теории И. Канта, Солнечная система также возникла из газовой туманности, но она не имела предварительного вращения. В этом случае появлялась непреодолимая трудность, невозможно было объяснить, как могло образоваться правильное вращательное движение небесных тел. Гипотеза П.С. Лапласа получила широкое признание в первой половине XIX в., но потом оказалось, что ряд фактов не укладывается в ее рамки. Например, нельзя объяснить, почему Солнце теперь вращается вокруг своей оси относительно медленно, хотя во время сжатия оно должно было вращаться столь быстро, что от него за счет центробежной силы происходило бы отделение вещества.

Началом следующего этапа в развитии взглядов на образование Солнечной системы послужила гипотеза английского физика и астрофизика Дж. X. Джинса. Он предположил, что когда-то Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, преобразовалась в планеты. Однако, учитывая огромное расстояние между звездами, такое столкновение кажется совершенно невероятным. Более детальный анализ выявил и другие недостатки этой теории.

Современные концепции происхождения планет Солнечной системы основываются на том, что нужно учитывать не только механические силы, но и другие, в частности электромагнитные. Эта идея была выдвинута шведским физиком и астрофизиком X. Альфвеном и английским астрофизиком Ф. Хойлом. Считается вероятным, что именно электромагнитные силы сыграли решающую роль при зарождении Солнечной системы. Согласно современным представлениям, первоначальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались небольшие части этого облака. Гравитационная сила стала притягивать остатки газа к образовавшейся звезде -- Солнцу, но его магнитное поле остановило падающий газ на различных расстояниях -- как раз там где находятся планеты. Гравитационная и магнитные силы повлияли на концентрацию и сгущение падающего газа, в результате чего образовались планеты. Когда возникли самые крупные планеты, тот же процесс повторился в меньших масштабах, создав таким образом системы спутников. Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невозможно. Во всех существующих теориях имеются противоречия и неясные места.

7. Современные космологические модели Вселенной

Как указывалось в предыдущей главе, в классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас. Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации, что было, конечно, очень важно. Но вопрос об эволюции Вселенной не ставился.

Классическая ньютоновская космология явно или неявно принимала следующие постулаты:

· Вселенная -- это всесуществующая, "мир в целом". Космология познает мир таким, как он существует сам по себе, безотносительно к условиям познания.

· Пространство и время Вселенной абсолютны, они не зависят от материальных объектов и процессов.

· Пространство и время метрически бесконечны.

· Пространство и время однородны и изотропны.

· Вселенная стационарна, не претерпевает эволюции. Изменяться могут конкретные космические системы, но не мир в целом.

Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим Л. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моде лью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием.

Эта модель казалась в то время вполне удовлетворительной,поскольку она согласовывалась со всеми известными фактами. Но новые идеи, выдвинутые А. Эйнштейном, стимулировали дальнейшее исследование, и вскоре подход к проблеме решительно изменился.

В том же 1917 г. голландский астроном В. де Ситтер предложил другую модель, представляющую собой также решение уравнений тяготения. Это решение имело то свойство, что оно существовало бы даже в случае "пустой" Вселенной, свободной oт материи. Если же в такой Вселенной появлялись массы, то решение переставало быть стационарным: возникало некоторого рода космическое отталкивание между массами, стремящееся удалить их друг от друга и растворить всю систему. Тенденция к расширению, по В. де Ситтеру, становилась заметной лишь на очень больших расстояниях.

В 1922 г. российский математик и геофизик Л.А. Фридман о (бросил постулат классической космологии о стационарности Вселенной и дал принятое в настоящее время решение космологической проблемы.

Решение уравнений А.А. Фридмана, допускает три возможности. Если средняя плотность вещества и излучения во Вселенной равна некоторой критической величине, мировое пространство оказывается евклидовым и Вселенная неограниченно расширяется от первоначального точечного состояния. Если плотность меньше критической, пространство обладает геометрией Лобачевского и так же неограниченно расширяется. И, наконец, если плотность больше критической, пространство Вселенной оказывается римановым, расширение на некотором этапе сменяется сжатием, которое продолжается вплоть до первоначального точечного состояния. По современным данным, средняя плотность материи во Вселенной меньше критической, так что более вероятной считается модель Лобачевского, т.е. пространственно бесконечная расширяющаяся Вселенная. Не исключено, что некоторые виды материи, которые имеют большое значение для величины средней плотности, пока остаются неучтенными. В связи с этим делать окончательные выводы о конечности или бесконечности Вселенной пока преждевременно.

Расширение Вселенной считается научно установленным фактом. Первым к поискам данных о движении спиральных галактик обратился В. де Ситтер. Обнаружение эффекта Доплера, свидетельствовавшего об удалении галактик, дало толчок дальнейшим теоретическим исследованиям и новым улучшенным измерениям расстояний и скоростей спиральных туманностей.

В 1929 г. американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию,-- система галактик расширяется.

Но то, что в настоящее время Вселенная расширяется, еще не позволяет однозначно решить вопрос в пользу той или иной модели.

Заключение

В отличие от мира крупных тел, или макромира, микромир недоступен непосредственному наблюдению, и для изучения его требуются особые, тонкие методы. Микромир оказался чрезвычайно сложным. Любое тело, которое в механике рассматривалось как сплошное, при использовании новых методов исследований оказывалось сложной системой громадного числа непрерывно движущихся молекул.

Если сравнить состав объектов всех трех областей (мегамир, макромир, микромир), то можно сделать важный вывод: все состоит из элементарных частиц, причем в состав вещества в стабильном состоянии входит всего три вида основных частиц. Это протоны, нейтроны и электроны, а электромагнитное поле состоит из фотонов.

Таким образом, все объекты в природе состоят из элементарных частиц, объединенных в более или менее сложные структуры

Сегодня каждому известна общность микро- и макромира. Эта общность базируется на квантовой теории. Бездна, когда-то разделявшая невидимый микромир и макромир, сегодня заполнена.

Бесконечное разнообразие каждого из трех миров создает целую систему, сложную и удивительную, тайны которой человеку еще предстоит познать. Все вышеизложенные революционные открытия в физике перевернули ранее существующие взгляды на мир. Исчезла убежденность в универсальности законов классической механики, ибо разрушились прежние представления о неделимости атома, о постоянстве массы, о неизменности химических элементов и т.д. Теперь уже вряд ли можно найти физика, который считал бы, что все проблемы его науки можно решить с помощью механических понятий и уравнений.

Список литературы

1. Ващекин Н.П., Лось В.А., Урсул А.Д. «Концепции современного естествознания», М.: МГУК,2000

2. Горелов А.А. «Концепции современного естествознания », М.: Высшее образование, 2006.

3. Е. Горшунова, А. Таразанов, И. Афанасьева «Большое космическое путешествие», 2011

4. Бондарев В.П. Концепции современного естествознания: Учебное пособие для студентов вузов / В.П.Бондарев. - М.: Альфа-М, 2003. - 464 с

5. Основы концепции естествознания: Учебное пособие / Карпенков С.Х. - М.: Высшее образование, 2007. - 366 с.

6. Концепции современного естествознания: Учебник для вузов / Под ред. проф. В.Н. Лавриненко, проф. В.П. Ратникова. - 3-е изд., перераб. и доп. - М.: ЮНИТИ-ДАНА, 2003. - 317 с.

7. Современное естествознание: Учебное пособие / Т.Я. Дубнищева, А.Ю. Пигарев. - 2-е изд. - М.: Новосибирск: Маркетинг: ЮКЭА, 2000. - 160 с.

Размещено на Allbest.ru

...

Подобные документы

  • Три уровня строения материи: микро-, макро- и мегамир. Материя как объективная реальность. Две основные формы движущейся материи: в пространстве и во времени. Атомистическая гипотеза строения материи Демокрита. Теория и модель атома Нильса Бора.

    реферат [33,6 K], добавлен 25.03.2009

  • Всестороннее изучение и анализ микро-, макро- и мегамиров. Изучение материального мира. Представление об иерархичности физических явлений в настоящее время. Становление теории атомно-молекулярного строения мира. Научное познание мира "вглубь" и "вширь".

    реферат [53,3 K], добавлен 26.07.2010

  • Фундаментальные взаимодействия: гравитационное, электромагнитное, сильное, слабое; их понятие и краткая история. Взаимосвязь всех материальных объектов микро, макро и мегамира. Электромагнитное взаимодействие между телами в космических масштабах.

    реферат [332,4 K], добавлен 10.07.2011

  • Материя – это бесконечное множество всех существующих в мире объектов, систем, субстрат любых свойств, связей, отношений и форм движения. Современная наука выделяет в мире три структурных уровня: микромир, макромир, мегамир, тесно всязанные между собой.

    реферат [18,2 K], добавлен 08.06.2008

  • Гипотеза о цикличности состояния Вселенной. Теория "Большого взрыва" как объяснение ее происхождения. Общая характеристика мегамира. Первые теории возникновения Солнечной системы. Что такое галактика. История изучения учеными Вселенной. Строение мегамира.

    реферат [26,3 K], добавлен 14.12.2009

  • Теория "великого объединения" как четыре качественно различных вида взаимодействий, в которых участвуют элементарные частицы. Что такое слабое ядерное взаимодействие. Электромагнитная карта мира. Макромир и микромир. Понятие материи, что такое ноогенез.

    контрольная работа [865,5 K], добавлен 23.11.2010

  • Законы симметрии микромира и макромира. Связи законов сохранения и законов симметрии. Классический детерминизм и вероятностно-статистический детерминизм. Отличие живых систем от неживых. Экологические проблемы современности.

    шпаргалка [29,3 K], добавлен 10.09.2007

  • Микро-, макро- и мегамиры. Основные источники энергии звезд. Граница Солнечной системы. Галактика, метагалактика, космос и Вселенная. История развития космологических представлений. Геоцентрическая система Птолимея. Возникновение современной космологии.

    реферат [2,1 M], добавлен 16.06.2012

  • Идея тепловой смерти Вселенной. Закон возрастания энтропии. Возможность энтропии во Вселенной. Тепловая смерть Вселенной в научной картине мира. Термодинамический парадокс в релятивистских космологических моделях. Постнеклассическая картина мира.

    курсовая работа [101,8 K], добавлен 04.03.2011

  • Исследование содержания, основных элементов современных космологических моделей. Основные положения теории Джорджа Гамова о "большом взрыве". Мейнстримовская (консенсусная) теория эволюции Вселенной. Современные оценки размеров инфляционного "пузыря".

    курсовая работа [61,4 K], добавлен 07.05.2016

  • Эмпирические методы познания. Идеи античной науки. Законы классической механики. Становление химии, историческая система знания. Масштаб мегамира, измерение и рост между его объектами. Признаки живой системы. Структурные уровни организации живой материи.

    контрольная работа [62,2 K], добавлен 08.06.2013

  • Предварительные идеи о начале Вселенной. Идеи Бахоуддина Валада и Джалаледдина Руми о человеке. Принципы построения модели происхождения Вселенной. Проблемы начала Вселенной в свете законов логики. Джалаледдин Руми о происхождении материального мира.

    курсовая работа [382,2 K], добавлен 07.11.2013

  • Основы эволюции Вселенной. Анализ сценария образования Вселенной в соответствии с концепцией Большого взрыва. Характеристика моделей расширяющейся и пульсирующей Вселенной. Эволюция концепции единства мира применительно к концепции Большого взрыва.

    презентация [204,8 K], добавлен 03.12.2014

  • Основные этапы исторического развития и становления естествознания как науки. Примеры современных концепций. Принципы модели устойчивой мировой системы. Современное представление происхождения объектов Вселенной, гипотеза о цикличности ее состояния.

    реферат [35,6 K], добавлен 23.01.2011

  • Элементарные частицы материи. Теория "Большого взрыва". Научная картина устройства Вселенной А. Эйнштейна. Естественное обоснование горячей модели большого взрыва. Понятие стрелы времени, галактики, звезды. Солнце и Солнечная система. Описание Земли.

    контрольная работа [27,6 K], добавлен 09.11.2010

  • Революция в естествознании, возникновение и дальнейшее развитие учения о строении атома. Состав, строение и время мегамира. Кварковая модель адронов. Эволюция Метагалактики, галактик и отдельных звезд. Современная картина происхождения Вселенной.

    курсовая работа [39,3 K], добавлен 16.07.2011

  • Структура и эволюция Вселенной. Гипотезы происхождения и строения Вселенной. Состояние пространства до Большого Взрыва. Химический состав звезд по данным спектрального анализа. Строение красного гиганта. Черные дыры, скрытая масса, квазары и пульсары.

    реферат [31,0 K], добавлен 20.11.2011

  • Понятие культуры и ее основные разновидности. Сущность, содержание, функции, цели, критерии выделения науки. Научное знание и естественнонаучное познание. Виды методов и методология. Организация мегамира и микромира. Концепции возникновения жизни.

    шпаргалка [20,2 K], добавлен 18.06.2010

  • Весомая материя или составляющие ее элементарные частицы как овеществленная форма полевой материи. Фундаментальные типы взаимодействий в физике. Спектр электромагнитного излучения. Понятие и виды внутренней энергии. Выводы учения Вернадского о биосфере.

    контрольная работа [1,4 M], добавлен 22.01.2010

  • Теория Большого Взрыва. Понятие реликтового излучения. Инфляционная теория физического вакуума. Основы модели однородной изотропной нестационарной расширяющейся Вселенной. Сущность моделей Леметра, де Ситтера, Милна, Фридмана, Эйнштейна-де Ситтера.

    реферат [27,5 K], добавлен 24.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.