Теория биохимической эволюции
Гипотеза А.И. Опарина о возникновении жизни на Земле. Антропогенез как единый процесс эволюционного становления человека и исторического формирования общества. Амфотерность белковых молекул, их способность к образованию коллоидных гидрофильных комплексов.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 28.03.2017 |
Размер файла | 293,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Российский университет дружбы народов
Институт иностранных языков
Направление: «Лингвистика»
Профиль обучения: «Перевод и переводоведение»
Реферат
По дисциплине: «Концепции современного естествознания»
На тему: «Теория биохимической эволюции»
Выполнила: студентка 1 курса, гр. ЛДп-111
Рустамова Сарья
Преподаватель: Мраченко Екатерина Аркадьевна
Москва, 2015
Теория биохимической эволюции. Гипотеза А. И. Опарина о возникновении жизни на Земле опирается на представление о постепенном усложнении химической структуры и морфологического облика предшественников жизни пробионтов на пути к живым организмам.
Коацерваты - это обособленные в растворе органические многомолекулярные структуры. Это еще не живые существа. Их возникновение рассматривают как стадию развития преджизни. Наиболее важным этапом в происхождении жизни было возникновение механизма воспроизведения себе подобных и наследования свойств предыдущих поколений. Это стало возможным благодаря образованию сложных комплексов нуклеиновых кислот и белков. Нуклеиновые кислоты, способные к самовоспроизведению, стали контролировать синтез белков, определяя в них порядок аминокислот.
Исследование факторов, путей и закономерностей этого процесса составляет задачу одного из основных разделов антропологии учения об антропогенезе. К главным проблемам антропогенеза относятся место прародина и время появления древнейших людей непосредственные предки человека основные стадии, движущие силы, на различных его этапах соотношение эволюции физического типа человека с историческим прогрессом его культуры, развитием первобытного общества и речи. Решение коренных и частных проблем антропогенеза осуществляется с помощью данных антропологии особенно палеоантропологии и близких наук эволюционной морфологии и эмбриологии, приматологии, палеонтологии приматов, психологии и физиологии, геологии палеогена, неогена и антропогена, археологии палеолита, этнографии и лингвистики. Антропогенез как единый процесс эволюционного становления человека и исторического формирования общества может быть разделены на стадии, смена которых была связана с наиболее значительными качественными преобразованиями в трудовой деятельности человека, в его морфологии и сознании, в структуре социальной организации.
Стадиальный подход к проблеме антропогенеза крупная заслуга ученых антропологов, археологов, историков первобытного общества, философов. Большинство исследователей выделяет в антропогенезе три стадии - антропоидные предки человека высокоразвитые двуногие приматы, систематически пользовавшиеся в качестве орудий естественными предметами палками, камнями, обломками костей животных - древнейшие и древние люди архантропы и палеоантропы, с которыми связано появление искусственно изготовленных орудий труда, их усложнение до известных пределов, начальная форма общественной организации - люди современного физического строения неоантропы, начало этой стадии относится к эпохе позднего палеолита. Атмосфера была, по-видимому, “восстановительной”, о чем свидетельствует наличие в самых древних горных породах Земли металлов в восстановленной форме, таких как двухвалентное железо. Более молодые горные породы содержат металлы в окисленной форме, например трехвалентное железо. Отсутствие в атмосфере кислорода было, вероятно, необходимым условием для возникновения жизни; лабораторные опыты показывают, что, как это ни парадоксально, органические вещества (основа живых организмов) гораздо легче создаются в восстановительной среде, чем в атмосфере богатой кислородом.
В 1923 г. А. И. Опарин высказал мнение, что атмосфера первичной Земли была не такой, как сейчас, а примерно соответствовала сделанному выше описанию. Исходя из теоретических соображений, он полагал, что органические вещества, возможно углеводороды, могли создаваться в океане из более простых соединений; энергию для этих реакций синтеза, вероятно, доставляла интенсивная солнечная радиация (главным образом ультрафиолетовая), падавшая на Землю до того, как образовался слой озона, который стал задерживать большую ее часть. По мнению Опарина, разнообразие находившихся в океанах простых соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и образовался тот “первичный бульон”, в котором могла возникнуть жизнь. Эта идея была не нова: в 1871 г. сходную мысль высказал Дарвин:
“Часто говорят, что все необходимые для создания живого организма условия, которые могли когда-то существовать, имеются и в настоящее время. Но если (ох, какое это большое “если”) представить себе, что в каком-то небольшом теплом пруду, содержащем всевозможные аммонийные и фосфорные соли, при наличии света, тепла, электричества и т.п. образовался бы химическим путем белок, готовый претерпеть еще более сложные превращения, то в наши дни такой материал непрерывно пожирался бы или поглощался, чего не могло случиться до того, как появились живые существа”.
В 1953 г. Стэнли Миллер в ряде экспериментов моделировал условия, предположительно существовавшие на первобытной Земле. В созданной им установке (рис. 24.1), снабженной источником энергии, ему удалось синтезировать многие вещества, имеющие важное биологическое значение, в том числе ряд аминокислот, аденин и простые сахара, такие как рибоза. После этого Орджел в Институте Солка в сходном эксперименте синтезировал нуклеотидные цепи длиной в шесть мономерных единиц (простые нуклеиновые кислоты). Самое трудное для этой теории - объяснить появление способности живых систем к самовоспроизведению. Гипотезы по этому вопросу пока мало убедительны.
опарин антропогенез белковый коллоидный
Опарин полагал, что решающая роль в превращении неживого в живое принадлежала белкам. Благодаря амфотерности белковых молекул они способны к образованию коллоидных гидрофильных комплексов -притягивают к себе молекулы воды, создающие вокруг них оболочку. Эти комплексы могут обособляться от всей массы воды, в которой они суспендированы водной фазы , и образовывать своего рода эмульсию. Слияние таких комплексов друг с другом приводит к отделению коллоидов от водной
среды -процесс, называемый коацервацией от лат. coacervus - сгусток или куча . Богатые коллоидами коацерваты, возможно, были способны обмениваться с окружающей средой веществами и избирательно накапливать различные соединения, в особенности кристаллоиды. Коллоидный состав данного коацервата, очевидно, зависел от состава среды. Разнообразие состава бульона в разных местах вело к различиям в химическом составе коацерватов и поставляло сырье для биохимического естественного отбора .Предполагается, что в самих коацерватах входящие в их состав вещества вступали в дальнейшие химические реакции при этом происходило поглощение коацерватами ионов металлов и образование ферментов. На границе между коацерватами и внешней средой выстраивались молекулы липидов сложные углеводороды, что приводило к образованию примитивной клеточной мембраны, обеспечивавшей концерватам стабильность.
Восстановительный характер первичной атмосферы Земли чрезвычайно важен для зарождения жизни, поскольку вещества в восстановленном состоянии обладают высокой реакционной способностью и в определенных условиях способны взаимодействовать друг с другом, образуя органические молекулы. Отсутствие в атмосфере первичной Земли свободного кислорода (практически весь кислород Земли был связан в виде окислов) также является важной предпосылкой возникновения жизни, поскольку кислород легко окисляет и тем самым разрушает органические соединения. Поэтому при наличии в атмосфере свободного кислорода накопление на древней Земле значительного количества органических веществ было бы невозможно.
Около 5 млрд лет т.п. -- возникновение Земли как небесного тела; температура поверхности -- 4000-8000°С
Около 4 млрд лет т.н. - формирование земной коры и первичной атмосферы
При температуре 1000°С -- в первичной атмосфере начинается синтез простых органических молекул
Рис. 2.4.1.1. Основные этапы химической эволюции
Температура первичной атмосферы ниже 100°С -- формирование первичного океана.
Синтез сложных органических молекул -- биополимеров из простых органических молекул:
§ простые органические молекулы -- мономеры
§ сложные органические молекулы -- биополимеры
Когда температура первичной атмосферы достигает 1000°С, в ней начинается синтез простых органических молекул, таких, как аминокислоты, нуклеотиды, жирные кислоты, простые сахара, многоатомные спирты, органические кислоты и др. Энергию для синтеза поставляют грозовые разряды, вулканическая деятельность, жесткое космическое излучение и, наконец, ультрафиолетовое излучение Солнца, от которого Земля еще не защищена озоновым экраном, причем именно ультрафиолетовое излучение ученые считают основным источником энергии для абиогенного (т.е. проходящею без участия живых организмов) синтеза органических веществ.
Признанию и широкому распространению теории А.И. Опарина во многом способствовало то, что процессы абиогенного синтеза органических молекул легко воспроизводятся в модельных экспериментах.
Возможность синтеза органических веществ из неорганических была известна с начала 19 в. Уже в 1828 г. выдающийся немецкий химик Ф. Вёлер синтезировал органическое вещество -- мочевину из неорганическою -- циановокислого аммония. Однако возможность абиогенного синтеза органических веществ в условиях, близких к условиям древней Земли, была впервые показана в опыте С. Миллера.
В 1953 г. молодой американский исследователь, студент- дипломник Чикагского университета Стенли Миллер воспроизвел в стеклянной колбе с впаянными в нес электродами первичную атмосферу Земли, которая, по мнению ученых того времени, состояла из водорода метана СН4, аммиака NH, и паров воды Н20 (рис. 2.4.1.2). Через эту газовую смесь С. Миллер в течение недели пропускал электрические разряды, имитирующие грозовые. По окончании эксперимента в колбе были обнаружены б-аминокислоты (глицин, аланин, аспарагин, глутамин), органические кислоты (янтарная, молочная, уксусная, гликоколовая), у-оксимасляная кислота и мочевина. При повторении опыта С. Миллеру удалось получить отдельные нуклеотиды и короткие полинуклеотидные цепочки из пяти-шести звеньев.
Рис. 2.4.1.2. Установка С. Миллера
В дальнейших опытах по абиогенному синтезу, проводимых различными исследователями, использовались не только электрические разряды, но и другие виды энергии, характерные для древней Земли, -- космическое, ультрафиолетовое и радиоактивное излучения, высокие температуры, присущие вулканической деятельности, а также разнообразные варианты газовых смеси, имитирующих первичную атмосферу. В результате был получен практически весь спектр органических молекул, характерных для живого: аминокислоты, нуклеотиды, жироподобные вещества, простые сахара, органические кислоты.
Более того, абиогенный синтез органических молекул может происходить на Земле и в настоящее время (например, в процессе вулканической деятельности). При этом в вулканических выбросах можно обнаружить не только синильную кислоту HCN, являющуюся предшественником аминокислот и нуклеотидов, но и отдельные аминокислоты, нуклеотиды и даже такие сложные по строению органические вещества, как порфирины. Абиогенный синтез органических веществ возможен не только на Земле, но и в космическом пространстве. Простейшие аминокислоты обнаружены в составе метеоритов и комет.
Когда температура первичной атмосферы опустилась ниже 100°С, на Землю обрушились горячие дожди и появился первичный океан. С потоками дождя в первичный океан поступали абиогенно синтезированные органические вещества, что превратило его, но образному выражению английского биохимика Джона Холдейна, в разбавленный «первичный бульон». По-видимому, именно в первичном океане начинаются процессы образования из простых органических молекул -- мономеров сложных органических молекул -- биополимеров (см. рис. 2.4.1.1).
Однако процессы полимеризации отдельных нуклеогидов, аминокислот и Сахаров -- это реакции конденсации, они протекают с отщеплением воды, следовательно, водная среда способствует не полимеризации, а, напротив, гидролизу биополимеров (т.е. разрушению их с присоединением воды).
Образование биополимеров (в частности, белков из аминокислот) могло происходить в атмосфере при температуре около 180°С, откуда они смывались в первичный океан с атмосферными осадками. Кроме того, возможно, на древней Земле аминокислоты концентрировались в пересыхающих водоемах и полимеризовались в сухом виде под действием ультрафиолетового света и тепла лавовых потоков.
Несмотря на то что вода способствует гидролизу биополимеров, в живой клетке синтез биополимеров осуществляется именно в водной среде. Этот процесс катализируют особые белки-катализаторы -- ферменты, а необходимая для синтеза энергия выделяется при распаде аденозинтрифосфорной кислоты -- АТФ. Возможно, синтез биополимеров в водной среде первичного океана катализировался поверхностью некоторых минералов. Экспериментально показано, что раствор аминокислоты аланина может полимеризоваться в водной среде в присутствии особого вида глинозема. При этом образуется пептид полиаланин. Реакция полимеризации аланина сопровождается распадом АТФ.
Полимеризация нуклеотидов проходит легче, чем полимеризация аминокислот. Показано, что в растворах с высокой концентрацией солей отдельные нуклеотиды самопроизвольно полимеризуются, превращаясь в нуклеиновые кислоты.
Жизнь всех современных живых существ -- это процесс непрерывного взаимодействия важнейших биополимеров живой клетки -- белков и нуклеиновых кислот.
Белки -- это «молекулы-рабочие», «молекулы-инженеры» живой клетки. Характеризуя их роль в обмене веществ, биохимики часто используют такие образные выражения, как «белок работает», «фермент ведет реакцию».
Важнейшая функция белков - каталитическая. Как известно, катализаторы -- это вещества, которые ускоряют химические реакции, но сами в конечные продукты реакции не входят.
Бачки-катализаторы называются ферментами. Ферменты в согни и тысячи раз ускоряют реакции обмена веществ. Обмен веществ, а значит, и жизнь без них невозможны.
Нуклеиновые кислоты -- это «молекулы-компьютеры», молекулы -- хранители наследственной информации. Нуклеиновые кислоты хранят информацию не обо всех веществах живой клетки, а только о белках. Достаточно воспроизвести в дочерней клетке белки, свойственные материнской клетке, чтобы они точно воссоздали все химические и структурные особенности материнской клетки, а также свойственный ей характер и темпы обмена веществ. Сами нуклеиновые кислоты также воспроизводятся благодаря каталитической активности белков.
Таким образом, тайна зарождения жизни -- это тайна возникновения механизма взаимодействия белков и нуклеиновых кислот. Какими же сведениями об этом процессе располагает современная наука? Какие молекулы явились первичной основой жизни -- белки или нуклеиновые кислоты?
Ученые полагают, что несмотря на ключевую роль белков в обмене веществ современных живых организмов, первыми «живыми» молекулами были не белки, а нуклеиновые кислоты, а именно рибонуклеиновые кислоты (РНК).
В 1982 г. американский биохимик Томас Чек открыл автокаталитические свойства РНК. Он экспериментально показал, что в среде, содержащей в высокой концентрации минеральные соли, рибонуклеотиды спонтанно (самопроизвольно) полимеризуются, образуя полинуклеотиды -- молекулы РНК. На исходных поли- нуклеотидных цепях РНК, как на матрице, путем спаривания комплементарных азотистых оснований образуются РНК-ко- пии. Реакция матричного копирования РНК катализируется исходной молекулой РНК и не требует участия ферментов либо других белков.
Дальнейшие события достаточно хорошо объясняются процессом, который можно было бы назвать «естественным отбором» на уровне молекул. При самокопировании (самосборке) молекул РНК неизбежно возникают неточности, ошибки. Содержащие ошибки копии РНК снова копируются. При повторном копировании вновь могут возникнуть ошибки. В результате популяция молекул РНК на определенном участке первичного океана будет неоднородна.
Поскольку параллельно с процессами синтеза идут и процессы распада РНК, в реакционной среде будут накапливаться молекулы, обладающие либо большей стабильностью, либо лучшими автокаталитическими свойствами (т.е. молекулы, которые быстрее себя копируют, быстрее «размножаются»).
На некоторых молекулах РНК, как на матрице, может происходить самосборка небольших белковых фрагментов -- пептидов. Вокруг молекулы РНК образуется белковый «чехол».
Наряду с автокаталитическими функциями Томас Чек обнаружил у молекул РНК и явление самосплайсинга. В результате самосплайсинга участки РНК, не защищенные пептидами, самопроизвольно удаляются из РНК (они как бы «вырезаются» и «выбрасываются»), а оставшиеся участки РНК, кодирующие белковые фрагменты, «срастаются», т.е. самопроизвольно объединяются в единую молекулу. Эта новая молекула РНК уже будет кодировать большой сложный белок (рис. 2.4.1.3).
По-видимому, первоначально белковые чехлы выполняли в первую очередь, защитную функцию, предохраняя РНК от разрушения и повышая тем самым ее стабильность в растворе (такова функция белковых чехлов и у простейших современных вирусов).
Очевидно, что на определенном этапе биохимической эволюции преимущество получили молекулы РНК, кодирующие не только защитные белки, но и белки-катализаторы (ферменты), резко ускоряющие скорость копирования РНК. По-видимому, именно таким образом и возник процесс взаимодействия белков и нуклеиновых кислот, который мы в настоящее время называем жизнью.
В процессе дальнейшего развития, благодаря появлению белка с функциями фермента -- обратной транскриптазы, на одно- цепочечных молекулах РНК стали синтезироваться состоящие из двух цепей молекулы дезоксирибонуклеиновой кислоты (ДНК). Отсутствие у дезоксирибозы ОН-группы в 2' положении делает молекулы ДНК более стабильными по отношению к гидролитическому расщеплению в слабощелочных растворах, а именно слабощелочной была реакция среды в первичных водоемах (эта реакция среды сохранилась и в цитоплазме современных клеток).
Где же происходило развитие сложного процесса взаимодействия белков и нуклеиновых кислот? По теории А.И. Опарина, местом зарождения жизни стали так называемые коацерватные капли.
Рис. 2.4.1.3. Гипотеза возникновения взаимодействия белков и нуклеиновых кислот: а) в процессе самокопирования РНК накапливаются ошибки (1 -- нуклеотиды, соответствующие исходной РНК; 2 -- нуклеотиды, не соответствующие исходной РНК, -- ошибки в копировании); б) на часть молекулы РНК за счет ее физико-химических свойств «налипают» аминокислоты (3 -- молекула РНК; 4 -- аминокислоты), которые, взаимодействуя друг с другом, превращаются в короткие белковые молекулы -- пептиды.
В результате свойственного молекулам РНК самосплайсинга незащищенные пептидами участки молекулы РНК разрушаются, а оставшиеся «срастаются» в единую молекулу, кодирующую крупный белок.
В результате возникает молекула РНК, покрытая белковым чехлом (сходное строение имеют и наиболее примитивные современные вирусы, например вирус табачной мозаики)
Явление коацервации состоит в том, что в некоторых условиях (например, в присутствии электролитов) высокомолекулярные вещества отделяются от раствора, но не в форме осадка, а в виде более кон центрированного раствора -- коацервата. При встряхивании коацерват распадается на отдельные мелкие капельки. В воде такие капли покрываются стабилизирующей их гидратной оболочкой (оболочкой из молекул воды) -- рис. 2.4.1.4.
Коацерватные капли обладают некоторым подобием обмена веществ: йод воздействием чисто физико-химических сил они могут избирательно впитывать из раствора некоторые вещества и выделять в окружающую среду продукты их распада. За счет избирательного концентрирования веществ из окружающей среды они могут расти, но достижении определенного размера начинают «размножаться», отпочковывая маленькие капельки, которые, в свою очередь, могут расти и «почковаться».
Возникшие в результате концентрирования белковых растворов коацерватные капли в процессе перемешивания под действием волн и ветра могут покрываться оболочкой из липидов: одинарной, напоминающей мицеллы мыла (при однократном отрыве капли от поверхности воды, покрытой липидным слоем), либо двойной, напоминающей клеточную мембрану (при повторном падении капли, покрытой однослойной липидной мембраной, на липидную пленку, покрывающую поверхность водоема -- рис. 2.4.1.4).
Процессы возникновения коацерватных капель, их роста и «почкования», а также «одевания» их мембраной из двойного липидного слоя легко моделируются в лабораторных условиях.
Для коацерватных капель также существует процесс «естественного отбора», при котором в растворе сохраняются наиболее стабильные капли.
Несмотря на внешнее сходство коацерватных капель с живыми клетками, у коацерватных капель отсутствует главный признак живого -- способность к точному самовоспроизведению, самокопированию. Очевидно, предшественниками живых клеток явились такие коацерватные капли, в состав которых вошли комплексы молекул-репликаторов (РНК или ДНК) и кодируемых ими белков. Возможно, комплексы РНК-белок длительное время существовали вне коацерватных капель в виде так называемого «свободноживущего гена», а возможно, их формирование проходило непосредственно внутри некоторых коацерватных капель.
Рис 2.4.1.4.
Исключительно сложный, не до конца понятный современной науке процесс возникновения жизни на Земле прошел с исторической точки зрения чрезвычайно быстро. Уже 3,5 млрд лет т.н. химическая эволюция завершилась появлением первых живых клеток и началась биологическая эволюция.
Размещено на Allbest.ru
...Подобные документы
Гипотеза Опарина о постепенном возникновении жизни на Земле из неорганических веществ путем длительной абиогенной (небиологической) молекулярной эволюции. Роль появления коацерватов и химической эволюции в развитии клетки и ходе биологической эволюции.
статья [12,4 K], добавлен 18.05.2009Проблема происхождения жизни. Гипотеза А.И. Опарина о коацерватной стадии в процессе возникновения жизни. Этапы химической и предбиологической эволюции на пути к жизни. Гипотеза о роли малых молекул в первичном зарождении белково-нуклеиновых систем.
реферат [26,0 K], добавлен 02.01.2008Первая теория о жизни на земле, которую создал советский биохимик А.И. Опарин, ее содержание. Этапы развития жизни на Земле по гипотезе Опарина—Холдейна. Искусственный синтез биологических мономеров. Мировоззренческое значение эволюционного учения.
презентация [864,2 K], добавлен 13.03.2017Тайна появления жизни на Земле. Эволюция зарождения жизни на Земле и сущность концепций эволюционной химии. Анализ биохимической эволюции теории академика Опарина. Этапы процесса, приведшего к возникновению жизни на Земле. Проблемы в теории эволюции.
реферат [55,9 K], добавлен 23.03.2012История формирования эмпирического знания. Математика, астрономия египтян и вавилонян. Древние китайские сочинения по точным наукам, зарождение письменности. Открытие понятия энтропии, принцип возрастания. Теория Опарина о происхождении жизни на Земле.
контрольная работа [32,6 K], добавлен 09.05.2010Характеристика основных гипотез о происхождении жизни: креационизм, абиогенез, гипотеза стационарного состояния (этернизм), панспермия, биохимическая эволюция (гипотеза Опарина). Спорные доказательства абиогенного механизма возникновения жизни (РНК-мира).
презентация [2,0 M], добавлен 08.06.2011Краткое описание теории Опарина о самозарождении жизни под воздействием физико-химических процессов, протекающих в условиях первобытной Земли. Гипотеза образования коацерватов. Условия и этапы возникновения белковых тел. Искусственный синтез аминокислот.
презентация [887,2 K], добавлен 18.04.2016Вопрос о возникновении жизни на Земле - борьба религии и науки, идеализма и материализма. Проблема отличия живого от неживого. Современное двуединое понятие первобытного бульона и самозарождения жизни - теория Опарина-Холдейна о происхождении жизни.
реферат [32,0 K], добавлен 09.05.2009Рассмотрение гипотезы Опарина о возникновении жизни на Земле. Ознакомление с теориями происхождения и становления человека как биологического вида. Изучение свойств, границ, условий и плотности жизни в биосфере, круговорота веществ и энергии в ней.
реферат [21,6 K], добавлен 08.07.2010Содержание и отличительные признаки теорий возникновения и развития жизни на Земле: самозарождения, биохимической эволюции, панспермии, стационарного состояния жизни, креационизма. Преимущества и недостатки каждой теории, история их становления.
презентация [224,2 K], добавлен 17.12.2013Содержание креационизма - философско-методологической концепции возникновения жизни. Основные идеи гипотез стационарного состояния, самопроизвольного зарождения и панспермии. Этапы появление живых организмов по концепции биохимической эволюции Опарина.
реферат [26,0 K], добавлен 19.11.2010Вопрос о природе человека в работах древних философов. Антропогенез как процесс эволюции предшественников современного человека, исторические этапы развития этой науки. Революционность теории эволюции Ч. Дарвина. Современные подходы к развитию человека.
реферат [30,0 K], добавлен 10.03.2011Оценка основных концепций происхождения человека с целью выявления наиболее актуальной на сегодняшний день. Этапы эволюции человека как биосоциального вида. Прародина исходной формы человеческого предка. Ранняя история человечества и её особенности.
реферат [34,2 K], добавлен 14.05.2011Проблема происхождения жизни на Земле. Возможности существования жизни в других областях Вселенной. Креационизм. Теория стационарного состояния, самопроизвольного самозарождения, панспермии. Современные возрения на происхождение жизни на Земле.
реферат [2,5 M], добавлен 04.10.2008Изменение научных представлений о происхождении и развитии жизни на Земле. Логика эволюционного учения. Палеонтологические, морфологические (сравнительно-анатомические), эмбриологические доказательства эволюции, ее переходные формы. Критерии вида.
презентация [352,9 K], добавлен 16.01.2013История представлений о возникновении жизни на Земле. Гипотезы возникновения жизни на Земле. Образование первичных органических соединений. Что считать жизнью? Эволюция жизни на Земле. Появление высокоорганизованных форм жизни.
реферат [1,1 M], добавлен 17.05.2003Теории эволюции — система естественнонаучных идей и концепций о прогрессивном развитии биосферы Земли, составляющих её биогеоценозов, отдельных таксонов и видов. Гипотезы биохимической эволюции, панспермии, стационарного состояния жизни, самозарождения.
презентация [1,4 M], добавлен 08.03.2012Теория кометного происхождения органических молекул. Этапы происхождения жизни по Опарину. Первые живые организмы на Земле. Обособление клеточного ядра. Эволюционная схема происхождения ядра профессора А.Н. Мосолова. Этапы ранней эволюции жизни на Земле.
презентация [2,4 M], добавлен 21.02.2014Теории и этапы возникновения жизни на Земле. Развитие всех естественных наук в ХХ веке и новые открытия. Эксперименты Опарина и анализ их результатов. Характеристика предков человека и периоды их эволюции, обоснование скачков в развитии, перспективы.
контрольная работа [33,4 K], добавлен 15.05.2010Теория Чарльза Дарвина. Место человека в структуре живого. Сходства и отличия человека и животных. Современная теория эволюции. Человек умелый и человек прямоходящий. Неандерталец: две ветви эволюции. Человек разумный. Макроэволюция и микроэволюция.
реферат [42,4 K], добавлен 11.04.2017