Изучение динамики формирования меристематических очагов в культуре растительной ткани методом ямр-спектроскопии

Обзор неинвазивного метода ямр-спектроскопии, возможность его использования в изучении культивируемых в условиях in vitro растительных объектов на примере Picea abies. Исследование биохимических, биофизических и биологических процессов в живом растении.

Рубрика Биология и естествознание
Вид статья
Язык русский
Дата добавления 29.04.2017
Размер файла 388,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Статья по теме:

Изучение динамики формирования меристематических очагов в культуре растительной ткани методом ямр-спектроскопии

Черных Елена Николаевна

УДК 635.922, 621.039

UDC 635.922, 621.039

Изучение динамики формирования меристематических очагов в культуре растительной ткани методом ямр-спектроскопии

STUDY OF THE DYNAMICS FORMATION OF MERISTEMATIC CENTERS IN PLANT TISSUE CULTURE WITH NMR SPECTROSCOPY

Черных Елена Николаевна аспирант

Chernykh Elena Nikolaevna postgraduate student

Новиков Петр Сергеевич аспирант

Novikov Petr Sergeevitch postgraduate student

Сергеев Роман Владимирович к.с-х.н.

Sergeyev Roman Vladimirovich Cand.Agr.Sci.

Шургин Алексей Иванович к.с-х.н., доцент

Shurgin Alexey Ivanovich

Cand.Agr.Sci., associate professor

ФГБОУ ВПО «Поволжский государственный технологический университет», г.Йошкар-Ола, Россия

Volga State University of Technology, Yoshkar-Ola, Russia

В статье дан обзор неинвазивного метода ЯМР спектроскопии и показана возможность использования данного метода в изучении культивируемых в условиях in vitro растительных объектов на примере Picea abies

The article gives an overview of non-invasive method of NMR spectroscopy and the possibility of using this method in the study of cultured under in vitro plant objects on the example of Picea abies

Ключевые слова: IN VITRO, МЕРИСТЕМА, ЯМР СПЕКТРОСКОПИЯ, КУЛЬТУРА ТКАНИ, КИНЕТИН

Keywords: IN VITRO, MERISTEM, NMR SPECTROSCOPY, TISSUE CULTURE, KINETIN

Культура тканей растения -- способность растительных клеток размножаться на искусственных питательных средах. Она основана на выращивании в длительной пересадочной культуре тканей растений в виде недифференцированной каллусной массы в стерильных условиях [1].

Процесс клонального микроразмножения растений состоит из четырех этапов [2]. Первый этап - выбор растения донора, изолирование и стерилизация экспланта, создание условий для его роста на питательной среде in vitro.

Все факторы, влияющие на рост и развитие растений условно можно разделить на физические, химические и гормональные. К физическим факторам относятся температура, свет, кислотность среды и др.

От температуры как фактора, координирующего работу ферментов, зависит скорость метаболических процессов, а также транспирации, влияющих на поглощение. При низких температурах транспортные белки в мембране работают медленнее. А при высоких, вследствие повышения проницаемости мембран, пассивно выделяются ионы из клетки [3]. Свет - один из важнейших факторов роста и развития растений, так как он выполняет две функции: субстратную и регуляторную. В темноте поглощение солей замедляется и постепенно прекращается, плохо развиваются корни. На свету же усиливается транспирационный ток. С увеличением температуры увеличивается и величина минимальной интенсивности света. Там, где комбинация этих факторов наиболее благоприятна, резко увеличивается рост.

На клональное микроразмножение и рост растений также влияет и кислотность среды, определяющая доступность для растений питательных веществ. Известно, что сильнокислые или щелочные среды лимитируют поступление некоторых элементов, например, фосфора и железа, делая их относительно нерастворимыми и этим ограничивая рост растений. В то же время при высокой кислотности большое количество этих элементов переходит в растворенное состояние и становится токсичным для эксплантов.

Как правило, ткани и органы растений культивируют на питательной среде с рН 5,6--5,8 [4]. Однако эти условия не всегда могут быть оптимальными. Например, для культуры зародышей сосны обыкновенной было показано, что изменение кислотности питательной среды от 4,7 до 5,2 позволяет увеличить в 2,5--3 раза способность зародышей образовывать адвентивные почки, а для культуры ели обыкновенной наиболее благоприятный уровень рН среды находился в пределах 5,2--5,6. Эти данные полностью совпадают с кислотностью почвы, на которых успешно произрастают данные породы в естественных условиях. Поэтому в экспериментах по культуре ткани необходимо уделять особое внимание кислотности питательной среды, учитывая кислотность почв естественного произрастания исследуемых растений.

Современные методы исследования динамики формирования меристематических очагов в культуре растительной ткани можно разделить на физические и химические. Из них большинство методов являются разрушающими [5], то есть, для проведения эксперимента образец либо подвергается участию в химической реакции (химические методы), и по количественному составу продуктов последней судят об изучаемом объекте, либо образец должен пройти серию физико-химических превращений для пригодности исследования соответствующим методом (например, методы исследования коэффициентов преломления раствора, методы электронной микроскопии, рентгеновской дифракции и т. п.).

К неразрушающим образец методам относятся, в основном, спектроскопические, такие как методы диэлектрической спектроскопии (ДС и ВДС), электронный парамагнитный резонанс (ЭПР), электронный спиновый резонанс (ЭСР), ядерный магнитный резонанс (ЯМР) и некоторые другие.

Среди всех перечисленных методов, особое место занимает ЯМР [6]. Основные его преимущества можно сформулировать так:

ЯМР является неразрушающим материал методом;

Несложный процесс приготовления образцов;

Большей частью в образцах не присутствует дополнительный компонент (например, растворитель), что часто повышает точность эксперимента, позволяя не учитывать влияние примесей;

ЯМР является экспресс - методом, то есть время проведения и интерпретации эксперимента не превышает нескольких минут;

Информация о состоянии ядер атомов - их взаиморасположении и формах движения, получаемая посредством ЯМР, во многом более ценна и точна в отношении физико-химической интерпретации, чем например данные ЭПР-, ЭСР-, ВДС- экспериментов.

Ядерный магнитный резонанс - неразрушающая и неинвазивная методика, у которой есть большое количество анатомических и физиологических приложений к растительным клеткам, органам растения и живым растениям [7, 8, 9, 10, 11]. 1Н ЯМР долго использовался для исследования физического состояния воды в растительной ткани и для неразрушающего измерения молекулярного смещения, такого как поток и диффузия в растениях [12].

Содержание воды и гидравлическая удельная электропроводность, включающая транспорт внутри клеток, по мембранам, между клетками, и дальний транспорт ксилемы и флоэмы, сильно зависит от дефицита воды в растении. Благодаря возможности измерить эти процессы транспорта неинвазивно, в неповрежденном растении, будет возможно исследовать многие аспекты функционирования и производительности растения.

Приведенные доводы свидетельствуют в пользу того, что ЯМР является исключительно важным методом исследования динамики меристематических очагов в культуре растительной ткани, хотя, конечно же, ни в коей мере не умаляют значения всех остальных методов исследования.

Таким образом, ядерный магнитный резонанс является неразрушающим материал экспресс методом, дающим информацию о различных морфологических и физиологических параметрах растительных объектов, например, о размерах вакуолей в клетках растений, проницаемости клеточной мембраны, содержании воды в клетках [13], скорости и объеме потока веществ в проводящей системе [14]. Современные ЯМР эксперименты позволяют получать количественное распределение молекул воды различной подвижности (степени связности).

Цель работы - изучение возможности применения метода ЯМР-спектроскопии для оценки динамики формирования меристематических очагов в культуре ткани в зависимости от кислотности питательной среды и определение оптимальных параметров развития эксплантов растений на основе водных потоков в меристематических очагах.

Материалы, методы и объекты исследований. Обязательным условием клонального микроразмножения является использование объектов, сохраняющих генетическую стабильность на всех этапах процесса - от экспланта до растения в поле. Этому условию удовлетворяют апикальные меристемы побега [15]. Поэтому объектом для исследований являлись изолированные меристемы ели европейской (Picea abies), культивируемые на искусственных питательных средах in vitro.

Изолированные почки промывали детергентами, в проточной воде и стерилизовались поверхностно погружением в 70%-ый этанол на 30 секунд, с последующим погружением на 5 минут в 3%-ый раствор лизоформина. После этого почки были промыты в стерильной дистиллированной воде в 3- кратной повторности по 5 минут.

В качестве исходной среды для культивирования эксплантов ели европейской была выбрана среда SH (Schenck and Hildenbrandt) с добавлением кинетина (Кн) в концентрации 10 мг/л. Концентрация сахарозы в среде составляла 30 г/л, агара 6 г/л. Культивирование проводили при 21?С, освещенности 1800 люкс, фотопериоде 16/8. Кислотность среды варьировала от 4,8 до 6,0 с градаций в 0,1. Данные с образцов собирались в различные периоды культивирования (через 2, 3 и 4 недели).

Методика выполнения измерений предназначена для проведения исследований биохимических, биофизических и биологических процессов в живом растении. Чтобы характеризовать подвижность сегментов макромолекул и функциональных групп, использовалось время спин-спиновой релаксации Т2, которое возрастает с уменьшением времени корреляции движений 11H в изучаемом образце [16]. На основе измерений амплитуды ССИ определялось количество протонов водорода в образце, так как эти величины связаны линейно. Для определения времени ядерной магнитной релаксации Т2 и амплитуды сигнала ЯМР исследуемых образцов использовались импульсные последовательности Карра - Перселла - Мейбума - Гилла (КПМГ) [17,18], спада свободной индукции (ССИ) и спинового эха Хана. Время спин-решеточной релаксации (Т1) определялось путем снятия кривой восстановления продольной намагниченности (импульсная последовательность 900 - - 900). Все измерения проводились на ЯМР-анализаторе «Spin Track», зарегистрированном в Государственном реестре средств измерений Российской Федерации под номером 32677 - 06 [5], поддерживающем все возможные приложения ЯМР низкого разрешения. Процедура подготовки образца в большинстве приложений сводится лишь к помещению анализируемого вещества в пробирку и установке ее в датчик прибора. Основные параметры ЯМР-анализатора «Spin Track» приведены в таблице 1.

Таблица 1 - Основные характеристики ЯМР-анализатора «Spin Track»

Параметр

Значение

Постоянное магнитное поле B0 (в зависимости от типа магнита)

0,1..1,5 T

Диапазон рабочих частот спектрометра

2-60 МГц

Программируемый фазовый сдвиг РЧ импульсов

00, 900, 1800, 2700

Время восстановления чувствительности (для датчика с ампулой на 10мм, 0.47T)

7 мкс

Разрешение по времени в последовательности

0.1 мкс

Импульсная последовательность

Полностью программируемая

Коэффициент усиления приемного тракта

70 .. 95 дБ

Шаг дискретизации АЦП

Программируемый

Минимальный шаг дискретизации АЦП

0,2 мкс

Число разрядов АЦП

10

Операционная система управляющих программ

Windows 9x, NT, Me, 2000, XP

Связь с компьютером

Full Speed USB 2.0

Программная совместимость данных

ASCII, Microsoft Excel®

Область чувствительности датчика с ампулой на 10 мм (высота заполнения пробирок образцом)

10 мм

Теоретические расчеты, моделирование и аппроксимация экспериментальных данных проводились с использованием современного программного обеспечения Origin 6.1 и MATHCAD 2001 Professional. Построение графиков и обработка данных осуществлялась при помощи пакета программ Microcal Origin 6.1. Результаты исследований. Для экспериментов по исследованию динамики формирования меристематических очагов в культуре растительных тканей были взяты стерильные меристемы ели европейской Picea abies. Для формирования меристематических очагов были созданы условия, благоприятные для каллусообразования эксплантов, из которых в последующем при определенных сочетаниях фитогормонов можно добиться получения морфогенных структур. Результаты проведенных экспериментов по ЯМР-релаксации во временной области для Picea abies приведены в таблице 2.

Таблица 2 - Экспериментальные данные ЯМР-релаксации образцов Picea abies в зависимости от кислотности среды и продолжительности культивирования

Кислотность среды

Время Т2 в зависимости от продолжительности культивирования, мкс

Наличие меристематических очагов

2 недели

3 недели

4 недели

4,8

184

173

158

есть

4,9

222

203

175

есть

5,0

222

201

194

есть

5,1

253

227

222

есть

5,2

222

214

208

есть

5,3

240

184

170

есть

5,4

222

189

169

есть

5,5

245

223

211

есть

5,6

222

243

265

нет

5,7

185

197

199

нет

5,8

215

221

243

нет

5,9

208

211

245

нет

6,0

231

245

271

нет

спектроскопия культивируемый неинвазивный метод

Анализируя данные, можно сделать вывод, что кислотность среды влияет на формирование меристематических очагов у анализируемых образцов. Это объясняется тем, что уменьшение времени спин-спиновой релаксации Т2 говорит о снижении подвижности протонов в исследуемых образцах, что, в свою очередь, может свидетельствовать о формировании меристематических очагов в растительной ткани, которое сопровождается увеличением числа клеток и протонной плотности. Увеличение времени Т2 в процессе культивирования свидетельствует об отсутствии формирования меристематических очагов у анализируемых образцов.

На средах с кислотностью питательной среды в пределах 4,8-5,5 время спин-спиновой релаксации с течением времени уменьшается, что свидетельствует процессе формирования меристематических очагов.

На рисунке 1 показана зависимость формирования меристематических очагов культуры Picea abies от кислотности питательной среды.

Рисунок 1 - Формирования меристематических очагов культуры Picea abies в зависимости от кислотности питательной среды

Так, у образцов Picea abies наиболее интенсивное формирование меристематических очагов наблюдается на среде с кислотностью 5,2. Дальнейшее увеличение кислотности снижает интенсивность формирования меристематических очагов.

Таким образом, у образцов Picea abies уменьшение времени спин-спиновой релаксации Т2, а, следовательно, и наиболее интенсивное формирование меристематических очагов наблюдается на питательной среде с кислотностью 5,2.

На следующих рисунках приведены графики спада поперечной намагниченности у образца Picea abies, культивируемого на среде с кислотностью 5,2 через 2 (рис. 2) и 4 (рис. 3) недели культивирования.

Рисунок 2 - Спад поперечной намагниченности у образца Picea abies, культивируемого на среде с кислотностью 5,2 через 2 недели культивирования

Рисунок 3 - Спад поперечной намагниченности у образца Picea abies, культивируемого на среде с кислотностью 5,2 через 4 недели культивирования

Таким образом, применение ЯМР-спектроскопии в культуре ткани позволяет своевременно оценивать и, при необходимости, изменять условия культивирования эксплантов на различных этапах микроклонального размножения, а также существенно увеличивать эффективность подбора компонентов питательных сред и, как следствие, ускорять процесс размножения растений [19].

Также с помощью магниторезонансной релаксации возможно проведение исследований биохимических, биофизических и биологических процессов в живом растении. ЯМР-спектроскопия позволяет получать распределение плотности вещества, исследовать диффузные и направленные потоки в объеме образца, не прибегая к препарированию. Это позволяет изучать объекты непосредственно в живом состоянии (in vivo).

Работа выполнена в рамках реализации ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на на 2007 - 2013 годы» при финансовой поддержке Минобрнауки России (Государственный контракт №14.518.11.7055 от 20.07.2012 г.) на базе Биотехнологического комплекса по воспроизводству высших растений в условиях «чистой комнаты».

Список литературы

1. Бутенко, Р.Г. Биология клеток высших растений in vitro и биотехнология на их основе: Учеб. пособие / Р.Г. Бутенко. М.: ФБК-ПРЕСС, 1999. - 160 с.

2. Кузнецов, Вл.В. Физиология растений: Учеб. для вузов / Вл.В. Кузнецов, Г.А. Дмитриева. М.: Высш. шк., 2005. - 736 с.

3. Сельскохозяйственная биотехнология / В.С. Шевелуха, С.В. Дегтярёв, Г.М. Артамонова и др. М.: Изд-во МСХА, 1995. - 310 с.

4. Слонимский, Г.Л. Современные физические методы исследования полимеров/ Под. ред. Г.Л. Слонимского - М.: Химия, 1982.

5. Рот, Г.К. Радиоспектроскопия полимеров / Г.К. Рот, Ф. Келлер, Х. Шнайдер - М.: Мир, 1987.

6. Walter, L. Studies of plant systems by in vivo NMR spectroscopy / L. Walter, R. Callies, R. Altenburger // In: de Certaines JD, Boveґe WMMJ, Podo F, eds. Magnetic resonance spectroscopy in biology and medicine. Oxford: Pergamon Press. - 1992. - P. 573-610.

7. Ratcliffe, R.G. In vivo NMR studies of higher plants and algae / R.G. Ratcliffe // Advances in Botanical Research. - 1994. - Vol. 20. - P. 42-123.

8. Shachar-Hill, Y. Nuclear magnetic resonance in plant biology / Y. Shachar-Hill, P.E. Pfeffer // Rockville: American Society of Plant Physiologists. - 1996.

9. Chudek, J.A. Magnetic resonance imaging of plants / Y. Shachar-Hill, P.E. Pfeffer // Progress in Nuclear Magnetic Resonance Spectroscopy. - 1997. - Vol. 31. - P. 43-62.

10. Ishida, N. The NMR microscope, a unique and promising tool for plant science / N. Ishida, M. Koizumi, H. Kano // Annals of Botany. - 2000. - Vol. - 86. - P. 259-278.

11. MacFall, J.J. Magnetic resonance imaging of plants / MacFall J.J, As. H. Van // The American Society of Plant Physiologists.-.1996. - P. 33-76.

12. Scheenen T.W.J, van Dusschoten D., de Jager P.A., Van As H., Quantification of water transport in plants with NMR imaging, J. Exp. Bot. 51(351), 2000, p. 1751-1759.

13. Windt C.W., Gerkema E., Oosterkamp J., Van As H., MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco, Plant Cell Envir. 29(9), 2006, p. 1715-1729.

14. Чижик В.И., Ядерная магнитная релаксация.- Ленинград, Изд-во Ленинградского университета, 1991.

15. Грунин, Л.Ю. Протонная магнитная релаксационная спектроскопия природных полимеров: дис. … канд. хим. наук : 02.00.04 : защищена 21.12.98 : утв. 14.05.99 / Грунин Леонид Юрьевич. - Йошкар-Ола, 1998. - 142 с.

16. Грунин, Ю. Б Импульсный метод ЯМР для определения термодинамических характеристик адсорбционных процессов в биополимерах / Ю. Б.Грунин, Л. Ю.Грунин, Е. А.Никольская // Журн. физ. химии. - 2007. - Т.81, № 7. - С. 1165-1170.

17. Сергеев, Р.В. Изучение растительных объектов в культуре in vitro методом ЯМР релаксации // Р.В. Сергеев, П.С. Новиков, Е.Н. Черных, А.И. Шургин, Е.А. Лобанова, Т.Ф. Худякова / http://ej.kubagro.ru/a/viewaut.asp?id=2396

18. http://www.9lc.com/kultura-tkaney-rasteniya.html

19. Butenko, R.G. Biologija kletok vysshih rastenij in vitro i biotehnologija na ih osnove: Ucheb. posobie / R.G. Butenko. M.: FBK-PRESS, 1999. - 160 s.

20. Kuznecov, Vl.V. Fiziologija rastenij: Ucheb. dlja vuzov / Vl.V. Kuznecov, G.A. Dmitrieva. M.: Vyssh. shk., 2005. - 736 s.

21. Sel'skohozjajstvennaja biotehnologija / V.S. Sheveluha, S.V. Degtjarjov, G.M. Artamonova i dr. M.: Izd-vo MSHA, 1995. - 310 s.

22. Slonimskij, G.L. Sovremennye fizicheskie metody issledovanija polimerov/ Pod. red. G.L. Slonimskogo - M.: Himija, 1982.

23. Rot, G.K. Radiospektroskopija polimerov / G.K. Rot, F. Keller, H. Shnajder - M.: Mir, 1987.

24. Walter, L. Studies of plant systems by in vivo NMR spectroscopy / L. Walter, R. Callies, R. Altenburger // In: de Certaines JD, Boveґe WMMJ, Podo F, eds. Magnetic resonance spectroscopy in biology and medicine. Oxford: Pergamon Press. - 1992. - P. 573-610.

25. Ratcliffe, R.G. In vivo NMR studies of higher plants and algae / R.G. Ratcliffe // Advances in Botanical Research. - 1994. - Vol. 20. - P. 42-123.

26. Shachar-Hill, Y. Nuclear magnetic resonance in plant biology / Y. Shachar-Hill, P.E. Pfeffer // Rockville: American Society of Plant Physiologists. - 1996.

27. Chudek, J.A. Magnetic resonance imaging of plants / Y. Shachar-Hill, P.E. Pfeffer // Progress in Nuclear Magnetic Resonance Spectroscopy. - 1997. - Vol. 31. - P. 43-62.

28. Ishida, N. The NMR microscope, a unique and promising tool for plant science / N. Ishida, M. Koizumi, H. Kano // Annals of Botany. - 2000. - Vol. - 86. - P. 259-278.

29. MacFall, J.J. Magnetic resonance imaging of plants / MacFall J.J, As. H. Van // The American Society of Plant Physiologists.-.1996. - P. 33-76.

30. Scheenen T.W.J, van Dusschoten D., de Jager P.A., Van As H., Quantification of water transport in plants with NMR imaging, J. Exp. Bot. 51(351), 2000, p. 1751-1759.

31. Windt C.W., Gerkema E., Oosterkamp J., Van As H., MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco, Plant Cell Envir. 29(9), 2006, p. 1715-1729.

32. Chizhik V.I., Jadernaja magnitnaja relaksacija.- Leningrad, Izd-vo Leningradskogo universiteta, 1991.

33. Grunin, L.Ju. Protonnaja magnitnaja relaksacionnaja spektroskopija prirodnyh polimerov : dis. … kand. him. nauk : 02.00.04 : zashhishhena 21.12.98 : utv. 14.05.99 / Grunin Leonid Jur'evich. - Joshkar-Ola, 1998. - 142 s.

34. http://www.nmr-design.com/ru/

35. Grunin, Ju. B Impul'snyj metod JaMR dlja opredelenija termodinamicheskih harakteristik adsorbcionnyh processov v biopolimerah / Ju. B.Grunin, L. Ju.Grunin, E. A.Nikol'skaja // Zhurn. fiz. himii. - 2007. - T.81, № 7. - S. 1165-1170.

Размещено на Allbest.ru

...

Подобные документы

  • Составляющие растительной клетки. Плазматическая мембрана, ее функции. Компоненты клеточной стенки. Типы митоза эукариот. Образовательные ткани в теле растений и их расположение. Механические свойства растительных клеток. Наружные выделительные ткани.

    учебное пособие [76,4 K], добавлен 12.12.2009

  • Выделение растительных протопластов Дж. Клеркером при изучении плазмолиза в клетках водного телореза (Stratiotes aloides) при механическом повреждении ткани. Общая процедура получения растительных протопластов. Культивирование растительных протопластов.

    презентация [529,5 K], добавлен 07.11.2016

  • Программное обеспечение для осуществления моделирования биохимических и генетических процессов в клетке. Математическая модель динамики изменения объема и потенциала эритроцита. Симуляция гибели эритроцита методом фиксации трансмембранного потенциала.

    дипломная работа [1,3 M], добавлен 26.05.2012

  • Культура ткани в размножении пшеницы. Гормональная регуляция в культуре ткани, схема контроля органогенеза. Роль гуминовых кислот в процессе стимуляции роста растений, их влияние на характер белкового и углеводного обмена растений пшеницы in vitro.

    курсовая работа [1,9 M], добавлен 05.11.2011

  • Особенности роста и развития растений. Культура и морфогенетические особенности каллусных тканей. Клональное микроразмножение отдаленных гибридов. Применение культур растительной ткани. Вспомогательное использование методов in vitro в селекции растений.

    реферат [7,0 M], добавлен 22.09.2009

  • Сущность и типы автотрофного и гетеротрофного питания растительных организмов. Меристемные ткани, их местоположение в теле растения и постоянные ткани, которые они образуют. Первичные и вторичные меристемы, функции и строение корневых волосков и почек.

    контрольная работа [962,0 K], добавлен 14.10.2010

  • Реакции кворум–сенсинга у грамположительных микроорганизмов. Влияние биологически-активных веществ на физико-химические характеристики клетки. Определение метаболитов в клетках и культуральной жидкости методом 1H-ЯМР-спектроскопии, ее результаты.

    дипломная работа [2,4 M], добавлен 25.03.2017

  • Получение регенерантов из каллусной ткани и изучение их свойств. Тестирование индукции каллусного потенциала двух сортов шалота с различными гормонами и гормональными комбинациями. Исследование свойств регенерантов на предмет хромосомных перестроек.

    практическая работа [763,8 K], добавлен 14.08.2015

  • Закон Бугера-Ламберта-Бера. Спектры поглощения света и основы спектрофотометрии. особенности процессов поглощения белков и нуклеиновых кислот. Некоторые факторы, влияющие на адсорбционные свойства хромофоров. Применение абсорбционной спектроскопии.

    контрольная работа [684,5 K], добавлен 19.08.2015

  • Методы трансгенеза в животноводстве. Использование половых клеток семенников. Факторы повышения экспрессии трансгенов в организме животных. Особенности пересадки ядер клеток, культивируемых in vitro. Перспективы генно-инженерных работ в животноводстве.

    реферат [38,6 K], добавлен 26.09.2009

  • Коннекторный и рестриктазно-лигазный методы конструирования рекомбинантных молекул ДНК in vitro, их применение в генной инженерии. Реакция лигирования; рестриктазные операции. Использование метода амплификации сегментов ДНК в полимеразной цепной реакции.

    презентация [985,3 K], добавлен 17.08.2015

  • Система фибринолиза как сложный набор биохимических реакций, разделенных в пространстве. Особенности разработки метода исследования фибринолиза, учитывающего пространственную неоднородность процессов коагуляции и лизиса. Сущность понятия "макроглобулин".

    курсовая работа [899,6 K], добавлен 03.04.2013

  • Особенности применения метода ядерного магнитного резонанса (ЯМР) для исследования нуклеиновых кислот, полисахаридов и липидов. Исследование методом ЯМР комплексов нуклеиновых кислот с протеинами и биологических мембран. Состав и структура полисахаридов.

    курсовая работа [3,5 M], добавлен 26.08.2009

  • Структурная и функциональная целостность высших растений, изучение тканей растений и познание особенностей строения, жизнедеятельности и эволюции растений. Генетический контроль гистогенеза, возможности комбинативной и мутационной изменчивости.

    курсовая работа [70,8 K], добавлен 08.06.2012

  • Метод пульс-электрофореза для разделения ДНК индивидуальных хромосом. Выделение ДНК из клеток, лишенных клеточной стенки и измерение конечной концентрации ДНК. Выделение ДНК из культивируемых клеток: лимфоцитов, прокариот, грибов и растительных клеток.

    контрольная работа [576,0 K], добавлен 11.08.2009

  • Биообъекты растительного происхождения, используемые в культуре ткани для получения лекарственных веществ. Ферменты, используемые в генетической инженерии, механизм их действия. Сущность метода иммобилизации ферментов путем включения в структуру геля.

    контрольная работа [617,9 K], добавлен 14.02.2013

  • Строение поперечно-полосатой мышечной ткани. Исследование особенностей развития мышц. Энергообеспечение мышечного сокращения. Подготовка к сдаче анализов крови. Специфические изменения в метаболизме спортсменов в ответ на стандартную физическую нагрузку.

    презентация [7,5 M], добавлен 27.03.2016

  • Анализ особенностей онтогенеза растительной клетки. Возникновение и накопление различий между клетками, образовавшимися в результате деления. Эмбриональная фаза онтогенеза, фазы растяжения, дифференцировки клетки, зрелости. Старение и смерть клетки.

    доклад [553,2 K], добавлен 28.04.2014

  • Исследование свойств и функций эпителиев. Морфологическая классификация покровных эпителиев и экзокринных желез. Характеристика различных типов покровного эпителия. Изучение основных фаз секреторного цикла. Обзор строения и групп желез. Синтез секрета.

    реферат [20,8 K], добавлен 24.03.2013

  • Биологическая характеристика культур Yersinia enterocolitica. Изучение биохимических особенностей и лизогенности у культур йерсиний выделенных в лечебных учреждениях Чеченской Республики. Изучение морфологии бактерий методом световой микроскопии.

    контрольная работа [30,8 K], добавлен 20.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.