Определение генетики бактерий как науки

Организация генетического материала у бактерий. Проведение исследования понятий о генотипе и фенотипе. Основные виды изменчивости у микробов. Механизмы передачи информации генезиса у микроорганизмов. Роль генетики одноклеточных организмов в медицине.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 30.08.2017
Размер файла 210,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

РЕФЕРАТ

НА ТЕМУ ОПРЕДЕЛЕНИЕ ГЕНЕТИКИ БАКТЕРИЙ КАК НАУКИ. ЕЕ ЗНАЧЕНИЕ В МЕДИЦИНЕ. ОРГАНИЗАЦИЯ ГЕНЕТИЧЕСКОГО МАТЕРИАЛА У БАКТЕРИЙ. ГЕНОТИП. ФЕНОТИП.

Выполнила

Рудакова Т.

Волгоград. 2013 г

Генетика (от греч. genos -- рождение) -- это наука, изучающая наследственность и изменчивость. Микроорганизмы обладают способностью изменять свои основные признаки:

морфологические (строение); культуральные (рост на питательных средах); биохимические или ферментативные признаки (добавление определенных веществ в питательную среду может вызвать активацию фермента, который до этого находится в латентном состоянии); биологические свойства -- может меняться степень па-тогенности, на этом основаны способы приготовления живых вакцин.

Например, при 12--14-дневном культивировании возбудителя сибирской язвы при t° -- 42--43°С микробы потеряли способность вызывать заболевание у животных, но сохранили свои иммуногенные свойства.

БЦЖ (бацилла Кальмета-Герена) снизила болезнетворность бычьего вида микобактерий туберкулеза путем длительных пассажей на картофельной среде с желчью и глицерином при t° 38°C. Пересевы через каждые 14 дней получили ослабленный штамм микобактерий туберкулеза, который назван «вакциной» БЦЖ, используемой для профилактики туберкулеза.

Наследственность -- это способность организмов сохранять определенные признаки на протяжении многих поколений.

Изменчивость -- это приобретение признаков под влиянием различных факторов, отличающих их от предыдущих поколений.

Генетическая информация в клетках бактерий заключена в ДНК (у некоторых вирусов РНК). Молекула ДНК состоит из двух нитей, каждая из которых спирально закручена относительно другой. При делении клетки спираль удваивается. И вновь образуется двунитчатая молекула ДНК. В состав молекулы ДНК входят 4 азотистых основания -- одекаин, гуанин, цитозин, тимин. Порядок расположения в цепи у разных организмов определяет их наследственную информацию, закодированную в ДНК.

Организация генетического материала у бактерий. Понятие о генотипе и фенотипе.

Генотип - совокупность генов организма

Фенотип - совокупность внешних признаков, индивидуальное проявление генотипа

Наследственный аппарат бактерий представлен одной хромосомой, которая представляет собой молекулу ДНК, она спирализована и свернута в кольцо. Это кольцо в одной точке прикреплено к цитоплазматической мембране. На бактериальной хромосоме располагаются отдельные гены. Бактериальная клетка гаплоидна, а репликация ДНК сопровождается делением клетки. Внехромосомные молекулы ДНК представлены плазмидами, транспозонами (мигрирующими генетическими элементами) и вставочными или IS- последовательностями.

Плазмиды бактерий. Строение, особенности репликации; разновидности плазмид, их функции.

Плазмиды- внехромосомный генетический материал. Представляет собой кольцевую, двунитевую молекулу ДНК, гены которой кодируют дополнительные свойства, придавая селективные преимущества клеткам. У них отсутствует собственная систем мобилизации энергии и синтеза белка; плазмиды способны к автономной репликации, т. е. независимо от хромосомы или под слабым ее контролем (за счет автономной репликации одна и та же плазмида может находиться в нескольких копиях); обладает абсолютным внутриклеточным паразитизмом; среда их обитания- только бактерии. Различают трансмиссивные и нетрансмиссивные плазмиды. Трансмиссивные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую.

Функциональная классификация плазмид основана на свойствах, которыми они наделяют бактерии: 1) F-плазмиды. Кодируют пол у бактерий, индуцируют деление. Мужские клетки (F+) содержат F-плазмиду, женские (F--) - не содержат. Мужские клетки выступают в роли донора генетического материала при конъюгации, а женские - реципиента 2) R- плазмиды - устойчивость к лекарственным препаратам 3) Col- плазмиды- синтез колицинов - факторов конкуренции близкородственных бактерий 4) Hly- плазмиды- синтез гемолизинов 5) Ent- плазмиды- синтез энтеротоксинов 6) Tox- плазмиды- токсинообразование 7) плазмиды биодеградации. Кодируют ферменты, с помощью которых бактерии могут утилизировать ксенобиотики. Потеря клеткой плазмиды не приводит к ее гибели. В одной и той же клетке могут находиться разные плазмиды. Биологическая роль плазмид: - контроль генетического обмена бактерий; - контроль синтеза факторов патогенности; - совершенствование защиты бактерий.

Фенотипическое проявление плазмид. F-, Col-, R-плазмиды и плазмиды патогенности. Их роль в биологии микроорганизмов.

1) F-плазмиды. Кодируют пол у бактерий, индуцируют деление. Мужские клетки (F+) содержат F-плазмиду, женские (F--) - не содержат. Мужские клетки выступают в роли донора генетического материала при конъюгации, а женские - реципиента 2) R- плазмиды - устойчивость к лекарственным препаратам 3) Col- плазмиды- синтез колицинов - факторов конкуренции близкородственных бактерий 4) Плазмиды патогенности контролируют вирулентные свойства многих видов, особенно энтеробактерий. В частности F-, R-плазмиды и плазмиды бактериоциногении включают tox-транспозоны (мигрирующий генетический элемент), кодирующие токсинообразование.

Фенотипические признаки, сообщаемые бактериальной клетке плазмидами:1) устойчивость к антибиотикам; 2) образование колицинов; 3) продукция факторов патогенности; 4) способность к синтезу антибиотических веществ; 5) расщепление сложных органических веществ;

6) образование ферментов рестрикции и модификации.

Подвижные генетические элементы: транспозоны, Is-последовательности. Их строение, функции и роль в эволюции бактерий.

Мигрирующие генетические элементы - отдельные участки ДНК, способные определять свой перенос между хромосомами или хромосомой и плазмидой с помощью фермента рекомбинации транспозазы. Простейшим их типом являются инсерционные последовательности (IS- элементы) или вставочные элементы. IS-последовательности - это короткие фрагменты ДНК. Они не несут структурных (кодирующих белок) генов, а содержат только гены, ответственные за транспозицию (способность перемещаться по хромосоме и встраиваться в различные ее участки).Их функции- координация взаимодействия плазмид, умеренных фагов, транспозонов и генофора для обеспечения репродукции, регуляция активности генов, индукция мутаций. Транспозоны - это более крупные молекулы ДНК. Помимо генов, ответственных за транспозицию, они содержат и структурный ген, обеспечивающий синтез молекул, обладающих специфическим биологическим свойством, например токсичностью, или обеспечивающих устойчивость к антибиотикам. Транспозоны способны перемещаться по хромосоме. Их положение сказывается на экспрессии генов. Транспозоны могут существовать и вне хромосомы (автономно), но неспособны к автономной репликации. Перемещаясь по репликону или между репликонами, подвижные генетические элементы вызывают: 1. Инактивацию генов тех участков ДНК, куда они, переместившись, встраиваются. 2. Образование повреждений генетического материала.

3. Слияние репликонов, т. е. встраивание плазмиды в хромосому. 4. Распространение генов в популяции бактерий, что может приводить к изменению биологических свойств популяции, смене возбудителей инфекционных заболеваний, а также способствует эволюционным процессам среди микробов.

Виды изменчивости у бактерий. Модификационная изменчивость, ее механизмы и формы проявления.

Изменчивость у бактерий может быть ненаследуемой (модификационной) и генотипической (мутации, рекомбинации). Временные, наследственно не закрепленные изменения, возникающие как адаптивные реакции бактерий на изменения окружающей среды, называются модификациями (чаще морфологические и биохимические модификации). Черты: 1.обратимость -- изменения исчезают при смене специфических условий окружающей среды, спровоцировавших их

групповой характер 2. изменения в фенотипе не наследуются, наследуется норма реакции генотипа 3. статистическая закономерность вариационных рядов 4. затрагивает фенотип, при этом не затрагивая сам генотип. Стандартное проявление модификации- распределение однородной популяции на две или более двух типов диссоциации. Пример, характер роста на питательных средах: S- (гладкие) колонии, R- (шероховатые) колонии, M- (мукоидные, слизистые) колонии, D- (карликовые) колонии. Диссоциация протекает обычно в направлении S R. Диссоциация сопровождается изменениями биохимических, морфологических, антигенных и вирулентных свойств возбудителей.

Генотипическая изменчивость. Мутации у бактерий, их разновидности. Причины и механизмы возникновения мутаций. Мутагены.

при генотипической изменчивости происходит изменение наследственного материала и, обычно, эти изменения наследуются. Это основа разнообразия живых организмов. Различают два вида генотипической изменчивости: мутационная и комбинативная. Мутация -- изменение первичной структуры ДНК, проявляющееся наследственно закреплённой утратой или изменением какого-либо признака или группы признаков. Фенотипическим проявлением мутации могут быть: изменение морфологии бактериальной клетки, возникновение потребностей в факторах роста (пр. АК), т. е. ауксотрофность; появление устойчивости к а/б; изменение чувствительности к t; снижение вирулентности (аттенуация). Могут быть спонтанные (возникают в популяции бактерий без видимого вмешательства извне) и индуцированные (вызванные искусственно), точечные, прямые, обратные, генные (изменения 1 гена) и хромосомные (изменения 2х или более участков хромосомы). Факторы, вызывающие мутации, известны как мутагены. Мутагены бывают физическими (УФ-лучи, у-радиация), химическими (аналоги пуриновых и пиримидиновых оснований, например, 2-амино-пурин, азотистая кислота и ее аналоги и др.) и биологическими (транспозоны). генетический бактерия фенотип микроорганизм

Механизмы передачи генетической информации у бактерий: коньюгация, трансдукция, трансформация; их использование для получения рекомбинантов с заданными свойствами.

Конъюгация бактерий состоит в переходе генетического материала (ДНК) из клетки-донора («мужской») в клетку-реципиент («женскую») при контакте клеток между собой. При конъюгации происходит только частичный перенос генетического материала. Трансдукция -- передача ДНК от бактерии-донора к бактерии-реципиенту при участии бактериофага. Различают неспецифическую (общую) трансдукцию, при которой возможен перенос любого фрагмента ДНК донора, и специфическую -- перенос определенного фрагмента ДНК донора только в определенные участки ДНК реципиента. Трансформация заключается в том, что ДНК, выделенная из бактерий в свободной растворимой форме, передается бактерии-реципиенту. При трансформации рекомбинация происходит, если ДНК бактерий родственны друг другу, обр-ся рекомбинат. В связи с развитием новой отрасли народного хозяйства селекцией микроорганизмов, были выведены высокоактивные штаммы, позволившие во много раз увеличить производство антибиотиков, аминокислот, витаминов и др. биологически активных веществ.

Цели и задачи генной инженерии. Основные этапы генноинженерных манипуляций. Достижения генной инженерии.

совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы. Цель заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека. Технология получения генетически модифицированных организмов (ГМО) принципиально решает вопросы преодоления всех естественных и межвидовых рекомбинационных и репродуктивных барьеров. Технология включает несколько этапов создания ГМО:

1. Получение изолированного гена. 2. Введение гена в вектор для встраивания в организм.

3. Перенос вектора с конструкцией в модифицируемый организм-рецепиент (собственно «генетическая модификация» (трансформация). 4. Молекулярное клонирование. 5. Отбор ГМО. Достижения: разработаны высокоточные методы диагностики и идентификации микроорганизмов- определение плазмидного профиля, рестрикционный анализ, ДНК- гибридизация, полимеразная цепная реакция (ПЦР), секвенирование и мн.др.

Применение генетических методов в диагностике инфекционных заболеваний: ПЦР, метод молекулярных зондов.

ПЦР (Полимерамзная цепнамя реамкция) позволяет найти в исследуемом клиническом материале небольшой участок генетической информации любого организма, содержащийся в следовых количествах среди огромного количества нуклеотидных последовательностей иной природы, и быстро размножить его. Метод включает несколько этапов: расплетание двойной спирали ДНК, расхождение нитей ДНК и последующее комплементарное дополнение (достройку) обеих с помощью специального фермента. ПЦР дает возможность существенно ускорить и облегчить диагностику наследственных и вирусных заболеваний. Нужный ген амплифицируют с помощью ПЦР с использованием соответствующих праймеров, а затем секвенируют (опред-е первичной АК-й или нук-й посл-ти) для определения мутаций. Вирусные инфекции можно обнаруживать сразу после заражения, за недели или месяцы до того, как проявятся симптомы заболевания. Молекулярные зонды - это короткие фрагменты ДНК, подходящие определённому организму, которые посредством определенных лабораторных методов могут использоваться, чтобы указать не только присутствие или отсутствие этого организма, но также и его относительные количества. Для получения ДНК-зондов используют метод клонирования генов. Сущность метода состоит в том, что фрагмент ДНК, соответствующий какому-либо гену или участку гена, встраивают в клонирующую частицу, как правило, бактериальную плазмиду (кольцевая внехромосомная ДНК, присутствующая в клетках бактерий и несущая гены устойчивости к антибиотикам), и затем бактерии, имеющие плазмиду со встроенным человеческим геном, размножают. Благодаря процессам синтеза в плазмиде удаётся получить миллиарды копий человеческого гена или его участка. В дальнейшем полученные копии ДНК, меченные радиоактивной меткой или флюорохромами, используют в качестве зондов для поиска комплементарных последовательностей среди исследуемого пула молекул ДНК.

Литература

1. П.О.Кимович Медицинская микробиология под редакцией акад. РАМН В.И.Покровского.-М.2006г.

2. Учебное пособие для студентов ВолгГМУ леч.фак.

3. В.Д.Тимаков, В.С. Левашев, Л.Б.Борисов Микробиология:Учебник.-2-е изд.,перераб.-М.,1983, 512с.

4. Поздеев О.К. Медицинская микробиология. 2009г.

Размещено на Allbest.ru

...

Подобные документы

  • Задачи генетики микроорганизмов, которая составляет основу молекулярной биологии. Плазмиды. Мигрирующие генетические элементы. Генетический материал бактерий. Сущность генетики вирусов. Закономерности геномной организации патогенных бактерий и вирусов.

    презентация [285,5 K], добавлен 09.11.2014

  • Проведение исследования в области генетики и изменчивости микроорганизмов. Характеристика S- и R-форм колоний. Фенотипическая изменчивость (модификация). Возникновение бактериальной мутации. Генетические рекомбинации и трансформация. Структура плазмидов.

    реферат [20,3 K], добавлен 07.06.2015

  • Группа микроскопических одноклеточных организмов-прокариотов. Микроскопические методы исследования микроорганизмов. Формы, строение и химический состав бактериальной клетки. Функции поверхностных структур. Дыхание, питание, рост и размножение бактерий.

    презентация [3,8 M], добавлен 24.01.2017

  • Генетическая система бактерий. Полимеразная цепная реакция. Применение генетических методов в диагностике инфекционных заболеваний. Метод молекулярной гибридизации. Особенности генетики вирусов. Системы репарации бактерий. Взаимодействие вирусных геномов.

    презентация [2,6 M], добавлен 13.09.2015

  • Механизмы выживания бактерий при низких и высоких температурах и при экстремальных значениях рН. Жизнь бактерий при высоких концентрациях солей, растворенных веществ и в условиях недостатка воды. Роль стрессосом как факторов выживания микроорганизмов.

    курсовая работа [719,6 K], добавлен 01.06.2010

  • Слоистые каменные структуры (строматолиты) - результат жизнедеятельности бактерий как древнейшей группы организмов. Изучение бактерий, форма и строение бактерий, их размеры и распространение. Классификация бактерий по способу питания, размножение.

    презентация [661,9 K], добавлен 14.10.2011

  • Задачи физиологии микроорганизмов. Анализ химического состава бактериальной клетки. Особенности и механизмы питания аутотрофных и гетеротрофных бактерий, их ферменты, процесс дыхания и размножения. Наследственность и генетические рекомбинации у бактерий.

    реферат [21,1 K], добавлен 29.09.2009

  • Геном человека. Генетические продукты. Определение отцовства методом ДНК-диагностики. Дактилоскопическая идентификация человека. Гистологические и цитологические методы исследования в судебной медицине. Век биологии и генетики.

    реферат [18,9 K], добавлен 18.04.2004

  • Роль генетики в сельском хозяйстве и медицине. Суть и понятие о множественном аллелизме, особенности фенотипической гетерогенности популяций, закономерности наследственности и изменчивости организмов. Примеры наследования по типу множественных аллелей.

    реферат [572,1 K], добавлен 20.12.2011

  • Окислительно-восстановительные реакции, идущие с образованием молекулы АТФ. Облигатные аэробы, облигатные анаэробы, факультативные анаэробы. Рост и размножение бактерий. Пигменты и ферменты бактерий. Основные принципы культивирования микроорганизмов.

    реферат [12,8 K], добавлен 11.03.2013

  • Закономерности наследования и изменчивости признаков у человека - предмет изучения генетики. Характеристика основных методов исследования. Метод составления родословных (генеалогический). Популяционный, близнецовый, цитогенетический, биохимический методы.

    презентация [4,1 M], добавлен 11.04.2015

  • История развития генетики как науки. Ее основные положения. В основе генетики лежат закономерности наследственности, обнаруженные австрийским биологом Г. Менделем при проведении им серии опытов по скрещиванию различных сортов гороха. Генная инженерия.

    контрольная работа [32,1 K], добавлен 16.06.2010

  • ДНК - материальная основа наследственности бактерий. Изменчивость бактерий (модификации, мутации, генетические рекомбинации). Генетика вирусов. Механизмы образования лекарственной устойчивости бактерий. Получение и использование вакцины и сыворотки.

    реферат [509,3 K], добавлен 28.01.2010

  • Споры – форма бактерий с грамположительным типом строения клеточной стенки. Роль спорообразования бактерий и грибов для практики. Строение и особенности химического состава бактериальной споры. Микробиологическое обоснование пастеризации и стерилизации.

    контрольная работа [223,5 K], добавлен 02.10.2011

  • Изучение предмета, основных задач и истории развития медицинской микробиологии. Систематика и классификация микроорганизмов. Основы морфологии бактерий. Исследование особенностей строения бактериальной клетки. Значение микроорганизмов в жизни человека.

    лекция [1,3 M], добавлен 12.10.2013

  • Химический состав бактериальной клетки: вода, белки, жиры, углеводы и минералы. Основные типы питания. Механизмы обмена веществ, ферменты. Дыхание: аэробы и анаэробы; редокс-потенциал. Рост и размножение, репликация ДНК. Некультивируемые формы бактерий.

    презентация [2,4 M], добавлен 03.04.2012

  • Формы и размеры бактериальных организмов и их краткая характеристика. Строение бактериальной клетки, движение бактерий. Спорообразование и его биологическая роль, размножение бактерий. Передача признаков с помощью процессов трансдукции и трансформации.

    лекция [25,5 K], добавлен 25.03.2013

  • История развития микробиологии как науки о строении, биологии, экологии микробов. Науки, входящие в комплекс микробиологии, классификация бактерий как живых организмов. Принцип вакцинации, методы, повышающие резистентность человека к микроорганизмам.

    презентация [10,9 M], добавлен 18.04.2019

  • История возникновения генетики и ее основные функции. Исследование наследования и скрещивания. Изменчивость и проблема генных мутаций. Современные возможности науки: трансгенные организмы, клонирование, лечение и предупреждение наследственных болезней.

    реферат [55,6 K], добавлен 20.11.2012

  • Генетика как наука о наследственности от Г. Менделя и сегодня. Хромосомные нарушения и наследственные болезни как следствие изменений генетической информации. Методы изучения генетики человека и роль воспроизводства в развитии живого, клонирование.

    реферат [17,3 K], добавлен 29.06.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.