Специальные приемы микроскопии биологических объектов

Принципиальная система оптического, ультрафиолетового и электронного микроскопов. Определение разрешающей способности и значения апертурного угла. Особенность иммерсионного объектива. Получение изображений прозрачных объектов. Метод фазового контраста.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 12.05.2017
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

«Южно-Казахстанская государственная фармацевтическая академия»

Кафедра медицинской биофизики и информационных технологий

Реферат

Тема: «Специальные приемы микроскопии биологических объектов»

Приняла: Махамбетова М.А

Подготовила: Кулшыкова Б.

1. Оптическая система простейшего микроскопа

1.1 Формула для увеличения

Оптическая система простейшего микроскопа состоит из двух линз: объектива и окуляра. Объектив - короткофокусная собирающая линза, окуляр - длиннофокусная.

Рассматриваемый предмет АВ помещается на расстоянии немного большем fоб, т.е. между фокусом и двойным фокусом. Действительное, увеличенное и перевернутое изображение А1В1оказывается на расстоянии немного меньшем fок от окуляра; оно рассматривается в окуляр, как в лупу. В результате получается мнимое, увеличенное и перевернутое (относительно предмета) изображение А2В2, находящееся от окуляра на расстоянии L(расстоянии наилучшего зрения). Расстояние l между “внутренними” фокусами объектива и окуляра называется оптической длиной тубуса микроскопа (обычно l = 16 см).

Найдем увеличения объектива и окуляра.

где f - фокусное расстояние всей системы, равноеf=fобfок / l.

Итак, увеличение окуляра равняется отношению расстояния наилучшего зрения к фокусному расстоянию линзы. Окуляр может дать увеличение до 20-25 раз. Увеличение микроскопа равняется отношению произведения оптической длины тубуса на расстояние наилучшего зрения к произведению фокусных расстояний объектива и окуляра.

Увеличение, даваемое микроскопом, может быть сделано значительным. Так, например, при fоб= 2 мм,fок = 15 мм,l= 160 мм имеетf = 0,19 мм иКм= 1330. Впрочем, предел полезному увеличению, даваемому микроскопом, кладут дифракционные явления, и поэтому приведенный расчет имеет лишь ориентировочное значение.

1.2 Разрешающая способность. Значение апертурного угла. Формула для предела разрешения

Предел разрешения - это такое наименьшее расстояние между двумя точками предмета, когда эти точки различимы, т.е. воспринимаются в микроскопе как две точки.

Свойство оптической системы давать раздельное изображение двух близко расположенных светящихся (или освещенных) точек называют разрешающей способностью системы. Это есть величина, обратная пределу разрешения. Разрешающая способность микроскопа обусловлена волновыми свойствами света, поэтому выражение для предела разрешения можно получить, учитывая дифракционные явления.

Предел разрешения микроскопа Zпри нормальном падении света на предмет:

Z = / sin( /2), (1)

и при наклонном освещении:

Z= / 2sin( /2), (1а)

где - апертурный угол

.

1.3 Ультрафиолетовый микроскоп

Как видно из формулы (1), один из способов уменьшения предела разрешения микроскопа - использование света с меньшей длиной волны. В связи с этим применяют ультрафиолетовый микроскоп, в котором микрообъекты исследуются в ультрафиолетовых лучах. Принципиальная схема оптическая такого микроскопа аналогична схемам обычного микроскопа. Основное отличие заключается, во-первых, в использовании оптических устройств, прозрачных для УФ света, и, во-вторых, в особенности получения изображения. Т.к. глаз непосредственно не воспринимает этого излучения, то употребляются фотопластинки, люминесцентные экраны или электронно-оптические преобразователи.

2. Иммерсионные системы

Дальнейшим усовершенствованием микроскопа явилось применение иммерсионного объектива.

Так называют объектив, у которого пространство между предметом (покровным стеклом препарата) и входной линзой заполняется жидкой средой - иммерсией - с показателем преломления, близким к стеклу, например, глицерином (n = 1,45) или монобромнафталином (n = 1,65).

При иммерсионном объективе, во-первых, значительно увеличивается яркость изображения и, во-вторых, повышается разрешающая способность микроскопа. При иммерсии свет от предмета до объектива проходит по оптически однородной среде и не дает потерь на отражение. Это значительно повышает яркость изображения, что имеет существенное значение особенно для микроскопа с большим увеличением.

Для микроскопа с увеличением в 400 раз площадь изображения по сравнению с площадью предмета увеличивается в 160 000 раз, во столько же раз уменьшается его яркость по сравнению с яркостью предмета.

В иммерсионном объективе, где между предметом и объективом находится среда с показателем преломления n, длина волны света, проходящего в объектив,

n= / n,

где- длина волны света в воздухе. Подставляя эти данные в формулу для предела разрешения, получим:

Z = n / 2sin( /2) = / 2n sin( /2)

т.е. предел разрешения иммерсионного объектива при наклонном освещении предмета числено равен отношению длины волны света к удвоенному произведению показателя преломления иммерсионной среды на синус апертурного угла объектива.

Величина А = sin( /2) для сухого или Аn = n sin( /2)для иммерсионного объектива называется численной (числовой) апертурой и для сухого объектива обозначается на оправе вместе с увеличением.

Поэтому можно сказать, что предел разрешения микроскопа равняется длине волны света, при котором производится наблюдение, деленной на численную апертуру при перпендикулярном падении света на предмет:

Z = / A,

или деленной на удвоенную численную апертуру при наклонном освещении:

Z = / 2A;

при иммерсионном объективе Z = / 2n A.

Числовая апертур а объектива, характеризуя предел разрешения, позволяет сравнить между собой разрешающую способность различных микроскопов.

Последняя тем выше, чет больше апертура. Максимальный апертурный угол может быть порядка 700, тогда для сухого объектива ему соответствует числовая апертура А= sin700 = 0,94; Z0,30мкм.

Для иммерсионного объектива при n = 1,5

Аn = 1,5 0,94 = 1,4; Z0,19мкм.

Данные приведены для наклонного падения света на объект и наиболее чувствительной глазу длины волны 0,555 мкм.

2.1 Полезное увеличение

Таким образом, в оптическом микроскопе разрешаются объекты размером не менее 0,2 - 0,3 мкм. Для того, чтобы эти объекты были различимы также и глазом, увеличение Км микроскопа должно быть не меньше величины, определяемой соотношением пределов разрешения Zглаза и микроскопа

Zм:Km = Zгл / Zм,

подставляя в эту формулу значение Z, получим

Km = 2A Zгл / .

Zглаза(на расстоянии наилучшего зрения) равно от 140 до 280 мкм. Подставляя их, а также= 0,555 мкм в формулу, находим интервал значений полезного увеличения микроскопа:500А < Kм < 1000А. Эти увеличения называют полезными, т.к. при них глаз различает все элементы структуры объекта, которые разрешимы микроскопом.

3. Специальные приемы микроскопии

· измерение размеров малых объектов,

· микропроекция, микрофотография,

· метод фазового контраста,

· метод темного поля, ультрамикроскопия.

3.1 Измерение размеров малых объектов

Определение величины микроскопируемого предмета делается с помощью нанесенных на стеклянную пластинку масштабных шкал, называемых окулярным и объектным микрометрами.

Окулярный микрометр помещают между линзами окуляра так, чтобы его шкала находилась в плоскости промежуточного изображения, образуемого объективом, При этом в окуляр наблюдается изображение шкалы, совмещенное с изображением микроскопируемого предмета. Учитывая цену деления шкалы микрометра, можно определить размер этого изображения, даваемого объективом, а разделив полученные данные на известное увеличение объектива Коб- действительные размеры предмета.

Если цена деления окулярного микрометра неизвестна, то ее можно определить с помощью объектного микрометра с известной ценой деления (обычно 0,01 мм). Объектный микрометр помещается на место препарата и в окуляр наблюдается совмещенное изображение обеих шкал.

3.2 Микропроекция и микрофотография

Мнимый характер изображения в микроскопе обусловлен тем, что промежуточное действительное изображение, образуемое объективом, располагается ближе переднего фокуса окуляра. Если это условие нарушить, например, перевернуть окуляр так, что изображение, которое дает объектив, окажется дальше фокусного расстояния окуляра, то последний будет давать действительное изображение, которое может быть спроецировано на экран или фотопленку. Способ наблюдения на экране действительного изображения предмета называется микропроекцией. Обычно при этом микроскоп ставят горизонтально, и предмет освещают сильным источником света.

Фотографирование полученного таким образом действительного изображения называется микрофотографией. Обычно при этом употребляется специальная фотонасадка к микроскопу, которая представляет собой фотокамеру, надеваемую на окулярный конец тубуса микроскопа.

3.3 Метод фазового контраста

Служит для получения изображений прозрачных и бесцветных объектов, невидимых при наблюдении по методу светлого поля. К числу таких объектов относятся, например, живые неокрашенные животные ткани.

Метод основан на том, что даже при очень малых различиях в показателях преломления разных элементов препарата световая волна, проходящая через них, претерпевает разные изменения по фазе (приобретает т. н. фазовый рельеф). Эти фазовые изменения, не воспринимаемые непосредственно ни глазом, ни фотопластинкой, с помощью специального оптического устройства преобразуются в изменения амплитуды световой волны, т. е. в изменения яркости («амплитудный рельеф»), которые уже различимы глазом или фиксируются на фоточувствительном слое. Другими словами, в получаемом видимом изображении распределение яркостей (амплитуд) воспроизводит фазовый рельеф. Такое изображение называется фазово-контрастным.

Рис.2. Метод фазового контраста

На рис.2 в переднем фокусе конденсора 3 устанавливается апертурная диафрагма 2, отверстие которой имеет форму кольца. Её изображение возникает вблизи заднего фокуса объектива 5, и там же устанавливается т. н. фазовая пластинка 6, на поверхности которой имеется кольцевой выступ или кольцевая канавка, называемая фазовым кольцом.

Фазовая пластинка может быть помещена и не в фокусе объектива (часто фазовое кольцо наносят прямо на поверхность одной из линз объектива), но в любом случае не отклоненные в препарате 4 лучи от осветителя 1, дающие изображение диафрагмы 2, должны полностью проходить через фазовое кольцо, которое значительно ослабляет их (его делают поглощающим) и изменяет их фазу на /4 ( - длина волны света).

В то же время лучи, даже ненамного отклоненные (рассеянные) в препарате, проходят через фазовую пластинку, минуя фазовое кольцо (штриховые линии), и не претерпевают дополнительного сдвига фазы. С учётом фазового сдвига в материале препарата полная разность фаз между отклоненными и неотклонёнными лучами оказывается близкой к 0 или /2, и в результате интерференции света в плоскости изображения 4' препарата 4 они заметно усиливают или ослабляют друг друга, давая контрастное изображение структуры препарата. Отклоненные лучи имеют значительно меньшую амплитуду по сравнению с неотклонёнными, поэтому ослабление основного пучка в фазовом кольце, сближая значения амплитуд, также приводит к большей контрастности изображения.

Метод позволяет различать малые элементы структуры, чрезвычайно слабо контрастные в методе светлого поля. Прозрачные частицы, сравнительно не малые по размерам, рассеивают лучи света на столь небольшие углы, что эти лучи проходят вместе с неотклонёнными через фазовое кольцо. Для подобных частиц фазово-контрастный эффект имеет место только вблизи их контуров, где происходит сильное рассеяние.

3.4 Метод темного поля, ультрамикроскопия

Метод тёмного поля в проходящем свете применяется для получения изображений прозрачных неабсорбирующих объектов, невидимых при освещении по обычными методами. Свет от осветителя 1 и зеркала 2 направляется на препарат конденсором специальной конструкции - т. н. конденсором тёмного поля 3.

По выходе из конденсора основная часть лучей света, не изменившая своего направления при прохождении через прозрачный препарат, образует пучок в виде полого конуса и не попадает в объектив 5 (который находится внутри этого конуса).

Изображение в микроскопе создаётся лишь небольшой частью лучей, рассеянных микрочастицами находящегося на предметном стекле 4 препарата внутрь конуса, которые затем проходят через объектив. В поле зрения 6 на тёмном фоне видны светлые изображения элементов структуры препарата, отличающихся от окружающей среды показателем преломления.

У крупных частиц видны только светлые края, рассеивающие лучи света. При этом методе по виду изображения нельзя определить, прозрачны частицы или непрозрачны, больший или меньший показатель преломления они имеют по сравнению с окружающей средой.

Метод ультрамикроскопии, основан на том же принципе, что и метод темного поля (препараты в ультрамикроскопах освещаются перпендикулярно направлению наблюдения). Этот метод даёт возможность обнаружить (но не «наблюдать» в буквальном смысле слова) чрезвычайно мелкие частицы, размеры которых лежат далеко за пределами разрешающей способности наиболее сильных микроскопов. С помощью иммерсионных ультрамикроскопов удаётся зарегистрировать присутствие в препарате частиц размером до 210-9 м.

Однако определить форму и точные размеры таких частиц с помощью этого метода невозможно: их изображения представляются наблюдателю в виде дифракционных пятен, размеры которых зависят не от размеров и формы самих частиц, а от апертуры объектива и увеличения микроскопа. Т. к. подобные частицы рассеивают очень мало света, то для их освещения требуются чрезвычайно сильные источники света, например угольная электрическая дуга. Ультрамикроскопы применяются главным образом в коллоидной химии.

объектив микроскоп оптический апертурный

5. Гипотеза де Бройля

5.1 Опыты по дифракции электронов и других частиц

Важным этапом в создании квантовой механики явилось установление волновых свойств микрочастиц.

Идея о волновых свойствах частиц была первоначально высказана как гипотеза французским физиком Луи де Бройлем (1924)1. Эта гипотеза появилась благодаря следующим предпосылкам.

Гипотеза де Бройля была сформулирована до опытов, подтверждающих волновые свойства частиц. Де Бройль об этом позднее, в 1936 г. писал так: «...не можем ли мы предположить, что и электрон так же двойственен, как и свет?

На первый взгляд такая идея казалась очень дерзкой. Ведь мы всегда представляли себе электрон в виде электрически заряженной материальной точки, которая подчиняется законам классической динамики.

Электрон никогда не проявлял волновых свойств, таких, скажем, какие проявляет свет в явлениях интерференции и дифракции. Попытка приписать волновые свойства электрону, когда этому нет никаких экспериментальных доказательств, могла выглядеть как ненаучная фантазия».

В физике в течение многих лет господствовала теория, согласно которой свет есть электромагнитная волна. Однако после работ Планка (тепловое излучение), Эйнштейна (фотоэффект) и др. стало очевидным, что свет обладает корпускулярными свойствами.

Чтобы объяснить некоторые физические явления, необходимо рассматривать свет как поток частиц -- фотонов. Корпускулярные свойства света не отвергают, а дополняют его волновые свойства.

Итак, фотон -- элементарная частица, движущаяся со скоростью света, обладающая волновыми свойствами и имеющая энергию е = hv, где v -- частота световой волны.

Логично считать, что и другие частицы -- электроны, нейтроны также обладают волновыми свойствами.

(5.1)

Выражение для импульса фотона рф получается из известной формулы Эйнштейна е = тс2 и соотношений е = hv и р. = тс:

где с -- скорость света в вакууме, л, -- длина световой волны. Эта формула была использована де Бройлем и для других микрочастиц -массой т, движущихся со скоростью и:

р = ти =h/л откуда

(5.2)

По де Бройлю, движение частицы, например электрона, описывается волновым процессом с характеристической длиной волны Я, в соответствии с формулой (5.2). Эти волны называют волнами де Бройля.

Гипотеза де Бройля была столь необычной, что многие крупные физики-современники не придали ей какого-либо значения. Несколькими годами позже эта гипотеза получила экспериментальное подтверждение: была обнаружена дифракция электронов.

Найдем зависимость длины волны электрона от ускоряющего напряжения U электрического поля, в котором он движется. Изменение кинетической энергии электрона равно работе сил поля:

Выразим отсюда скорость v и, подставив ее в (5.2), получим

(5.3)

Для получения пучка электронов с достаточной энергией, который можно зафиксировать, например, на экране осциллографа, необходимо ускоряющее напряжение порядка 1 кВ. В этом случае из (5.3) находим Я, = 0,4 * 10~10 м, что соответствует длине волны рентгеновского излучения.

Дифракция рентгеновских лучей наблюдается на кристаллических телах; следовательно, для дифракции электронов необходимо также использовать кристаллы.

К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов на монокристалле никеля, Дж. П. Томсон и независимо от него П. С. Тартаковский -- на металлической фольге (поликристаллическое тело). На рис. 5.1 изображена электронограмма -- дифракционная картина, полученная от взаимодействия электронов с поликристаллической фольгой. Можно заметить сходство дифракции электронов и рентгеновских лучей.

Способностью дифрагировать обладают и другие частицы, как заряженные (протоны, ионы и др.), так и нейтральные (нейтроны, атомы, молекулы). Аналогично рентгеноструктурному анализу можно применять дифракцию частиц для оценки степени упорядоченности расположения атомов и молекул вещества, а также для измерения параметров кристаллических решеток. В настоящее время широкое распространение имеют методы электронографии (дифракция электронов) и нейтронографии (дифракция нейтронов). Может возникнуть вопрос: что происходит с отдельными частицами, как образуются максимумы и минимумы при дифракции отдельных частиц?

Рис. 5.1

Опыты по дифракции пучков электронов очень малой интенсивности, т. е. отдельных частиц, показали, что при этом электрон не «размазывается» по разным направлениям, а ведет себя как целая частица. Однако вероятность отклонения электрона по отдельным направлениям в результате взаимодействия с объектом дифракции различна.

Наиболее вероятно попадание электронов в те места, которые по расчету соответствуют максимумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности.

6. Электронный микроскоп. Понятие об электронной оптике

Волновые свойства частиц можно использовать не только для дифракционного структурного анализа, но и для получения увеличенных изображений предмета.

Открытие волновых свойств электрона сделало возможным создание электронного микроскопа. Предел разрешения оптического микроскопа определяется в основном наименьшим значением длины волны света, воспринимаемого глазом человека. Подставив в эту формулу значение длины волны де Бройля (5.3), найдем предел разрешения электронного микроскопа, в котором изображение предмета формируется электронными пучками:

(6.1)

Видно, что предел разрешения г электронного микроскопа зависит от ускоряющего напряжения U, увеличивая которое можно добиться, чтобы предел разрешения был значительно меньше, а разрешающая способность значительно больше, чем у оптического микроскопа.

Электронный микроскоп и его отдельные элементы по своему назначению подобны оптическому, поэтому воспользуемся аналогией с оптикой для объяснения его устройства и принципа действия.

В оптическом микроскопе носителями информации о предмете АВ являются фотоны, свет. Источником света обычно служит лампа накаливания. После взаимодействия с предметом (поглощение, рассеяние, дифракция) поток фотонов преобразуется и содержит информацию о предмете.

Поток фотонов формируется с помощью линз: конденсора, объектива, окуляра. Изображение регистрируется глазом (или фотопластинкой, фотолюминесцирующим экраном и т. д.).

В электронном микроскопе носителем информации об образце являются электроны, а их источником -- подогреваемый катод. Ускорение электронов и образование пучка осуществляется фокусирующим электродом и анодом -- системой, называемой электронной пушкой.

После взаимодействия с образцом (в основном рассеяние) поток электронов преобразуется и содержит информацию об образце. Формирование потока электронов происходит под воздействием электрического поля (система электродов и конденсаторов) и магнитного (система катушек с током).

Эти системы называют электронными линзами по аналогии с оптическими линзами, которые формируют световой поток (конденсорная; электронная, служащая объективом; проекционная). Изображение регистрируется на чувствительной к электронам фотопластинке или катодолюминесцирующем экране.

Чтобы оценить предел разрешения электронного микроскопа, подставим в формулу (6.1) ускоряющее напряжение U = 100 кВ и угловую апертуру и порядка 10 2 рад (приблизительно такие углы используют в электронной микроскопии). Получим г ~ 0,1 нм; это в сотни раз лучше, чем у оптических микроскопов.

Применение ускоряющего напряжения, большего 100 кВ, хотя и повышает разрешающую способность, но сопряжено с техническими сложностями, в частности происходит разрушение исследуемого объекта электронами, имеющими большую скорость.

Для биологических тканей из-за проблем, связанных с приготовлением образца, а также с его возможным радиационным повреждением, предел разрешения составляет около 2 нм. Этого достаточно, чтобы увидеть отдельные молекулы.

Рис. 4

На рис. 4. показаны нити белка актина, имеющие диаметр примерно 6 нм. Видно, что они состоят из двух спирально закрученных цепей молекул белка. Укажем некоторые особенности эксплуатации электронного микроскопа. В тех частях его, где пролетают электроны, должен быть вакуум, так как в противном случае столкновение электронов с молекулами воздуха (газа) приведет к искажению изображения.

Это требование к электронной микроскопии усложняет процедуру исследования, делает аппаратуру более громоздкой и дорогой. Вакуум искажает нативные свойства биологических объектов, а в ряде случаев разрушает или деформирует их. Для рассматривания в электронном микроскопе пригодны очень тонкие срезы (толщина менее 0,1 мкм), так как электроны сильно поглощаются и рассеиваются веществом.

Для исследования поверхностной геометрической структуры клеток, вирусов и других микрообъектов делают отпечаток их поверхности на тонком слое пластмассы (реплику).

Обычно предварительно на реплику в вакууме напыляют под скользящим (малым к поверхности) углом слой сильно рассеивающего электроны тяжелого металла (например, платины), оттеняющий выступы и впадины геометрического рельефа.

К достоинствам электронного микроскопа следует отнести большую разрешающую способность, позволяющую рассматривать крупные молекулы, возможность изменять при необходимости ускоряющее напряжение и, следовательно, предел разрешения, а также сравнительно удобное управление потоком электронов с помощью магнитных и электрических полей.

Наличие волновых и корпускулярных свойств как у фотонов, так и у электронов и других частиц, позвол яет ряд положений и законов оптики распространить и на описание движения заряженных частиц в электрических и магнитных полях.

Эта аналогия позволила выделить как самостоятельный раздел электронную оптику -- область физики, в которой изучается структура пучков заряженных частиц, взаимодействующих с электрическими и магнитными полями. Как и обычную оптику, электронную можно подразделить на геометрическую (лучевую) и волновую (физическую). В рамках геометрической электронной оптики возможно, в частности, описание движения заряженных частиц в электрическом и магнитном полях, а также схематическое построение изображения в электронном микроскопе.

Подход волновой электронной оптики важен в том случае, когда проявляются волновые свойства заряженных частиц. Хорошей иллюстрацией этому является нахождение разрешающей способности (предела разрешения) электронного микроскопа, приведенное в начале параграфа

Размещено на Allbest.ru

...

Подобные документы

  • Методы световой микроскопии, темного поля, фазового контраста, наблюдения в инфракрасных и ультрафиолетовых лучах, в свете люминесценции. Поляризационная, электронная микроскопия. Лоренцова электронная микроскопия. Сущность зонального центрофугирования.

    презентация [1,0 M], добавлен 10.10.2008

  • Физические поля и излучения функционирующего организма человека. Механизм взаимодействия излучений человека и окружающей среды и возможности медицинской диагностики и лечения. Физические поля биологических объектов. Метод газоразрядной визуализации.

    доклад [67,1 K], добавлен 15.12.2009

  • Биотехнические проблемы инженерной деятельности. Управление состоянием биологических объектов, их отношение к техническим комплексам. Модель взаимодействия человека-оператора с объектом управления. Положение человека в структуре биотехнических систем.

    статья [137,4 K], добавлен 20.08.2013

  • Анализ стадий и типов фотохимических реакций. Исследование механизма действия ультрафиолетового излучения на белки и нуклеиновую кислоту. Люминесцентная микроскопия. Описание микроскопов серии "Люмам". Применение люминесцентных меток и зондов в медицине.

    презентация [1009,8 K], добавлен 10.04.2015

  • Характеристика этапов развития и возможностей флуоресцентной микроскопии. Методы выявления физиологического состояния клеток микроводорослей. Количественная регистрация интенсивности флуоресценции. Определение содержания витаминов в растительных клетках.

    курсовая работа [58,1 K], добавлен 16.05.2010

  • Понятие и классификация фракталов, история их возникновения. Место фракталов в современной науке, применение в компьютерной графике для построения изображений природных объектов, в физике и других естественных науках. Свойств фракталов, их самоподобие.

    реферат [23,5 K], добавлен 17.07.2013

  • Общая характеристика вирусов как неклеточных биологических объектов. Внеклеточная и внутриклеточная морфологические формы вирусов. Строение и химический состав простого и сложноустроенного вириона. Смешанный или сложный тип симметрии (бактериофаги).

    презентация [1,6 M], добавлен 25.10.2013

  • Понятие биотехнологии как науки о методах и технологиях производства ценных веществ и продуктов с использованием природных биологических объектов. Традиционная и новая биотехнология, ее перспективные направления развития. Генная и клеточная инженерия.

    презентация [547,9 K], добавлен 21.11.2013

  • Общее описание и специфика двойного дыхания у птиц. Значения обтекаемой формы и облегченности тела в способности к полету. Характеристика экологической группы водных птиц, их приемы приспособления к изменению кормовых условий и сменам времен года.

    реферат [135,1 K], добавлен 05.06.2010

  • Основные этапы исторического развития и становления естествознания как науки. Примеры современных концепций. Принципы модели устойчивой мировой системы. Современное представление происхождения объектов Вселенной, гипотеза о цикличности ее состояния.

    реферат [35,6 K], добавлен 23.01.2011

  • Структура биологических мембран и строение их основы - билипидного слоя. Молекулярная масса мембранных белков, их различие по прочности связывания с мембраной. Динамические свойства биологических мембран и значение организации для биологических систем.

    реферат [19,1 K], добавлен 20.12.2009

  • Поведенческие реакции волнистых попугаев при решении простых логических задач. Анализ свойств рассудочного поведения птиц при выборе объектов по форме, цвету и нахождению приманки. Индивидуальные отличия и способности к самосознанию у разных особей.

    дипломная работа [729,3 K], добавлен 02.02.2018

  • Эмбриональное развитие рыбца. Отбор, выживаемость, заготовка и получение зрелых производителей русского осетра и рыбца. Выбор места под строительство рыбоводного предприятия. Физико-химическая и гидрологическая характеристика источника водоснабжения.

    курсовая работа [10,0 M], добавлен 11.09.2010

  • Методы изучения морфологии микроорганизмов при микроскопии препаратов, приготовленных из чистых культур путем окрашивания. Способы витальной окраски микроорганизмов для избежания артефактов, появляющихся в результате токсического действия красителя.

    презентация [3,4 M], добавлен 23.02.2016

  • Формирование рациональных знаний о природе. Исторический очерк становления биологи как науки. Система биологических наук. Биография Ламарка - ученого, внесшего существенный вклад в биологии. Эволюционная теория. Значение биологических исследований.

    контрольная работа [23,8 K], добавлен 16.10.2008

  • Открытые и замкнутые системы, их активность и обмен, строение и классификация. Иерархическое соподчинение систем, подсистем и элементов. Симптомы и признаки современного экологического кризиса. Характеристика уровней иерархии биологических систем.

    реферат [24,6 K], добавлен 14.08.2009

  • Определение временных параметров подачи зрительных сигналов, необходимых для узнавания простых, средней сложности, сложных тест-изображений и "Цифры цветные". Изучение временных параметров зрительной системы с помощью "жидкокристаллических светоклапанов".

    дипломная работа [2,0 M], добавлен 23.01.2018

  • Поверхностно-активные вещества как компоненты синтетических моющих средств, их химические свойства и применение, негативное действие на экосистемы и здоровье человека. Исследование способности микроорганизмов разлагать ПАВ, определение их активности.

    курсовая работа [114,0 K], добавлен 26.05.2009

  • Совершенствование биологических и промыслово-биологических основ управления запасами промысловых рыб путем регулирования и контроля селективности и интенсивности рыболовства. Основные понятия и показатели интенсивности промышленного рыболовства.

    магистерская работа [2,3 M], добавлен 27.02.2009

  • Открытие феномена эмбриональной регуляции. Эксплантация и трансплантация ядер. Метод экстракорпорального оплодотворения. Изучение фиксированных срезов зародышей с помощью световой и электронной микроскопии, гисторадиоавтографии, гисто- и иммуноцитохимии.

    презентация [1,5 M], добавлен 10.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.