Задачи изучения дисциплины "Концепции современного естествознания"

Понятие "физическая картина мира". Основные концепции современного естествознания. Рассмотрение космологических парадоксов: фотометрического, гравитационного и термодинамического. Этапы эволюции Вселенной в рамках общепризнанной теории Большого взрыва.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 28.04.2017
Размер файла 199,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http: //www. allbest. ru/

1. Задачи изучения дисциплины "Концепции современного естествознания"

- показать, как устроен мир с точки зрения современной цивилизации;

- показать методы и средства его изучения;

- использование естественно-научных знаний для формирования у студентов научного стиля мышления;

- применение естественно-научной методологии для повышения социальной и профессиональной мобильности современного специалиста;

- понимание глобальных проблем взаимодействия человека и природы;

- формирование у студентов целостного мировоззрения и системного взгляда на окружающий мир.

1. Культура - область, в которой развертывается духовная и творческая деятельность человека. Включает в себя:

1. Предметные результаты деятельности;

2. Силы и способности человека, реализованные в ней.

2. Наука - одна из частей культуры, функция которой - выработка и систематизация объективных знаний о действительности. Включает в себя:

1. Научную деятельность;

2. Ее результат - сумму знаний.

Наряду с искусством, религией, философией, моралью, правом и т.д. наука выражает все стороны человеческого взаимоотношения с миром. Можно сказать, ч то современная наука - это теория действительного. Мир предстает перед нами как потенциальный объект наших действий. Реальность совпадает с тем, что действует на нас. Научное познание создает некую структуру, технический мир, совокупность предметов, методов воздействия.

3. Различие между естественными и гуманитарными науками всегда сводилось к различию методов. Физика, химия, биология имеют во многом сходную методологию и непосредственную связь с практикой, в то время как в рамках истории, социологии или психологии имеется множество подходов и методов, основанных на философских позициях и установках их авторов. Специфика гуманитарного знания состоит еще и в том, что его уровень зависит от развития общества в целом. По существу, гуманитарные науки появляются только в XIX век, после определенных общественных преобразований и под влиянием различных философских систем того времени Для них пытались приспособить индуктивно-логический метод естественных наук(Милль), потом стали дополнять его психологическими поправками (Гельмгольц), затем перешли на язык ценностей (Риккерт). Однако, если вспомнить, что ценность есть просто точка зрения на что-либо(Ницше), система ценностей есть в своем роде тоже технический мир, совокупность приемов и способов воздействия. Таким образом, естественные и гуманитарные науки обладают своей спецификой, но могут быть объединены в единое понятие науки.

4. Научное знание подчиняется общим критериям:

1) объективность;

2) систематичность;

3) непротиворечивость;

4) подтверждаемость;

5) эффективность.

6. Натурфилософия - исторический термин, обозначавший философию природы, понимаемую как целостную систему самых общих законов естествознания. Большинство натурфилософских систем до XVIII века были чисто умозрительными; с появлением классической физики натурфилософия быстро вытесняется философией науки, отсекающей всякую гипотезу, которая не представляется необходимой для доказательства.

7. В древнегреческой философии выражены две основные методологические тенденции изучения мира, которые в своем классическом варианте прослеживаются вплоть до XVIII века, а концептуально присутствуют и в современной науке:

1) тенденция Демокрита - атомизм (сведение многообразия мира к сочетаниям элементов - атомов);

2) тенденция Платона - идеализм (сведение явлений мира к параллельному миру высших сущностей - идей).

8. Схоластика -- интеллектуальный феномен средневековой и постсредневековой европейской культуры в рамках теолого-философской традиции, ставивший своей целью рациональное обоснование и систематическую концептуализацию западно-христианского вероучения.

9. Герметические науки или искусства (магия, алхимия, астрология) - подобие практических методов и знаний, связанных с ремеслами и др. - возникли в эпоху эллинизма и поздней античности. Авторство герметических трактатов II-III веков приписывалось Гермесу Трисмегисту, которого греки отождествляли с Тотом Древнего Египта - богом мудрости, книг, письма, счета и т.п.

10. В области естествознания субъект познания (человек) и объект познания (природа) строго разделены. Исследователь анализирует природный мир как бы «со стороны», с внешних по отношению к природе позиций. Для обществознания такая позиция исследователя оказывается невозможной, потому что он находится внутри исследуемого им объекта -- общества и культуры. Потому и говорят о социально-гуманитарном познании как о самопознании, утверждают, что человек как субъект и общество как объект частично совпадают.

В. В. Юдин специально отмечает специфические следствия такой ситуации: «Если, например, физику не удался какой-либо эксперимент, то причину неудачи ищут только в сфере субъективной: неверна теория, не отлажена методика и т.д. В любом случае природа (объект познания) “виноватой” быть не может! Обществоведу в этом плане гораздо сложнее. Если какой-либо “социальный эксперимент” (допустим, социализм) не удался, то это отнюдь не означает, что неверна теория. “Виновником” неудачи может оказаться и сам “объект” этой теории -- народ, который еще “не созрел”, не понял, не оценил социалистических перспектив, а то и просто пожалел усилий для их практического осуществления. Во многом именно поэтому разного рода иллюзии и заблуждения в гуманитарных науках гораздо более прочны и живучи, нежели в науках естественных»

11. Характерной особенностью современной науки является то, что она превращается в сложный и непрерывно растущий социальный организм, в наиболее динамичную, подвижную, производительную силу общества.

Развитие науки становится теперь исходным пунктом для революционирования практики, для создания новых отраслей производства. Наука становится производительной силой общества, что проявляется в глубоких изменениях во взаимоотношениях науки и производства.

Во-первых, многие новые виды производства и технологические процессы первоначально зарождаются в недрах науки, научно-исследовательских институтах. Развитие атомной энергетики, химической технологии, получение сверхтвердых материалов -- всех это хорошая иллюстрация к сказанному.

Во-вторых, сокращаются сроки между научным открытием и его внедрением в производство. Раньше со времени научного открытия или изобретения, например фотографии, электричества до их практического применения проходили десятилетия, сейчас же со дня открытия лазера до его освоения практикой прошло всего несколько лет. Это можно сказать и об атомной энергетике, о полупроводниках и пр.

В-третьих, в самом производстве успешно развиваются научные исследования, растет сеть научных учреждений в промышленности и сельском хозяйстве. Развивается творческое содружество ученых с инженерами и рабочими. Предприятия перерастают в научно-промышленные комплексы.

В-четвертых, резко поднялся профессиональный уровень рабочих, ИТР, что позволяет им широко использовать научные знания в процессе производства. Массовое движение изобретателей и рационализаторов -- важная форма сближения науки с производством.

Наука является общественной по своему происхождению, развитию и использованию. Всякое научное открытие есть труд всеобщий, в каждый данный момент времени наука выступает как суммарное выражение человеческих успехов в познании мира. Поэтому она по-настоящему эффективно может использоваться только с появлением общественного характера производительных сил, с развитием общественного труда и производства в большом масштабе.

12. История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI - XVII вв., было связано долгое время с развитием физики. Именно физика была и остается сегодня наиболее развитой и систематизированной естественной наукой. Поэтому, когда возникло мировоззрение европейской цивилизации Нового времени, складывалась классическая картина мира, естественным было обращение к физике, ее концепциям и аргументам, во многом определившим эту картину. Степень разработанности физики была настолько велика, что она могла создать собственную физическую картину мира, в отличие от других естественных наук, которые лишь в XX веке смогли поставить перед собой эту задачу (создание химической и биологической картин мира). Поэтому, начиная разговор о конкретных достижениях естествознания, мы начнем его с физики, с картины мира, созданной этой наукой.

Понятие “физическая картина мира” употребляется давно, но лишь в последнее время оно стало рассматриваться не только как итог развития физического знания, но и как особый самостоятельный вид знания - самое общее теоретическое знание в физике (система понятий, принципов и гипотез), служащее исходной основой для построения теорий. Физическая картина мира:

- обобщает все ранее полученные знания о природе;

- вводит в физику новые философские идеи и обусловленные ими понятия, принципы и гипотезы (которых до этого не было и которые коренным образом меняют основы физического теоретического знания: старые физические понятия и принципы ломаются, новые возникают, картина мира меняется).

13. Основные черты картины мира:

1. Механическая - это совокупность элементарных неделимых частиц вещества - атомов, составляющих материальные объекты - физические тела.

2. Электромагнитная - материальные объекты - непрерывные поля, в которых имеются точечные центры - заряды.

3. Квантово-полевая - Материальный объект принципиально двойственен по своей природе.

14. МАТЕРИЯ - объективная реальность, существующая независимо от человеческого сознания и отображаемая им; в материалистической философии - субстанциальная основа всех вещей и явлений; в идеализме - косное вещество, противостоящее творчески активному духу, небытие, ничто.

15. Верификацией называется метод подтверждения гипотезы или теории путем ее независимой опытной проверки или установления ее соответствия эмпирически проверенным и общепринятым фундаментальным теориям.

16. Основная роль системного подхода в естествознании состоит в следующем: Во-первых, понятия и принципы системного подхода выявляют более широкую познавательную реальность по сравнению с той, которая фиксировалась в прежнем знании (например, понятие биосферы в концепции В. И. Вернадского, понятие биогеоценоза в современной экологии, оптимальный подход в экономическом управлении и планировании и другие). Во-вторых, в рамках системного подхода разрабатываются новые по сравнению с предшествующими этапами развития научного познания схемы объяснения, в основе которых лежит поиск конкретных механизмов целостности объекта и выявление типологии его связей. В-третьих, из важного для системного подхода тезиса о многообразии типов связей объекта следует, что любой сложный объект допускает несколько разделений. При этом критерием выбора наиболее адекватного разделения изучаемого объекта может служить то, насколько в результате удаётся построить «единицу» анализа, позволяющую фиксировать целостные свойства объекта, его структуру и динамику.

17. На определенном этапе развития жизни на Земле возник разум, благодаря которому появился социальный структурный уровень материи. На этом уровне выделяются: индивид, семья, коллектив, социальная группа, класс и нация, государство, цивилизация, человечество в целом.По другому критерию - масштабам представления - в естествознании выделяют три основных структурных уровня материи

18. Звезды - это природные термоядерные реакторы, в которых происходят превращения вещества на ядерном уровне. Обыкновенные имеют размеры в интервале 108 - 1011 , компактные 103 - 104 м. Звёздное скопление -- гравитационно связанная группа звёзд, имеющая общее происхождение и движущаяся в гравитационном поле галактики как единое целое, имеют размеры 1017 - 1019 м. Галактика - гравитационно-связанная система из звёзд и звёздных скоплений, межзвёздного газа и пыли, и тёмной материи, имеют размеры 1020 - 1021.

19. Ячеистая структура Вселенной - это правильное чередование галактик и пустот между ними образует шестигранную структуру с размером ячеек 1024 м. Вдоль стенок шестигранников расположены галактики и их скопления.

20. Размер наблюдаемой Вселенной из-за не стационарности её пространства-времени -- расширения Вселенной -- зависит от того, какое определение расстояния принять. Сопутствующее расстояние до самого удалённого наблюдаемого объекта -- поверхности последнего рассеяния реликтового излучения -- составляет около 14 миллиардов парсек или 14 000 Мпк (46 миллиардов или 4,6 Ч 1010 световых лет) во всех направлениях. Таким образом, Метагалактика представляет собой шар диаметром около 93 миллиардов световых лет. Так как сопутствующее пространство Метагалактики почти евклидово, сопутствующий объём Метагалактики составляет примерно 11,5 Ч 1030 кубических парсек, то есть 3,4 Ч 1080 кубических метров или 4 Ч 1032 кубических световых лет. Известно, что полная Вселенная простирается далее границ наблюдаемой Вселенной. Радиус наблюдаемой Вселенной 13,7 млрд световых лет.

21. Молекула - электрически нейтральная частица, образованная из двух или более связанных ковалентными связями атомов. Атом - частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств. Атом является элементарной частицей вещества. Он имеет свою массу и размер и отвечает за свойства этого вещества, как химического элемента. Атом состоит из ядра и электронов, которые движутся по своим орбитам вокруг ядра. Именно строением атома обуславливаются химические свойства вещества. Атомы не встречаются в свободном состоянии. Они связываются друг с другом и образуют молекулы, благодаря электрическим зарядам частиц, из которых они состоят. Молекула -- это то, из чего состоит вещество. В состав молекул могут входить два и более атомов, которые между собой связаны межатомными связями. Более точно можно сказать так, что молекула состоит из атомных ядер и внутренних электронов, которые движутся по своим орбитам, а также внешних валентных электронов. В разных молекулах находится разное количество атомов определенного вида и разного количества. Молекула имеет сложную архитектурную постройку, где у каждого атома свое место и свои вполне определенные соседи.

22. Кварк - это частица, имеющая дробный электрический разряд.

23. Физические тела - материальные объекты, характеризуемые собственной массой или массой покоя; физические поля - материальные объекты, характеризуемые энергией и массы покоя не имеющие. Физические тела локализованы в пространстве, а масса является характеристикой их инертных свойств.

24. Все фундаментальные взаимодействия имеют обменный характер. Их механизм одинаков и сводится к обмену частицами-переносчиками, которые испускаются и поглощаются взаимодействующими частицами.

25. Физическое пространство выражает протяженность и порядок расположения материальных объектов; время выражает последовательность протекания явлений и их деятельность.

26. В механической картине мира: пространство - бесконечно, описывается геометрией Евклида, абсолютно пустое, однородное и изотропное, независимое от материальных объектов; время - абсолютно однородное, равномерно текущее, независимое от материальных объектов.

27. Законы сохранения энергии, импульса и моменты импульса позволяют рассмотреть общие свойства движения без решения уравнений и детальной информации о развитии процессов во времени.

28. Эти законы тесно связаны со свойствами времени и пространства. Кроме названных, есть еще ряд законов сохранения (например, закон сохранения электрического заряда). Законы сохранения являются фундаментальными законами природы. Рассматриваемые в механике законы сохранения энергии, импульса и момента импульса оказываются точными законами и имеют всеобщий характер - они применимы не только к механическим явлениям, но и вообще ко всем явлениям природы, в частности они соблюдаются в релятивистской области и в мире элементарных частиц. Законы сохранения не зависят от природы и характера действующих сил. Поэтому с их помощью можно делать ряд важных заключений о поведении механических систем даже в тех случаях, когда силы остаются неизвестными.

29. Теория Коперника открывает, что только гелиоцентрическая система мира дает простое объяснение тому факту, почему величина прямого и попятного движения у Сатурна относительно звезд меньше, чем у Юпитера, а у Юпитера меньше, чем у Марса, но зато на один оборот число смен прямых движений на попятные у Сатурна больше, чем у Юпитера, а у Юпитера больше, чем у Марса. Если Солнце и Луна всегда движутся в одном направлении среди звезд с запада на восток, то планеты иногда движутся и в обратном направлении. Коперник дал абсолютно правильное объяснение этому интересному и загадочному явлению. Все объясняется тем, что Земля в своем движении вокруг Солнца догоняет и обгоняет внешние планеты Марс, Юпитер, Сатурн (и открытые позже Уран, Нептун и Плутон), а сама в свою очередь также становится обгоняемой внутренними планетами, Венерой и Меркурием, по той причине, что все они имеют различные угловые скорости относительно Солнца.

30. Основным принципом, на котором базируется классическая механика является принцип относительности, сформулированный на основе эмпирических наблюдений Г. Галилеем. Согласно этому принципу существует бесконечно много систем отсчёта, в которых свободное тело покоится или движется с постоянной по модулю и направлению скоростью. Эти системы отсчёта называются инерциальными и движутся друг относительно друга равномерно и прямолинейно. Во всех инерциальных системах отсчёта свойства пространства и времени одинаковы, и все процессы в механических системах подчиняются одинаковым законам. Этот принцип можно также сформулировать как отсутствие абсолютных систем отсчёта, то есть систем отсчёта, каким-либо образом выделенных относительно других. Иным образом этот принцип формулируется (следуя Галилею) так:

Если в двух замкнутых лабораториях, одна из которых равномерно прямолинейно (и поступательно) движется относительно другой, провести одинаковый механический эксперимент, результат будет одинаковым.

31. Требование (постулат) принципа относительности и преобразования Галилея (представляющиеся достаточно интуитивно очевидными) во многом определяют форму и структуру ньютоновской механики (и исторически также они оказали существенное влияние на её формулировку). Говоря же несколько более формально, они накладывают на структуру механики ограничения, достаточно существенно влияющие на её возможные формулировки, исторически весьма сильно способствовавшие её оформлению.

32. Принцип относительности Эйнштейна является обобщением принципа относительности Галилея, рассмотренного в предыдущей главе, на все без исключения (а не только механические) явления природы. Согласно этому принципу, все законы природы одинаковы во всех инерциальных системах отсчета. Принцип относительности Эйнштейна можно сформулировать следующим образом: все уравнения, выражающие законы природы, инвариантны по отношению к преобразованиям координат и времени от одной инерциальной системы отсчета к другой. (Напомним, что инвариантностью уравнений называется неизменность их вида при замене в них координат и времени одной системы отсчета координатами и временем другой). Понятно, что в соответствии с эйнштейновым принципом относительности никакими вообще опытами нельзя установить, движется «наша» система отсчета с постоянной скоростью или она неподвижна, точнее говоря, между этими состояниями нет никакого различия. Галилей эту невозможность постулировал в принципе только для механических опытов.

33. Необычность результатов, которые дает теория относительности, сразу же поставили вопрос об их опытной проверке. Предварительно, однако, заметим, что сама эта теория возникла из электродинамики и поэтому все эксперименты, которые подтверждают электродинамику, косвенно подтверждают также теорию относительности. Но кроме подобных косвенных свидетельств существуют эксперименты, которые непосредственно подтверждают выводы теории относительности.

Одним из таких экспериментов является опыт, поставленный французским физиком А. Физо (1819-1896) еще до открытия теории относительности. Он задался целью определить, с какой скоростью распространяется свет в неподвижной жидкости и жидкости, протекающей по трубке с некоторой скоростью. Если в покоящейся жидкости скорость света равна?v0, то скорость v в движущейся жидкости можно определить тем же способом, каким мы определяем скорость движущегося человека в вагоне по отношению к полотну дороги. Трубка играет здесь роль полотна дороги, жидкость - роль вагона, а свет - бегущего по вагону человека. С помощью тщательных измерений, многократно повторенных разными исследователями, было установлено, что результат сложения скоростей соответствует здесь преобразованию Лоренца и, следовательно, подтверждает выводы специальной теории относительности.

Наиболее выдающимся подтверждением этой теории был отрицательный результат опыта американского физика А. Майкельсона (1852-1931), предпринятый для проверки гипотезы о световом эфире. Согласно господствовавшим в то время воззрениям, все мировое пространство заполнено эфиром - особым веществом, являющимся носителем световых волн. Вначале эфир уподоблялся механической упругой среде, а световые волны рассматривались как колебания этой среды, сходные с колебаниями воздуха при звуковых волнах. Но эта механическая модель эфира в дальнейшем встретилась с серьезными трудностями, так как, будучи твердой упругой средой, она должна оказывать сопротивление движению небесных тел, но ничего этого в действительности не наблюдалось. В связи с этим пришлось отказаться от механической модели, но существование эфира как особой всепроникающей среды по-прежнему признавалось. Для того, чтобы обнаружить движение Земли относительно неподвижного эфира, Майкельсон решил измерить время прохождения светового луча по горизонтальному направлению движения Земли и направлению, перпендикулярному к этому движению. Если существует эфир, то время прохождения светового луча по горизонтальному и перпендикулярному направлениям должно быть неодинаковым, но никакой разницы Майкельсон не обнаружил. Тогда для спасения гипотезы об эфире Лоренц предположил, что в горизонтальном направлении происходит сокращение тела в направлении движения. Чисто отрицательный результат опыта Майкельсона стал для Эйнштейна через 18 лет решающим экспериментом для доказательства того, что никакого эфира как абсолютной системы отсчета не существует. Сокращение же тела объясняется таким же способом, как при относительном движении инерциальных систем отсчета.

34. Корпускулярно-волновой дуализм заключается в том, что любые микрочастицы материи (фотоны, электроны, протоны, атомы и др.) обладают свойствами и частиц (корпускул), и волн. Количественное выражение корпускулярно-волнового дуализма - соотношения де Бройля.

35. Квантовая механика - изучает состояния микрочастиц и их систем (элементарных частиц, атомных ядер, атомов, молекул, кристаллов), изменение этих состояний во времени, а также связь величин, характеризующих состояния микрочастиц, с экспериментальными макроскопическими величинами. Квантовая механика исследует уровни энергии, пространственные и импульсные характеристики систем частиц, эволюцию этих систем во времени, вероятности переходов между состояниями под влиянием взаимодействия между системами и внеш. воздействий.

36. Предшественницей квантовой механики была квантовая теория света Планка и Эйнштейна. Свет, да и вообще любое электромагнитное излучение имеет как волновые, так и квантовые свойства, проявляющиеся в разной степени. Волновые свойства более заметны для низкочастотного диапазона (радиоволны, инфракрасный (ИК) и видимый свет), а квантовые - для высокочастотного (ультрафиолет (УФ), рентген, г-лучи).

37. Вещество - тоже материальный объект, как и электромагнитное поле, и поэтому естественно предположить наличие волновых свойств у вещества, проявляющихся в разной степени. Никакие известные виды волн не подходят для описания природы волн де Бройля. Эти волны имеют смысл волн вероятности. Плоская волна свободной частицы соответствует равной вероятности ее нахождения в любом месте пространства. Взаимодействие частицы с кристаллической решеткой трактуется как рассеяние этой волны на трехмерной структуре, и в результате этого вероятность попадания частицы в разные точки становится неодинаковой.

38. Физический смысл соотношений неопределенностей Гейзенберга состоят в том, что эти неравенства указывают пределы применимости классических представлений о микроскопических точках, движущихся по определенной траектории имеющих в каждый момент времени определенные значения координат, определенные величину и направление вектора импульса (или скорости).

39. Распределение вероятности нахождения частицы в данный момент времени в некоторой области пространства будем описывать волновой функцией (x, y, z, t) (пси-функция). Вероятность dP того, что частица находится в элементе объема dV, пропорциональная и элементу объему dV: dP=dV. Физический смысл имеет не сама функция, а квадрат ее модуля - это плотность вероятности. Она определяет вероятность пребывания частицы в данной точке пространства.

Волновая функция является основной характеристикой состояния микрообъектов (микрочастиц). С ее помощью в квантовой механике могут быть вычислены средние значения физических величин, которые характеризуют данный объект, находящийся в состоянии, описываемом волновой функцией.

40. Принцип Паули обосновывает построение таблицы Менделеева. Каждое электронное состояние в атоме характеризуется определенными значениями квантовых чисел. Общее количество этих значений для каждой электронной оболочки ограничено. Поэтому с ростом порядкового номера элемента электроны последовательно заполняют состояния сначала самых близких к ядру электронных оболочек, размеры электронных облаков которых самые маленькие из возможных. Если электронная оболочка полностью заполнена, то у следующих далее в таблице элементов электроны заполняют состояния новой, более удаленной от ядра оболочки, которой соответствуют большие размеры электронных облаков.

Таким образом, в атоме не может быть двух электронов, у которых квантовые числа были бы одинаковы. В целом, электронная структура атомов каждого химического элемента строго индивидуальна, хотя отдельные электронные оболочки могут быть одинаковы. Например, сходство электронных оболочек на периферии атомов обуславливает сходство их химических свойств.

41. Космология (космос + логос) -- раздел астрономии, изучающий свойства и эволюцию Вселенной в целом. Основу этой дисциплины составляют математика, физика и астрономия.

42. В древности, по-видимому, преобладали именно космологические представления о мире, так как какие-либо теории его происхождения были либо чисто философскими, либо мифологическими. Космология атомистов и их космогония в своих различных частях соответствуют разным уровням развития античной науки и потому в отдельных своих учениях далеко не равноценны. В некоторых космологических идеях атомисты надолго опередили своё время, в других остались примерно на том уровне, которого достигла милетская школа в лице своего последнего представителя - Анаксимена. Новыми достижениями атомистов были их учения:

1) о бесконечности вселенной;

2) о бесчисленности миров, одновременно существующих в бесконечном мировом пространстве.

43. Классическая модель Вселенной была построена Исааком Ньютоном. Сущность этой теории можно выразить в следующих положениях:

1. Вселенная вечна, т. е. является бесконечной в пространстве и времени.

2. Пространство играет пассивную роль и является вместилищем небесных тел.

3. Количество звезд, планет и звездных систем во Вселенной бесконечно велико.

4. Движением планет и развитием небесных тел управляет закон всемирного тяготения.

5. Каждое небесное тело проходит длительную эволюцию и на смену погасшим светилам приходят новые.

44. К концу XIX в. появились серьезные сомнения в классической космологической модели. Они приняли форму так называемых космологических парадоксов -- фотометрического, гравитационного и термодинамического.

Фотометрический парадокс. Еще в XVIII в. швейцарский астроном Р. Шезо высказал сомнения в пространственной бесконечности Вселенной. Если предположить, утверждал Шезо, что в бесконечной Вселенной существует бесконечное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался бы на какую-нибудь звезду. Тогда небосвод, сплошь усеянный звездами, имел бы бесконечную светимость, т.е. такую поверхностную яркость, что даже Солнце на его фоне, казалось бы, черным пятном. Однако этого не происходит. Независимо от Шезо к аналогичным же выводам пришел известный немецкий астроном Ф. Ольберс. Это парадоксальное утверждение получило в астрономии наименование фотометрического парадокса Шезо--Ольберса. Таков был первый космологический парадокс, поставивший под сомнение пространственную бесконечность Вселенной.

Гравитационный парадокс. Вконце XIX в. немецкий астроном К. Зеелигер обратил внимание на другой парадокс, также неизбежно вытекавший из представлений о бесконечности Вселенной. Он получил название гравитационного парадокса. Нетрудно подсчитать, что в бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной. Результат зависит от способа вычисления. Поскольку этого не происходит, Зеелигер сделал вывод, что количество небесных тел во Вселенной ограничено, а значит, и сама Вселенная не бесконечна.

Термодинамический парадокс. Третий, термодинамический, парадокс также был сформулирован в XIX в. Он вытекает из второго начала термодинамики -- принципа возрастания энтропии. Мир полон энергии, которая подчиняется важнейшему закону природы -- закону сохранения энергии. Казалось бы, из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. В самом деле, если в природе при всех изменениях материи она не исчезает и не возникает из ничего, а лишь переходит из одной формы существования в другую, то Вселенная вечна, а материя, ее составляющая, пребывает в вечном круговороте. Таким образом, погасшие звезды снова превращаются в источник света и тепла. Никто, конечно, не знал, как это происходит, но убеждение в том, что Вселенная в целом всегда одна и та же, было в то время почти всеобщим.

45. Излагая свою Модель, Эйнштейн писал: «Самое важное из всего, что вам известно из опыта о распределении материи, заключается в том, что относительные скорости звезд очень малы по сравнению со скоростью света. Поэтому я полагаю, что на первых порах в основу наших рассуждений можно положить следующее приближенное допущение: имеется координатная система, относительно которой материю можно рассматривать находящейся в течение продолжительного времени в покое».

46. Модель расширяющейся Вселенной подтверждается в основном наблюдениями спектров излучения далеких галактик.

Еще Эдвин Хаббл в 1929 году открыл, что:

1) галактики распределены в пространстве равномерно, образуя ячеистую структуру, что согласуется с исходным предположением А. Фридмана;

2) существует закон u = H ? r, где u - скорость удаления галактики, r - расстояние до нее, Н - постоянная Хаббла.

Модель расширяющейся Вселенной разрешает фотометрический и гравитационный парадоксы. Число объектов в видимой части Вселенной конечно, и мы воспринимаем лишь их, по существу, испытываем лишь их влияние, объектов ближайшего к нам космоса; точно так же, как на поверхности Земли мы ограничены линией горизонта и воспринимаем непосредственно лишь ближайшие к нам объекты. В этой модели эволюция Вселенной зависит от значения средней плотности вещества в ней, а также от скорости удаления галактик. Обе эти величины пока не имеют надежно измеренных значений, и поэтому теоретически возможно, как расширение Вселенной, так и ее сжатие, а также чередование этих процессов. Закон Хаббла установлен в предположении о том, что смещение спектральных линий излучения галактик в область низких частот обусловлено их удалением. Вполне возможно, однако, что этот эффект красного смещения вызван гравитационным воздействием массивных объектов (ядер галактик или квазаров) на электромагнитные волны в процессе их распространения от своих источников к Земле. Наконец, неясен и механизм расширения Вселенной. Несмотря на перечисленные трудности и слабые места, модель расширяющейся Вселенной является общепризнанной современной космологической моделью.

47. Космогония (от космос и...гония; греч. kosmogonia) - раздел астрономии, изучающий происхождение и развитие космических тел и их систем (планет и Солнечной системы в целом, звезд, галактик и т. д.). Наиболее развиты космогония Солнечной системы (планетная космогония) и звездная космогония (Звездная эволюция).

48. Модель расширяющейся Вселенной существенно трансформировала наши представления о мире. Она требовала включить в научную картину мира идею космической эволюции. Тем самым создавалась реальная возможность описать в терминах эволюции неорганический мир, обнаруживая общие эволюционные характеристики различных уровней его организации и, в конечном счете, построить на этих основаниях целостную картину мира. В середине нашего столетия идеям эволюции Вселенной был дан новый импульс. Теория расширяющейся Вселенной, достаточно хорошо описывая события, которые имели место через секунду после начала расширения, испытывала значительные трудности при попытках охарактеризовать наиболее загадочные этапы этой эволюции от первовзрыва до мировой секунды после него. Ответы на эти вопросы во многом были даны в рамках теории раздувающейся Вселенной. Эта теория возникала на стыке космологии и физики элементарных частиц. Ключевым элементом раздувающейся Вселенной была так называемая «инфляционная фаза» - стадия ускоренного расширения. Она продолжалась 10-32 сек., и в течение этого времени диаметр Вселенной увеличился в 1050 раз. После колоссального расширения окончательно установилась фаза с нарушенной симметрией, что привело к изменению состояния вакуума и рождению огромного числа частиц.

49. Экстраполяция наблюдаемого расширения Вселенной назад во времени приводит при использовании общей теории относительности и некоторых других альтернативных теорий гравитации к бесконечной плотности и температуре в конечный момент времени в прошлом. Более того, теория не даёт никакой возможности говорить о чём-либо, что предшествовало этому моменту (потому, что наша математическая модель пространства-времени в момент Большого взрыва теряет применимость: при этом теория вовсе не отрицает возможность существования чего-либо до Большого взрыва), а размеры Вселенной тогда равнялись нулю - она была сжата в точку. Это состояние называется космологической сингулярностью и сигнализирует о недостаточности описания Вселенной классической общей теорией относительности. Насколько близко к сингулярности можно экстраполировать известную физику, является предметом научных дебатов, но практически общепринято, что допланковскую эпоху рассматривать известными методами нельзя. Многие учёные полушутя-полусерьёзно называют космологическую сингулярность «рождением» (или «сотворением») Вселенной. Невозможность избежать сингулярности в космологических моделях общей теории относительности была доказана в числе прочих теорем о сингулярностях Р. Пенроузом и С. Хокингом в конце 1960-х годов. Её существование является одним из стимулов построения альтернативных и квантовых теорий гравитации, которые стараются разрешить эту проблему.

50. В рамках общепризнанной ныне теории Большого взрыва специалисты выделяют четыре основных этапа эволюции Вселенной:

Адронная эра: при очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц, прежде всего из адронов. Этот этап длился одну десятитысячную долю секунды, но именно тогда взаимодействие между частицами (ядерная сила) было наиболее интенсивным;

Лептонная эра: в это время температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино, именно тогда и образовалось так называемое нейтринное море, благодаря которому и началось реликтовое излучение;

Фотонная эра; собственно с окончанием фотонной эры, когда температура Вселенной снизилась до определённого значения, а вещество было отделено от антивещества, и заканчивается широкая фаза Большого взрыва. В сумме адронная, лептонная и фотонная эры составляют примерно одну тридцатитысячную часть возраста Вселенной;

Звёздная эра: основной этап существования Вселенной, который продолжается и в настоящее время. На этом этапе Вселенная расширяется, вещество образовывает звёзды, планеты, звёздные системы, галактики и так далее, вплоть до появления жизни и разумных её форм.

51. Теория большого взрыва в настоящее время является общепризнанной, т.к. её подтверждают следующие экспериментальные факты: естествознание вселенная космологический парадокс

1. пространственная однородность вселенной (ячеистая структура);

2. удаление (взаимное) Галактик;

3. преобладание во Вселенной легких химических элементов

4. реликтовое электромагнитное излучение (его температура 3 К, а длина волны 10Їі-10ЇІм), состоящее из фотонов, предположительно образовавшихся в результате аннигиляции частиц и античастиц.

52. Первые гипотезы образования Солнечной системы.

Р. Декарт (1644) - Вихревое движение -- единственная устойчивая форма движения, из первичных и вторичных вихрей образовались Солнце и планеты со спутниками;

Ж. Л. Л. Бюффон (1745) - Гигантская комета столкнулась с Солнцем и вырвала из него вещество, из которого образовались планеты

И. Кант (1755) - Конденсировалось вращающееся облако межзвездного газа

П. С. Лаплас (1796) - Развитие предыдущей гипотезы: Солнце и вся Солнечная система образовались из сжимающейся газовой туманности. Часть газового вещества отделилась от центрального сгустка под действием центробежной силы (в результате ускорения вращения в ходе сжатия) и послужила материалом для образования планет

А. Бикертон (1878) - Солнце прошло близко от звезды, и из него вырвалось вещество

Т. К. Чемберлин (1901) - Солнце прошло близко от звезды, и вещество выплеснулось из приливной волны

О. Биркеланд (1912) - В магнитном поле Солнца из ионов, выброшенных Солнцем, образовались газовые кольца

С. А. Аррениус (1913) - Солнце столкнулось со звездой, после столкновения звезда распалась и остались Солнце и длинный газовый хвост, из которого образовались планеты

X. Джеффрис (1916) - Звезда задела Солнце и образовался длинный хвост

Дж. X. Джине (1917) - Звезда прошла близко от Солнца, вещество вырвалось из приливной волны и образовало длинные хвосты

X. П. Берлаге (1930) - Из частиц, выброшенных Солнцем, образовался газовый диск

Г. Н. Рессел (1935) - Солнце было двойной звездой, второй компонент был разрушен третьей звездой

Дж. Литлтон (1936) - Солнце было тройной звездой, система неустойчивой, два компонента отделились и оставили часть своего вещества

X. О. Альфвен (1942) - Солнце встретилось с газовым облаком, атомы газа ионизировались и начали двигаться в магнитном поле

О. Ю. Шмидт (1943) - Солнце встретилось с газово-пылевым облаком и захватило его, в результате соударений частиц образовались планеты

К. Вейцзеккер (1944) - Из вихрей во внешних слоях сжимающегося протосолнца образовались планеты и их спутники

Ф. Хойл (1944) - Солнце было двойной звездой, второй компонент которой вспыхнул сверхновой звездой, выбросил газовое облако и покинул систему

Ф. Л. Уиппл (1947) - Протосолнце захватило газовое облако, у которого был достаточно большой момент количества движения

Д. Тер Хар (1948) - Планеты образовались в турбулентных внешних слоях протосолнца

Дж. П. Койпер (1949) - Планеты образовались в газовом облаке, окружавшем протосолнце, в результате гравитационных возмущений.

53. Планеты можно поделить на два основных класса: большие, имеющие невысокую плотность планеты-гиганты, и менее крупные землеподобные планеты, имеющие твёрдую поверхность. Согласно определению Международного астрономического союза, в Солнечной системе 8 планет. В порядке удаления от Солнца -- четыре землеподобных: Меркурий, Венера, Земля, Марс, затем четыре планеты-гиганта: Юпитер, Сатурн, Уран и Нептун. В Солнечной системе также есть по крайней мере 5 карликовых планет: Плутон (до 2006 года считавшийся девятой планетой), Макемаке, Хаумеа, Эрида и Церера. За исключением Меркурия и Венеры, вокруг всех планет обращается хотя бы по одному спутнику.

Разделение планет на группы прослеживается по трем характеристикам (масса, давление, вращение), но наиболее четко - по плотности. Планеты, принадлежащие к одной и той же группе, по плотности различаются между собой незначительно, в то время как средняя плотность планет земной группы примерно в 5 раз больше средней плотности планет-гигантов.

Большая часть массы планет земной группы приходится на долю твердых веществ. Земля и другие планеты земной группы состоят из оксидов и других соединений тяжелых химических элементов: железа, магния, алюминия и других металлов, а также кремния и других неметаллов. На долю четырех наиболее обильных в твердой оболочке нашей планеты (литосфере) элементов - железа, кислорода, кремния и магния - приходится свыше 90 % ее массы.

Малая плотность планет-гигантов (у Сатурна она меньше плотности воды) объясняется тем, что они состоят в основном из водорода и гелия, которые находятся преимущественно в газообразном и жидком состояниях. Атмосферы этих планет содержат также соединения водорода - метан и аммиак. Различия между планетами двух групп возникли уже на стадии их формирования. Из планет-гигантов лучше всего изучен Юпитер, на котором даже в небольшой школьный телескоп видны многочисленные темные и светлые полосы, тянущиеся параллельно экватору планеты. Так выглядят облачные образования в его атмосфере, температура которых всего -140 °C, а давление примерно такое же, как у поверхности Земли. Красновато-коричневый цвет полос объясняется, видимо, тем, что, помимо кристаллов аммиака, составляющих основу облаков, в них содержатся различные примеси. На снимках, полученных космическими аппаратами, видны следы интенсивных и иногда устойчивых атмосферных процессов. Так, уже свыше 350 лет на Юпитере наблюдают атмосферный вихрь, получивший название Большое Красное Пятно. В земной атмосфере циклоны и антициклоны существуют в среднем около недели. Атмосферные течения и облака зафиксированы космическими аппаратами и на других планетах-гигантах, хотя развиты они в меньшей степени, чем на Юпитере.

54. На самом деле орбиты планет лежат почти в одной плоскости. Они почти круговые, если не сказать эллиптические. Да и направления вращения почти всех планет вокруг своих осей совпадают с направлениями их вращения вокруг Солнца. Но и здесь есть исключения -- Венера и Уран, и не все спутники вращаются вокруг планет в том же направлении, что и планеты вокруг Солнца.

Создать единую теорию, которая описала бы все упомянутые «почти» с равной степенью достоверности, отфильтровав главное от второстепенного, а случайное от закономерного, не так-то просто. И вопрос о том, как могла возникнуть система, подобная Солнечной, долго составлял главную проблему космогонии.

Можно сказать, что общая плоскость эклиптики объясняется тем, что «строительный материал» для Солнца и планет когда-то был един и, вероятно, вращался вокруг своей оси. Впоследствии под действием тех или иных причин «стройматериал» разделился на две неравные части, которые сохранили направление своего изначального вращения. Большая часть стала шаром Солнцем, меньшая -- диском вокруг него. Планеты образовались из этого диска, и этим объясняется, почему у планет плоскости вращения вокруг Солнца примерно совпадают.

55. Возраст Земли -- время, которое прошло с момента образования Земли как самостоятельной планеты. Возраст Земли составляет 4,54 миллиардов лет (4,54·109 лет ±1%). Эти данные базируются на радиоизотопной датировке не только земных образцов, но и метеоритного вещества. Они получены в первую очередь с помощью свинец-свинцового метода.

56. Земля образовалась путём аккреции из протопланетного диска, дискообразной массы газа, пыли, оставшихся от образования Солнца, которая и дала начало Солнечной системе. Вулканическая дегазация создала первичную атмосферу, но в ней почти не было кислорода и она была бы токсичной для людей и современной жизни в целом. Бомльшая часть Земли была расплавленной из-за активного вулканизма и частых столкновений с другими космическими объектами. Предполагается, что одно из таких крупных столкновений привело к наклону земной оси и формированию Луны. Со временем такие космические бомбардировки прекратились, что позволило планете остыть и образовать твёрдую кору. Доставленная на планету кометами и астероидами вода сконденсировалась в облака и океаны. Земля стала, наконец, гостеприимной для жизни, а самые ранние её формы обогатили атмосферу кислородом. По крайней мере, первый миллиард лет жизнь на Земле существовала в малых и микроскопических формах. Около 580 миллионов лет назад возникла сложная многоклеточная жизнь, а во время кембрийского периода она пережила процесс быстрой диверсификации в большинство основных типов. Около шести миллионов лет назад от гоминидов отделилась линия гоминини, что привело к появлению шимпанзе (наших ближайших родственников), и в дальнейшем к современному человеку. С момента её формирования на нашей планете постоянно происходят биологические и геологические изменения. Организмы непрерывно развиваются, принимают новые формы или вымирают в ответ на постоянно меняющуюся планету. Процесс тектоники плит играет важную роль в формировании океанов и континентов Земли, а также жизни, которой они дают убежище. Биосфера, в свою очередь, оказала значительное влияние на атмосферу и другие абиотические условия на планете, такие, как образование озонового слоя, распространение кислорода, а также создание почвы. Хотя люди не способны воспринимать это в связи с их относительно коротким периодом жизни, эти изменения продолжаются и будут продолжаться в течение следующих нескольких миллиардов лет.

57. В настоящее время возраст горных пород определяют тремя методами: стратиграфическим, палеонтологическим и абсолютным. Стратиграфический метод. Это относительный метод, суть которого заключается в том, что относительный возраст горных пород определяют по тому месту, где залегает тот или иной пласт или слой в земной коре, есть в геологическом разрезе. Действительно, и горная порода, которая залегает внизу образовалась раньше, чем та, что залегает наверху. Но при тектонических процессах, когда земная кора приходит в движение, определить относительный возраст горных пород невозможно. Например, в Кузбассе некоторые пласты осадочных пород залегают под углом 89 - 90 °. Таким образом, стратиграфический метод применяется только для осадочных горных пород при их спокойном залегании. Вычислить абсолютный возраст горных пород этим методом невозможно, поскольку скорость накопления осадков в земной коре очень неодинакова.

Палеонтологический метод. Суть этого метода заключается в том, что возраст горных пород определяется по остаткам в них вымерших организмов - растений и животных. Основателями этого метода были английский инженер-гидростроитель В. Смит и французский ученый Ж. Кювье. При раскопках в пластах горных пород встречаются остатки организмов разной степени совершенства. Чем совершеннее остатки организмов, тем моложе горная порода. Например, и порода, где обнаружили кости млекопитающих, значительно моложе той, где нашли остатки динозавров. Конечно, этот метод тоже является относительным, но более совершенным, потому что не зависит уже от условий залегания горных пород.

Абсолютный метод. Является наиболее точным и позволяет определить возраст горных пород в годах. Начал применяться после открытия в 1396 г. Анри Беккерель явления радиоактивности. Установлено, что во время радиоактивного распада одни элементы превращаются в другие более устойчивы, а период их распада вообще не зависит ни от внутренних, ни от внешних обстоятельств (температуры, давления, влажности и т.д.). Зная соотношение количества материнского элемента остался в породе, и продукта конечного распада, срок его преобразования, можно определить абсолютный возраст горных пород. Так, и 0 г 238U за I млрд. лет превращается в 0,116 г 206Рb. Остаток 238U - 0,865 г. Остальная масса расходуется на излучение.

58. Химия - это одна из важнейших и обширных областей естествознания, наука о веществах, их составе и строении, их свойствах, зависящих от состава и строения.

59. Основная задача химии - получение веществ с заранее заданными свойствами и выявление способов управления свойствами вещества.

60. Химия как самостоятельная дисциплина определилась в XVI--XVII веках, после ряда научных открытий, обосновавших механистическую картину мира, развития промышленности, создания фабрик, появления буржуазного общества. Однако из-за того, что химия, в отличие от физики, не могла быть выражена количественно, существовали споры, является ли химия количественной воспроизводимой наукой или это некий иной вид познания. В 1661 году Роберт Бойль создал труд «Химик-скептик», в котором объяснил разность свойств различных веществ тем, что они построены из разных частиц (корпускул), которые и отвечают за свойства вещества. Ван Гельмонт, изучая горение, ввёл понятие газ для вещества, которое образуется при нём, открыл углекислый газ. В 1672 году Бойль открыл, что при обжиге металлов их масса увеличивается, и объяснил это захватом «весомых частиц пламени».

61. Алхимия - наука, изучающая многообразие окружающего мира как с естественной точки зрения, так и с философской. В фокусе основного внимания алхимического научного сообщества находятся взаимодействия материальных веществ земного мира как между собой, так и с человеческим организмом; пути улучшения человеческой жизни и достижения гармонии с окружающим миром; пути использования материи окружающего мира во благо жизни человека; изучение материи на всех возможных уровнях (микро- и макроскопических, философских, спиритуальных и когнитивных). Алхимия - искусство превращения любого вещества, энергии и информации в любое другое.

62. Основные черты химической картины мира:

1. Вещества в газообразном состоянии состоят из молекул. В твердом и жидком состоянии из молекул состоят только вещества с молекулярной кристаллической решеткой (СО2, H2O). Большинство твердых тел имеет структуру либо атомную, либо ионную и существует в виде макроскопических тел (NaCl, CaO, S).

...

Подобные документы

  • Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.

    шпаргалка [136,9 K], добавлен 12.02.2011

  • Основы эволюции Вселенной. Анализ сценария образования Вселенной в соответствии с концепцией Большого взрыва. Характеристика моделей расширяющейся и пульсирующей Вселенной. Эволюция концепции единства мира применительно к концепции Большого взрыва.

    презентация [204,8 K], добавлен 03.12.2014

  • Значение науки в современной культуре и структура научного знания. Основные этапы эволюции европейского естествознания. Типы физических взаимодействий. Механистическая, электромагнитная и квантово-релятивистская картина мира. Модели строения атома.

    учебное пособие [49,9 K], добавлен 27.01.2010

  • Аристотель и философские основания античной космологии. Гелиоцентрическая картина мира и её доказательства. Волновая и электромагнитная теории света. Теория относительности. Концепция большого взрыва. Теория радиоактивности Резерфорда. Кварковая теория.

    шпаргалка [128,2 K], добавлен 17.01.2011

  • Гипотетические представления о Вселенной. Основные принципы познания в естествознании. Развитие Вселенной после Большого Взрыва. Космологическая модель Птолемея. Особенности теории Большого Взрыва. Этапы эволюции и изменение температуры Вселенной.

    курсовая работа [1,8 M], добавлен 28.04.2014

  • Формы научного знания. Атомистическое учение Левкиппа и Демокрита. Электромагнитная физическая картина мира. Общая характеристика звезд, их виды и эволюция. Свойства живых организмов. Концепции происхождения человека. Понятие информации в кибернетике.

    контрольная работа [47,7 K], добавлен 24.03.2011

  • Наука как часть культуры, ее критерии и структура. Методы и подходы научного познания. Сущность современных концепций физики, химии и космологии. Земля как предмет естествознания. Теории происхождения жизни, эволюции органического мира. Феномен человека.

    учебное пособие [3,2 M], добавлен 21.09.2010

  • Цели и задачи курса "Концепции современного естествознания", место данной дисциплины в системе других наук. Классификация наук, предложенная Ф. Энгельсом. Взаимосвязь физических, химических и биологических знаний. Виды атмосферных процессов в природе.

    контрольная работа [28,8 K], добавлен 13.06.2013

  • Рассмотрение стадий исторического развития естествознания. Отказ от созерцательности и наивной реалистичности установок классического естествознания. Усиление математизации современного естествознания, сращивание фундаментальных и прикладных исследований.

    реферат [30,2 K], добавлен 11.02.2011

  • Требования образовательных стандартов по дисциплине "Концепции современного естествознания". Изучение и понимание сущности фундаментальных законов природы, составляющих каркас современных физики, химии и биологии. Методология современного естествознания.

    лекция [26,7 K], добавлен 24.11.2017

  • Изучение основ естествознания Нового времени. Многообразие и единство мира, геометрия Вселенной. А.Л. Чижевский о влиянии Солнца на природные и общественные процессы. Эволюционно-синергетическая парадигма. Дарвинистский вариант глобального эволюционизма.

    реферат [245,2 K], добавлен 26.12.2014

  • Исторические этапы познания природы, логика и закономерности развития науки. Понятие научной картины мира и теория относительности. Антропный принцип космологии и Учение Вернадского о ноосфере. Современные концепции экологии, задачи и принципы биоэтики.

    шпаргалка [64,8 K], добавлен 29.01.2010

  • Естественнонаучная и гуманитарная культуры. Предмет и метод естествознания. Динамика естествознания и тенденции его развития. История естествознания. Структурные уровни организации материи. Макромир. Открытые системы и неклассическая термодинамика.

    книга [353,5 K], добавлен 21.03.2009

  • Вселенная как понятие и объект познания. Начало космологии, фридмановские космологические модели, разбегание галактик и расширение Вселенной. Гипотеза "большого взрыва". Космологический горизонт и крупномасштабная (ячеистая) структура Вселенной.

    реферат [340,5 K], добавлен 07.01.2010

  • Предмет изучения и задачи естествознания. Иерархическая последовательность наук по степени возрастания их сложности (лестница Кекуле). Методы естественнонаучного познания. Мифы, религии и искусство как формы отражения окружающей действительности.

    презентация [268,4 K], добавлен 20.06.2013

  • Формирование основных положений космологической теории - науки о строении и эволюции Вселенной. Характеристика теорий происхождения Вселенной. Теория Большого взрыва и эволюция Вселенной. Строение Вселенной и её модели. Сущность концепции креационизма.

    презентация [1,1 M], добавлен 12.11.2012

  • Естественнонаучная и гуманитарная культуры и история естествознания. Корпускулярная и континуальная концепции описания природы. Порядок и беспорядок в природе, хаос. Пространство и время, принципы относительности, симметрии, универсального эволюционизма.

    курс лекций [545,5 K], добавлен 05.10.2009

  • Определение возраста Солнца, звезд, Вселенной. Диапазон временных интервалов во Вселенной. Представление о научной методологии и формировании критерия истины. Отличие современной научной картины мира от классической. Преемственность идей и концепций.

    контрольная работа [28,1 K], добавлен 16.10.2010

  • Классическая механика как фундамент естественнонаучной теории. Возникновение и развитие классического естествознания. Система Коперника. Галлилео Галлилей. Исаак Ньютон. Формирование основ классической механики. Метод флюксий.

    контрольная работа [99,8 K], добавлен 10.06.2007

  • Классификация методов научного познания. Картина мира мыслителей древности, гелиоцентрическая, механистическая, электромагнитная. Понятие о симметрии, взаимодействии и энтропии. Основные теории возникновения жизни и ее эволюции. Происхождение Вселенной.

    шпаргалка [83,2 K], добавлен 19.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.