Биология человека
Химические компоненты клетки, роль макро-, микроэлементов в жизнедеятельности организма. Строение, химический состав хромосом. Биологическая роль белков. Кариотип человека, принципы составления идиограмм. классификация генов и свойства генетического кода.
Рубрика | Биология и естествознание |
Вид | курс лекций |
Язык | русский |
Дата добавления | 29.10.2017 |
Размер файла | 1,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
У бактерий есть два механизма терминации транскрипции:
· ро-зависимый механизм, при котором белок Rho (ро) дестабилизирует водородные связи между матрицей ДНК и мРНК, высвобождая молекулу РНК.
· ро-независимый, при котором транскрипция останавливается, когда только что синтезированная молекула РНК формирует стебель-петлю, за которой расположено несколько урацилов (…УУУУ), что приводит к отсоединению молекулы РНК от матрицы ДНК.
Терминация транскрипции у эукариот менее изучена. Она завершается разрезанием РНК, после чего к её 3' концу фермент добавляет несколько аденинов (…АААА), от числа которых зависит стабильность данного транскрипта[3].
Особенности транскрипции у про и эукариот:
Прокариот- синтез всех РНК происходит при катализируется одной РНК-полимеразой. Эукариот-3 ядерные РНК-полимеразы(РНК -полимераза1 синтезирует пре-рРНК, РНК-полимераза2ответсвенная за синтез пре-мРНК, РНК-полимерза3 ответственная за синтез пре-тРНК), полимеразы митохондрий и пластид.
13. Трансляция: суть явления, необходимые компоненты и условия, особенности строения т-РНК, минорные основания и их роль. Ферменты транскрипции. Процессинг белков
Трансляция (от лат. translatio - перевод) - процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой. Синтез белка в большинстве случаев начинается с AUG-кодона, кодирующего метионин. Этот кодон обычно называют стартовым или инициаторным. Инициация трансляции предусматривает узнавание рибосомой этого кодона и привлечение инициаторной аминоацил-тРНК. Для инициации трансляции необходимо также наличие определённых нуклеотидных последовательностей в районе стартового кодона (последовательность Шайна - Дальгарно у прокариот и последовательность Козак у эукариот). Немаловажная роль в защите 5'-конца мРНК принадлежит 5'-кэпу. Существование последовательности, отличающей стартовый AUG от внутренних совершенно необходимо, так как в противном случае инициация синтеза белка происходила бы хаотично на всех AUG-кодонах. Процесс инициации обеспечивается специальными белками - факторами инициации (англ. initiation factors, IF; инициаторные факторы эукариот обозначают eIF, от англ. eukaryotes).Механизмы инициации трансляции у про- и эукариот существенно отличаются: прокариотические рибосомы потенциально способны находить стартовый AUG и инициировать синтез на любых участках мРНК, в то время как эукариотические рибосомы обычно присоединяются к мРНК в области кэпа и сканируют её в поисках стартового кодона.
Транспортная РНК.
Имеет типичную длину от 73 до 93 нуклеотидов и размеры около 5 нм тРНК является одноцепочечной РНК, однако в функциональной форме имеет конформацию «клеверного листа». Аминокислота ковалентно присоединяется к 3'-концу молекулы с помощью специфичного для каждого типа тРНК фермента аминоацил-тРНК-синтетазы. На участке C находится антикодон, соответствующий аминокислоте минорные основания (в среднем 10-12 оснований на молекулу). Они представлены метилированными основаниями, изомерами и аналогами пиримидинов Минорные основания выполняют 2 функции: они делают тРНК устойчивыми к действию нук-леаз цитоплазмы и поддерживают определённую третичную структуру молекулы, так как не могут участвовать в образовании комплементарных ферменты: РНК-полимераза. Процессинг РНК (посттранскрипционные модификации РНК) - совокупность процессов в клетках эукариот, которые приводят к превращению первичного транскрипта РНК в зрелую РНК. Наиболее известен процессинг матричных РНК, которые во время своего синтеза подвергаются модификациям: кэпированию, сплайсингу и полиаденилированию. Кэпирование представляет собой присоединение к 5'-концу транскрипта 7-метилгуанозина через необычный для РНК 5',5'-трифосфатный мостик, а также метилирование остатков рибозы двух первых нуклеотидов. Процесс кэпирования происходит во время синтеза молекулы пре-мРНК. Кэпирование защищает 5'-конец первичного транскрипта от действия рибонуклеаз, специфически разрезающих фосфодиэфирные связи в направлении 5'>3'.[1]:221
Функции кэпа и связанных с ним белков:
· участие в сплайсинге;
· участие в процессинге 3'-конца мРНК;
· экспорт мРНК из ядра;
· защита 5'-конца транскрипта от экзонуклеаз;
· участие в инициации
полиаденирование
Фермент поли(А)-полимераза присоединяет 3'-концу транскрипта от 100 до 200 остатков адениловой кислоты. Полиаденилирование осуществляется при наличии сигнальной последовательности 5'- AAUAAA-3' на 3'-конце транскрипта, за которой следует 5'-CA-3'. Вторая последовательность является сайтом разрезания. После полиаденилирования мРНК подвергается сплайсингу, в ходе процессе которого удаляются интроны (участки, которые не кодируют белки), а экзоны (участки, кодирующие белки) сшиваются и образуют единую молекулу [2]. Сплайсинг катализируется крупным нуклеопротеидным комплексом - сплайсосомой, состоящей из белков и малых ядерных РНК.
14. Понятие о гене: определение. Особенности строения структурных генов эукариот. Генетический код и его свойства. Понятие о кодоне и антикодоне. Структурная и функциональная классификация генов. Онкогены и их роль в канцерогенезе
Ген - структурная и функциональная единица наследственности живых организмов. Ген представляет собой участок ДНК, задающий последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. При этом некоторые органеллы (митохондрии, пластиды) имеют собственную, определяющую их признаки, ДНК, не входящую в геном организма. Эукариотические гены, в отличие от бактериальных, имеют прерывистое мозаичное строение. Кодирующие последовательности (экзоны) перемежаются с некодирующими (интронами). Экзон [от англ. ex(pressi)on - выражение, выразительность] - участок гена, несущий информацию о первичной структуре белка. В гене экзоны разделены некодирующими участками - интронами. Интрон (от лат. inter - между) - участок гена, не несущий информацию о первичной структуре белка и расположенный между кодирующими участками - экзонами. В результате структурные гены эукариот имеют более длинную нуклеотидную последовательность, чем соответствующая зрелая иРНК, последовательность нуклеотидов в которой соответствует экзонам. В процессе транскрипции информация о гене списывается с ДНК на промежуточную иРНК, состоящую из экзонов и интронов. Затем специфические ферменты - рестриктазы - разрезают эту про-иРНК по границам экзон-интрон, после чего экзонные участки ферментативно соединяются вместе, образуя зрелую иРНК (так называемый сплайсинг). Количество интронов может варьировать в разных генах от нуля до многих десятков, а длина - от нескольких пар оснований до нескольких тысяч.
Свойства
1. Триплетность - значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
2. Непрерывность - между триплетами нет знаков препинания, то есть информация считывается непрерывно.
3. Неперекрываемость - один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).
4. Однозначность (специфичность) - определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты - цистеин и селеноцистеин)[11]
5. Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.
6. Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусов до человека (на этом основаны методы генной инженерии).
7. Помехоустойчивость - мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.
Кодон (кодирующий тринуклеотид) - единица генетического кода, тройка нуклеотидных остатков (триплет) в ДНК или РНК, обычно кодирующих включение одной аминокислоты. Последовательность кодонов в гене определяет последовательность аминокислот в полипептидной цепи белка, кодируемого этим геном.
Антикодон - триплет (тринуклеотид), участок в транспортной рибонуклеиновой кислоте (тРНК), состоящий из трёх неспаренных (имеющих свободные связи) нуклеотидов. Спариваясь с кодоном матричной РНК (мРНК), обеспечивает правильную расстановку каждой аминокислоты при биосинтезе белка.
Классификация:
Структурные
Регуляторные:
Модификаторы (не имеют собственного выражения в фенотипе, но оказывают влияние на экспрессию других генов), супрессоры (гены, которые обеспечивают трансофрмация клеток в опухолевые)
Онкогены (от греч. onkos - опухоль) - гены, которые часто находятся в ДНК- (аденопаповавирусы) и РНК-содержащих (ретровирусы) вирусах, а также в геноме опухолевых клеток.
Онкогены обусловливают превращение нормальных клеток эукариот на злокачественные при участии онкобелков, которые они кодируют. Образуются онкогены с видоизмененных нормальных генов (проонкогенов), которые широко представлены в разных видах организмов. Образование проонкогенов происходит вследствие точечных мутаций, амплификации и усиления экспрессии генов, хромосомных перестроек.
15. Схема передачи сигнала в клетку, первичные и вторичные мессенджеры, понятие о G-белках
Передача сигнала относится к любому процессу, при помощи которого клетка превращает один тип сигнала или стимула в другой.
Существование сложных многоклеточных организмов возможно благодаря координации биохимических процессов, протекающих в их клетках. Основой такой координации служат межклеточная коммуникация и передача сигнала внутри отдельных клеток. Вместе это даёт возможность одной клетке контролировать поведение остальных. В большинстве случаев передача сигнала внутри клетки представляет собой цепь последовательных биохимических реакций, осуществляемых ферментами, часть из которых активируется вторичными посредниками. Такие процессы обычно являются быстрыми: их продолжительность - порядка миллисекунд в случае ионных каналов и минут - в случае активации протеинкиназ илипид-опосредованных киназ. Однако в некоторых случаях от получения клеткой сигнала до ответа на него могут проходить часы и даже сутки (в случае экспрессии генов). Пути передачи сигнала, или сигнальные пути, часто бывают организованы как сигнальные каскады: количество молекул белков и других веществ, принимающих участие в передаче сигнала, возрастает на каждом последующем этапе по мере удаления от первоначального стимула. Таким образом, даже относительно слабый стимул может вызывать значительный ответ. Это явление называется амплификацией сигнала
Нарушения в системе передачи сигналов могут привести к развитию рака, аутоиммунных заболеваний и диабета. Понимание механизмов передачи сигнала внутри клетки может привести к разработке методов лечения этих заболеваний и даже созданию искусственных тканей
Первичные посредники. Первичные посредники - это химические соединения или физические факторы (квант света), способные активировать механизм передачи сигнала в клетке. По отношению к воспринимающей клетке первичные посредники являются экстраклеточными сигналами. Стоит отметить, что в качестве экстраклеточных стимулов могут выступать и молекулы в изобилии присутствующие внутри клетки, но находящиеся в норме в очень низкой концентрации в межклеточном пространстве (например, АТФ или глутамат). В зависимости от функций первичные посредники могут быть разделены на несколько групп:
· гормоны
· цитокины
· нейротрансмиттеры
· факторы роста
· хемокины
Вторичные посредники
Вторичные посредники - это низкомолекулярные вещества, которые образуются или высвобождаются в результате ферментативной активности одного из компонентов цепи передачи сигнала и способствуют его дальнейшей передаче и амплификации Вторичные посредники характеризуются следующими свойствами: имеют небольшую молекулярную массу и с высокой скоростью диффундируют в цитоплазме; быстро расщепляются и быстро удаляются из цитоплазмы. Ко вторичным посредникам относятся:
· ионы кальция (Ca2+);
· циклический аденозинмонофосфат (цАМФ) и циклический гуанозинмонофосфат (цГМФ)
· инозитолтрифосфат
· липофильные молекулы (например, диацилглицерол);
· оксид азота (NO) (эта молекула выступает и в роли первичного посредника, проникающего в клетку извне).
Иногда в клетке образуются и третичные посредники. Так, обычно ионы Ca2+ выступают в роли вторичного посредника, но при передаче сигнала с помощью инозитолтрифосфата (вторичный посредник) выделяющиеся при его участии из ЭПР ионы Ca2+ служат третичным посредником.
G-белки - это семейство белков, относящихся к ГТФазам и функционирующих в качестве вторичных посредников во внутриклеточных сигнальных каскадах. G-белки названы так, поскольку в своём сигнальном механизме они используют замену GDP на GTP как молекулярный функциональный «выключатель» для регулировки клеточных процессов.
16. Потоки генетической информации в клетке. Явление обратной транскрипции. Биологическая роль
Благодаря потоку биоинформации клетка, используя эволюционный опыт предков, приобретает структуру, отвечающую критериям элементарной морфологической, функциональной и генетической единицы жизни поддерживает ее во времени и передает в ряду поколений. Этот же поток составляет основу выполнения специализированными клетками многоклеточного организма их функций гипотеза
Непосредственными участниками потока биоинформации являются клеточное ядро - ДНК хромосом, репликация ДНК, транскрипция и пост(после)транскрипционный процессинг пре- РНК транскриптов, макромолекулы, переносящие генетическую информацию из ядра в цитоплазму (информационная или матричная и другие виды РНК, непосредственно участвующие в биосинтезе белков, информосомы), цитоплазматический аппарат образования простых белков или полипептидов (рибосомный цикл синтеза белка, С полипептидами происходят пост(после)трансляционные изменения (фолдинг - приобретение вторичной и третичной структуры или конфигурации, объединение в комплексы - четвертичная структура, химическая модификация). Функционально зрелые белки и их комплексы используются в качестве ферментов, строительных блоков, антител и т. д.
Обратная транскрипция. Схема обратной транскрипции.
Некоторые вирусы (такие как ВИЧ, вызывающий СПИД), имеют возможность транскрибировать РНК в ДНК. ВИЧ имеет РНК-геном, который встраивается в ДНК. В результате, ДНК вируса может быть объединено с геномом клетки-хозяина. Главный фермент, ответственный за синтез ДНК из РНК, называется ревертазой. Одной из функций ревертазы является создание комплементарной ДНК (кДНК) из вирусного генома. Ассоциированый фермент рибонуклеаза H расщепляет РНК, а ревертаза синтезирует кДНК из двойной спирали ДНК. кДНК интегрируется в геном клетки-хозяина с помощью интегразы. Результатом является синтез вирусных протеинов клеткой-хозяином, которые образуют новые вирусы. В случае с ВИЧ так же программируется апоптоз (смерть клетки) Т-лимфоцитов. В иных случаях клетка может остаться распростанителем вирусов.
Некоторые клетки эукариотов содержат фермент теломеразу, так же проявляющую активность обратной транскрипции. С её помощью синтезируются повторяющиеся последовательности в ДНК.
17. Формы клеточной репродукции соматических клеток: митоз, амитоз, эндомитоз, политения. Суть явления и биологическое значение. Проблемы клеточной пролиферации
Митоз - это основной тип деления соматических эукариотических клеток. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1-1,5 ч, в 2-периода интерфазы - 2-3 ч, S-периода интерфазы - 6-10 ч.
К нетипичным формам митоза относятся амитоз, эндомитоз, политения.
1. Амитоз - это прямое деление ядра. При этом сохраняется морфология ядра, видны ядрышко и ядерная мембрана. Хромосомы не видны, и их равномерного распределения не происходит. Ядро делится на две относительно равные части без образования митотического аппарата (системы микротрубочек, центриолей, структурированных хромосом). Если при этом деление заканчивается, возникает двухъядерная клетка. Но иногда перешнуровывается и цитоплазма.
Такой вид деления существует в некоторых дифференцированных тканях (в клетках скелетной мускулатуры, кожи, соединительной ткани), а также в патологически измененных тканях. Амитоз никогда не встречается в клетках, которые нуждаются в сохранении полноценной генетической информации, - оплодотворенных яйцеклетках, клетках нормально развивающегося эмбриона. Этот способ деления не может считаться полноценным способом размножения эукариотических клеток.
2. Эндомитоз. При этом типе деления после репликации ДНК не происходит разделения хромосом на две дочерние хроматиды. Это приводит к увеличению числа хромосом в клетке иногда в десятки раз по сравнению с диплоидным набором. Так возникают полиплоидные клетки. В норме этот процесс имеет место в интенсивно функционирующих тканях, например, в печени, где полиплоидные клетки встречаются очень часто. Однако с генетической точки зрения эндомитоз представляет собой геномную соматическую мутацию.
3. Политения. Происходит кратное увеличение содержания ДНК (хромонем) в хромосомах без увеличения содержания самих хромосом. При этом количество хромонем может достигать 1000 и более, хромосомы при этом приобретают гигантские размеры. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей ДНК. Такой тип деления наблюдается в некоторых высокоспециализированных тканях (печеночных клетках, клетках слюнных желез двукрылых насекомых). По-литенные хромосомы дрозофил используются для построения цитологических карт генов в хромосомах.
Пролиферация - разрастание ткани организма путём размножения клеток делением.
18. Понятие о жизненном цикле клетки. Характеристика периодов
Митотический цикл клетки, его периодизация и характеристика.
Жизненный цикл клетки - время существования клетки от момента образования до нового деления или гибели. Обеспечивает преемственность генетического материала в ряду клеток дочерних поколений; приводит к образованию клеток, равноценных как по объему, так и по содержанию генетической информации.
Важной частью является митотический (пролиферативный) цикл - комплекс процессов, происходящих перед, во время и непосредственно после делением. Так же после деления клетка может перейти в G0-фазу(«работа на экспорт», без последующего деления).
Митоз - это основной тип деления соматических эукариоти-ческих клеток. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1-1,5 ч, G2-периода интерфазы - 2-3 ч, S-периода интерфазы - 6-10 ч.
Основные стадии митоза.
1. Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90 % информации эукариотической клетки.
2. Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).
Фазы клеточного цикла:
1) Пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;
2) Синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка. В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохондриальной ДНК (основная же ее часть реплицируется в G2 период);
3) Постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных). S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период - препрофазу. После этого наступает собственно митоз, который состоит из четырех фаз.
Фазы митоза:
1) Профаза. Центриоли клеточного центра делятся и расходятся к противоположным полюсам клетки. Из микротрубочек образуется веретено деления, которое соединяет центриоли разных полюсов. В начале профазы в клетке еще видны ядро и ядрышки, к концу этой фазы ядерная оболочка разделяется на отдельные фрагменты, ядрышки распадаются. Начинается конденсация хромосом: они скручиваются, утолщаются, становятся видимыми в световой микроскоп. В цитоплазме уменьшается количество структур шероховатой ЭПС.
2) Метафаза. Заканчивается образование веретена деления. Конденсированные хромосомы выстраиваются по экватору клетки, образуя метафазную пластинку. Микротрубочки веретена деления прикрепляются к центромерам, или кинетохорам (первичным перетяжкам), каждой хромосомы. После этого каждая хромосома продольно расщепляется на две хроматиды (дочерние хромосомы) которые оказываются связанными только в участке центромеры;
3) Анафаза. Между дочерними хромосомами разрушается связь, и они начинают перемещаться к противоположным полюсам клетки. В конце анафазы на каждом полюсе оказывается по диплоидному набору хромосом. Хромосомы начинают деконденсироваться и раскручиваться, становятся тоньше и длиннее;
4) Телофаза. Хромосомы полностью деспирализуются, восстанавливается структура ядрышек и интерфазного ядра, монтируется ядерная мембрана. Разрушается веретено деления. Происходит цитокинез (деление цитоплазмы). В животных клетках этот процесс начинается с образования в экваториальной плоскости перетяжки, которая все более углубляется и в конце концов полностью делит материнскую клетку на две дочерние. Продолжительность каждой фазы зависит от типа ткани, физиологического состояния организма, воздействия внешних факторов (света, температуры, химических веществ) и пр. Нетипичные формы митоза:
1. Амитоз - это прямое деление ядра. Этот способ деления не может считаться полноценным способом размножения эукариотических клеток.
2. Эндомитоз. При этом типе деления после репликации ДНК не происходит разделения хромосом на две дочерние хроматиды. Это приводит к увеличению числа хромосом в клетке иногда в десятки раз по сравнению с диплоидным набором. Так возникают полиплоидные клетки. Однако с генетической точки зрения эндомитоз представляет собой геномную соматическую мутацию.
3.Политения. Происходит кратное увеличение содержания ДНК (хромонем) в хромосомах без увеличения содержания самих хромосом. При этом количество хромонем может достигать 1000 и более, хромосомы при этом приобретают гигантские размеры. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей ДНК. Такой тип деления наблюдается в некоторых высокоспециализированных тканях (печеночных клетках, клетках слюнных желез двукрылых насекомых.
19. Мейоз. Фазы мейоза. Особенности профазы 1. Биологическое значение. Динамика хромосом (n) и ДНК (с). Схема нарушения расхождения хромосом и формирование патологических кариотипов
Мейоз - деление эукариотической клетки с уменьшением числа хромосом в два раза и образованием гамет. Происходит в два этапа (редукционный и эквационный этапы мейоза).
Значение.
Биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Кроме того, вследствие кроссинговера происходит рекомбинация - появление новых сочетаний наследственных задатков в хромосомах. Мейоз обеспечивает также комбинативную изменчивость - появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.
Фазы мейоза.
Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.
Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:
Лептотена или лептонема - упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).
Зиготена или зигонема - происходит конъюгация - соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.
Пахитена или пахинема - (самая длительная стадия) - в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы. В них происходит кроссинговер - обмен участками между гомологичными хромосомами.
Диплотена или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.
Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой. К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки
Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки, наступает пауза.
Анафаза I - микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.
Телофаза I - хромосомы деспирализуются и появляется ядерная оболочка.
Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.
Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.
Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.
Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.
В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца.
Динамика хромосом (n) и ДНК (с).
Профаза 1:
Лептотена Появление тонких нитей хромосом (хромосомы удвоены)
Зиготена Конъюгация хромосом
Пахитена Видны конъюгированные хромосомы
Диплотена Начало отталкивания гомологов - различима фигура, похожая на греческ. Х
Метафаза 1: Разрушение ядерной мембраны. Хромосомы выстраиваются в метафазную пластинку.
Анафаза 1: К разным полюсам расходятся гомологичные хромосомы, состоящие из 2 хроматид.
Телофаза 1 может отсутствовать, или ядро может восстанавливаться
Профаза 2, Метафаза 2: по митотическому типу.
Анафаза 2: Расхождение хроматид удвоенных хромосом.
Телофаза 2: 4 гаплоидных ядра.
Схема: 2n2c - 2n4c - 1n2c - 1n1c.
Схема нарушения расхождения хромосом и формирование патологических кариотипов.
Нормальные кариотипы человека - 46,XX (женский) и 46,XY (мужской). Нарушения нормального кариотипа у человека возникают на ранних стадиях развития организма: в случае, если такое нарушение возникает при гаметогенезе, в котором продуцируются половые клетки родителей, кариотип зиготы, образовавшейся при их слиянии, также оказывается нарушенным. При дальнейшем делении такой зиготы все клетки эмбриона и развившегося из него организма обладают одинаковым аномальным кариотипом.
Как правило, нарушения кариотипа у человека сопровождаются множественными пороками развития; большинство таких аномалий несовместимо с жизнью и приводят к самопроизвольным абортам на ранних стадиях беременности.
Нарушения кариотипа могут также возникнуть и на ранних стадиях дробления зиготы, развившийся из такой зиготы организм содержит несколько линий клеток (клеточных клонов) с различными кариотипами, такая множественность кариотипов всего организма или отдельных его органов именуется мозаицизмом (химеризм).
Болезни, обусловленные нарушением числа аутосом - синдром Дауна, синдром Патау, синдром Эдвардса.
Болезни, связанные с нарушением числа половых хромосом - синдром Шерешевского - Тёрнера, полисомия по Х-хромосоме, полисомия по Y-хромосоме, синдром Клайнфельтера .
Болезни, причиной которых является полиплоидия вызывают смерть еще до рождения.
Нарушения структуры хромосом:
Транслокации - обменные перестройки между негомологичными хромосомами.
Делеции - потери участка хромосомы. Например, синдром кошачьего крика связан с делецией короткого плеча 5-ой хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова).
Инверсии - повороты участка хромосомы на 180 градусов.
Дупликации - удвоения участка хромосомы.
Изохромосомия - хромосомы с повторяющимся генетическим материалом в обоих плечах.
Возникновение кольцевых хромосом - соединение двух концевых делеций в обоих плечах хромосомы.
20. Митоз и мейоз - сравнительно-цитологическая характеристика
Таблица - Сравнение митоза и мейоза
Фаза |
Митоз |
Мейоз |
||
1 деление |
2 деление |
|||
Интерфаза |
Набор хромосом 2n. Идет интенсивный синтез белков, АТФ и других органических веществ. Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой. |
Набор хромосом 2n. Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при образовании яйцеклеток. |
Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует. |
|
Профаза |
Непродожительна, происходит спирализация хромосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления |
Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скручиваются. При этом может происхоить обмен генетической информацией (перекрест хромосом) - кроссинговер. Затем хромосомы расходятся. |
Короткая; те же процессы, что и в митозе, но при n хромсом. |
|
Метафаза |
Происходит дальнейшая спирализация хромосм, их центромеры располагаются по экватору. |
Происходят процессы, аналогичные тем, что и в митозе. |
Происходит то же, что и в митозе, но при n хромосом. |
|
Анафаза |
Центромеры, скрепляющие сестринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам. |
Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хромосом, состоящая из двух хроматид, скрепленных общей центромерой. |
Происходит то же, что и в митозе, но при n хромосом. |
|
Телофаза |
Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки. |
Длится недолго. Гомологичные хромосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда. |
Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом. |
Сравнение |
Митоз |
Мейоз |
|
Сходства |
1.Имеют одинаковые фазы деления. |
||
2.Перед митозом и мейозом происходит самоудвоение молекул ДНК в хромосомах (редупликация) и спирализация хромосом. |
|||
Различия |
1. Одно деление. |
1. Два последовательных деления. |
|
2. В метафазе все удвоенные хромосомы выстраиваются по экватору раздельно. |
2. Гомологичные удвоенные хромосомы выстраиваются по экватору парами (бивалентами). |
||
3. Нет конъюгации |
3. Есть конъюгация |
||
4. Удвоение молекул ДНК происходит в интерфазе, разделяющий два деления. |
4. Между первым и вторым делением нет интерфазы и не происходит удвоения молекул ДНК. |
||
5. Образуются две диплоидные клетки (соматические клетки). |
5. Образуются четыре гаплоидные клетки (половые клетки). |
||
6.Происходит в соматических клетках |
6. происходит в созревающих половых клетках |
||
7.Лежит в основе бесполого размножения |
7.Лежит в основе полового размножения |
21. Гаметогенез. Сравнительная характеристика периодов ово- и сперматогенеза: размножения, роста, созревания и формирования
Гаметогенез - это последовательный процесс, который обеспечивает размножение, рост и созревание половых клеток в мужском организме (сперматогенез) и женском (овогенез). Протекает в половых железах - сперматогенез в семенниках у мужчин, а овогенез в яичниках у женщин. В результате гаметогенеза в организме женщины образуются женские половые клетки - яйцеклетки, а у мужчин - мужские половые клетки сперматозоиды.
1. Стадия размножения. Первичные клетки на этой стадии называются сперматогониями и овогониями, из них в последующем образуются мужские и женские половые клетки. Половые клетки несколько раз делятся путем митоза, и количество их значительно возрастает. Сперматогонии размножаются у мужчины в течение всего репродуктивного периода, а размножение овогоний происходит в эмбриональном периоде и наиболее интенсивно происходит во 2 - 5 месяц внутриутробного развития.
2. Стадия роста. В этот период клетки значительно увеличиваются в размерах. Сперматогонии и овогонии превращаются в сперматоциты и овоциты I порядка. Овоциты I порядка достигают больших размеров, поскольку накапливают питательные вещества.
3. Стадия созревания. На этой стадии происходят два следующих друг за другом деления - мейоз I и мейоз II. После первого деления образуются сперматоциты и овоциты II порядка, а после второго деления - сперматиды и зрелые яйцеклетки с тремя полярными тельцами, которые в процессе размножения не участвуют и погибают. При созревании один сперматоцит I порядка дает четыре сперматиды, а один овоцит I порядка образует одну яйцеклетку и три полярных тельца.
4. Стадия формирования. Она характерна только для сперматогенеза. Незрелая сперматида превращается в сперматозоид, приобретая свойственный ему вид. Образование сперматозоидов у мужчин начинается только в период полового созревания и происходит в течение всего года. Период развития сперматогоний в зрелые сперматозоиды составляет 74 дня.
1. Гаметогенез включает стадии размножения, роста и созревания клеток. Сперматогенез включает также стадию формирования (ее нет при овогенезе), в этом заключаются отличия сперматогенеза от овогенеза. Сперматозоиды проходят дополнительную четвертую стадию для того, чтобы приобрести своеобразную форму и сформировать аппарат движения.
2. Второе отличие сперматогенеза от овогенеза: из сперматоцита I порядка получается четыре половых клетки, а из ооцита I порядка получается одна полноценная половая клетка.
3. Яйцеклетки образуются циклически, процесс повторяется через 21-35 дней (менструальный цикл). Сравнительная характеристика овогенеза и сперматогенеза показывает, что у женщин мейоз начинается в период внутриутробного развития.
Ооциты I порядка у новорожденной девочки останавливаются в фазе мейоз I, и завершается созревание ооцита к моменту полового созревания. У мальчиков процесс образования сперматозоидов идет непрерывно и сохраняется в течение всей половой зрелости мужчины.
4. Существуют значительные различия в количестве образованных половых клеток в женском и мужском организме. Взрослый мужчина производит 30 миллионов спермиев в день, а женщина - порядка 500 зрелых яйцеклеток за всю свою жизнь.
5. Стадия размножения при сперматогенезе идет постоянно, а при овогенезе заканчивается после рождения.
6. Стадия роста при сперматогенезе короче, чем при овогенезе.
7. Стадия созревания при овогенезе имеет особенности, которые заключаются в неравномерности делений при созревании, что приводит к выделению полярных телец, что отсутствует при сперматогенезе.
8. Сперматогенез более подвержен влиянию внешней среды, нежели овогенез, что связано с различием в расположении половых органов - семенники находятся вне брюшной полости.
9. Поскольку образование яйцеклеток начинается еще до рождения девочки, а завершается для яйцеклетки только после ее оплодотворения, то неблагоприятные факторы внешней среды могут повлечь генетические аномалии у потомства.
1. Гаметогенез - процесс образования яйцеклеток (овогенез) и сперматозоидов (сперматогенез) - подразделяется на ряд стадий.
В стадии размножения диплоидные клетки, из которых образуются гаметы, называют сперматогониями и овогониями. Эти клетки осуществляют серию последовательных митотических делений, в результате чего их количество существенно возрастает. Сперматогонии размножаются на протяжении всего периода половой зрелости мужской особи. Размножение овогоний приурочено главным образом к периоду эмбриогенеза.
Овогонии и сперматогонии, как и все соматические клетки, характеризуются диплоидностью. Если в одинарном, гаплоидном наборе число хромосом обозначить как n, а количество ДНК - как с, то генетическая формула клеток в стадии размножения соответствует 2n2с до 5-периода и 2n4с после него.
На стадии роста происходит увеличение клеточных размеров и превращение мужских и женских половых клеток в сперматоциты и овоциты I порядка. Важным событием этого периода является редупликация ДНК при сохранении неизменным числа хромосом. Последние приобретают двунитчатую структуру, а генетическая формула сперматоцитов и овоцитов I порядка приобретает вид 2п4с.
Основными событиями стадии созревания являются два последовательных деления: редукционное и эквационное,- которые вместе составляют мейоз. После первого деления образуются сперматоциты и овоциты II порядка (формула п2с), а после второго - сперматиды и зрелая яйцеклетка (пс).
В результате делений на стадии созревания каждый сперматоцит I порядка дает четыре сперматиды, тогда как каждый овоцит I порядка - одну полноценную яйцеклетку и редукционные тельца, которые в размножении не участвуют. Благодаря этому в женской гамете концентрируется максимальное количество питательного материала - желтка.
Процесс сперматогенеза завершается стадией формирования, или спермиогенеза. Ядра сперматид уплотняются вследствие сверхспирализации хромосом, которые становятся функционально инертными. Пластинчатый комплекс перемещается к одному из полюсов ядра. Центриоли занимают место у противоположного полюса ядра, причем от одной из них отрастает жгутик, у основания которого в виде спирального чехлика концентрируются митохондрии. На этой стадии почти вся цитоплазма сперматиды отторгается, так что головка зрелого сперматозоида практически ее лишена.
За счет генетического разнообразия половое размножение создает предпосылки к освоению разнообразных условий обитания; дает эволюционные и экологические перспективы; способствует осуществлению творческой роли естественно отбора.
22. Гаметы - яйцеклетки и сперматозоиды. Морфологическая, физиологическая и генетическая характеристики. Суть полового процесса, биологическое значение. Особенности полового процесса у человека
Гаметы - репродуктивные клетки, имеющие гаплоидный (одинарный) набор хромосом и участвующие в половом размножении. При слиянии двух гамет в половом процессе образуется зигота, развивающаяся в особь (или группу особей) с наследственными признаками обоих родительских организмов. У некоторых видов возможно и развитие в организм одиночной гаметы (неоплодотворённой яйцеклетки) - партеногенез.
В процессе эволюции гаметы приобрели приспособления для выполнения специфических функций. Ядра как мужских, так и женских гамет в равной мере содержат наследственную информацию, необходимую для развития организма. Но другие функции яйцеклетки и сперматозоида различны, поэтому по строению они резко отличаются.
Яйцеклетки неподвижны, имеют шарообразную или слегка вытянутую форму. Размеры яйцеклеток значительно крупнее, чем соматических. Внутриклеточная структура цитоплазмы в яйцах специфична для каждого вида животных, чем обеспечиваются видовые (а нередко и индивидуальные) особенности развития. В яйцах содержится ряд веществ, необходимых для развития зародыша. К их числу относится питательный материал (желток). Мужские гаметы - сперматозоиды животных и многих растений подвижны и обычно несут один или несколько жгутиков, исключением являются лишённные жгутиков мужские гаметы семенных растений - спермии, которые доставляются к яйцеклетке при прорастании пыльцевой трубки, а также безжгутиковые сперматозоиды (спермии) нематод и членистоногих.
Морфология гамет различных видов достаточно разнообразна, при этом продуцируемые гаметы могут отличаться как по хромосомному набору (при гетерогаметности вида), величине и подвижности, при этом гаметный диморфизм у различных видов варьирует в широких пределах - от отсутствия диморфизма в виде изогамии до своего крайнего проявления в форме оогамии.
Изогамия. Если сливающиеся гаметы морфологически не отличаются друг от друга величиной, строением и хромосомным набором, то их называют изогаметами, или бесполыми гаметами. Такие гаметы подвижны, могут нести жгутики или быть амёбовидными. Изогамия типична для многих водорослей.
Анизогамия (гетерогамия). Гаметы, способные к слиянию, различаются по размерам, подвижные микрогаметы несут жгутики, макрогаметы могут быть как подвижны (многие водоросли), так и неподвижны (лишённые жгутиков макрогаметы многих протистов).
Оогамия. Сперматозоид и яйцеклетка. Способные к слиянию гаметы одного биологического вида резко различаются по размерам и подвижности на два типа: мужские гаметы малого размера и крупные неподвижные женские гаметы - яйцеклетки. Различие размера гамет обусловлено тем, что яйцеклетки содержат запас питательных веществ, достаточный для обеспечения нескольких первых делений зиготы при её развитии в зародыш.
Сущность полового размножения состоит в перекомбинации генетического материала родительских особей. В результате дочерние особи становятся более разнообразными, и естественный отбор выбирает из них наиболее приспособленные. При половом размножении потомство получается в результате слияния гаплоидных клеток - гамет. При оплодотворении образуется зигота, из которой развивается новый организм.
Биологическое значение полового размножения едино для всех организмов:
1) способствует генетическому разнообразию особей вида благодаря кроссинговеру и комбинативной изменчивости;
2) создаёт предпосылки к освоению разнообразных условий обитания;
3) обеспечивает эволюционные перспективы вида.
У людей (как и у всех млекопитающих) половое размножение связано с образованием половых клеток, которое происходит в специализированных органах - половых железах, в результате особого процесса. Половые клетки отличаются от всех остальных клеток тела уменьшенным вдвое набором хромосом.
23. Понятие об онто- и филогенезе. Этапы онтогенеза. Периоды эмбрионального развития
Филогенез - это историческое развитие как отдельных видов и систематических групп организмов, так и органического мира в целом. Филогенез представляет собой цепь генетически связанных между собой онтогенезов. Онтогенез - не только результат филогенеза, но и его необходимая предпосылка. Онтогенез - последовательное и необратимое развитие организма с момента образования зиготы и до естественной смерти организма. [Онтогенез - процесс реализации генетической информации, получаемой организмом в начале индивидуального развития через вступившие в оплодотворение половые клетки родителей (половое размножение) или через неспециализированную к выполнению функции размножения клетку родителя (бесполое размножение) в определенных условиях среды].
При бесполом размножении онтогенез начинается с деления материнского организма или возникновения специализированной клетки или группы клеток, из которых образуется зачаток нового организма. При половом размножении моментом появления нового организма является оплодотворение и образование зиготы путем слияния мужской и женской гамет. Преобразование одноклеточного зародыша в многоклеточный организм, развитие этих составных частей, функционирование, рост, биохимические преобразования, изменения под влиянием внешней среды - все это сложные и разносторонние проявления онтогенеза. Нередко термины «жизненный цикл» и «онтогенез» используют как синонимы; против этого трудно возражать, если речь идет о соматической клетке многоклеточного организма, которая делится митозом; если речь идет о многоклеточных организмах, размножающихся половым путем, то смысловое наполнение названных терминов может различаться, в частности тем, что в онтогенезе всегда легко выделяется коструктивная (созидательная) фаза с присущими ей эквифинальностью, проявлениями самоорганизации, дифференциацией и прогрессивным усложнением структур и функцийю
Этапы онтогенеза.
Эмбриональный период
Эмбриональный этап - период жизни особи с момента слияния сперматозоида с яйцом и образования зиготы до рождения или выхода из яйцевых оболочек. У многоклеточных животных в эмбриональном периоде выделяют три основных этапа развития: дробление, гаструляцию и первичный органогенез.
Внутриутробное - оканчивается рождением.
Процесс эмбрионального развития человека длится около 280 суток и подразделяется на 3 периода: начальный (1-я неделя), зародышевый (2-8-я недели) и плодный (с 9-й недели и до рождения).
Вне тела матери - оканчивается выходом из яйцевых оболочек.
Выходит личинка, как правило, устроенная проще взрослого животного. Дорепродуктивный период включает личиночную стадию и часто заканчивается метаморфозом. Личинка имеет специальные личиночные органы и, как правило, не имеет некоторых органов, свойственных взрослым формам. Метаморфоз - может быть полным и неполным. При неполном метаморфозе замена личиночных органов на органы взрослых животных происходит постепенно, без прекращения активного перемещения и питания организма, например у головастика - личиночной формы лягушки. При полном метаморфозе личинка прекращает активно перемещаться в среде обитания и добывать себе пищу. Она образует куколку, в которой происходит метаморфоз, т. е. замена личиночных органов на органы взрослого организма, как это наблюдается у бабочек. После завершения превращения у позвоночных происходит рост и половое созревание. У беспозвоночных после завершения метаморфоза наступает репродуктивный период, быстро завершающийся смертью).
Биологическое значение развития с метаморфозом заключается в том, что:
- личинка самостоятельно растет, накапливая клеточный материал для дальнейших превращений. В результате снижаются затраты материнского организма на развитие каждого потомка, что позволяет увеличить численность потомства;
- личиночные формы и взрослые организмы, как правило, обитают в разных условиях среды и используют разные источники питания, что снижает интенсивность борьбы за существование между молодыми и зрелыми формами;
- свободноживущие личинки прикрепленных или паразитических форм способствуют расселению вида.
Постэмбриональный период
Ювенильный (Игровой) этап - характеризуется выраженной ориентировочной реакцией и интенсивной игровой деятельностью.
Этап зрелости или стабильности, с общебиологической точки зрения, в онтогенезе является важнейшим событием - возможность осуществления полового размножения.
Способность особи осуществлять функцию размножения:
В дорепродуктивном периоде особь не способна к размножению. Основное содержание его заключается в развитии зрелого в половом отношении фенотипа.
В репродуктивном периоде особь осуществляет функцию полового размножения, отличается наиболее стабильным функционированием органов и систем, а также относительной устойчивостью к воздействиям.
Пострепродуктивный период связан со старением организма и характеризуется ослаблением или полным прекращением участия в размножении.
Этап старости - границы между периодом зрелости и началом старости трудноуловимы - никаких точных календарных дат наступления старости не существует.
Периоды эмбрионального развития.
Дробление - это ряд последовательных митотических делений зиготы и далее бластомеров, заканчивающихся образованием многоклеточного зародыша - бластулы.
Первое деление дробления начинается после объединения наследственного материала. Возникающие при дроблении клетки называют бластомерами. Особенностью митотических делений дробления является то, что с каждым делением клетки становятся все мельче и мельче, пока не достигнут обычного для соматических клеток соотношения объемов ядра и цитоплазмы. Между очередными делениями не происходит роста клеток, но обязательно синтезируется ДНК.
Все предшественники ДНК и необходимые ферменты накоплены в процессе овогенеза. В результате митотические циклы укорочены и деления следуют друг за другом значительно быстрее, чем в обычных соматических клетках.
...Подобные документы
Значение минерального баланса в организме человека. Проблематика нарушения баланса, дозировки и наличия макро- и микроэлементов в продуктах питания. Развитие тяжелых патологических состояний. Источники поступления минеральных веществ в организм человека.
контрольная работа [34,1 K], добавлен 06.01.2011Характеристика минеральных элементов и веществ, их биологическое действие, роль в процессах жизнедеятельности организма. Основные источники поступления необходимых витаминов, а также макро- и микроэлементов в организм и их роль в питании человека.
презентация [431,1 K], добавлен 03.09.2012Классификация и строение углеводов. Физические и химические свойства моносахаридов, их роль в природе и жизни человека. Биологическая роль дисахаридов, их получение, применение, химические и физические свойства. Место связи моносахаридов между собой.
презентация [666,2 K], добавлен 27.03.2014Строение, состав и физиологическая роль отдельных органелл клетки. Классификация белков по степени сложности. Состояние воды в живых тканях, ее функции. Полисахариды морских водорослей: состав, строение. Биологическая роль и классификация липидов.
контрольная работа [1014,7 K], добавлен 04.08.2015Клетка как элементарная единица строения и жизнедеятельности организмов. Молекулярная масса белков, методы ее определения. Классификация белков по степени сложности. Виды нуклеиновых кислот, их биологическая роль. Витамины в питании человека и животных.
контрольная работа [1,1 M], добавлен 17.10.2015Значение для человека микроэлементов. Основные макроэлементы, содержащиеся в клетках. Бромистый калий как сильное болеутоляющее средство для нервной системы. Кислород как основной химический элемент в организме человека. Роль цинка в жизни клетки.
презентация [5,6 M], добавлен 28.11.2012Аминокислотный состав белков в организмах, роль генетического кода. Комбинации из 20 стандартных аминокислот. Выделение белков в отдельный класс биологических молекул. Гидрофильные и гидрофобные белки. Принцип построения белков, уровень их организации.
творческая работа [765,3 K], добавлен 08.11.2009Хромосома как постоянный компонент ядра, отличающийся особой структурой, индивидуальностью. Схема строения хромосомы в поздней подфазе - метафазе митоза. Эухроматин, гетерохроматин, кариотип. Распределение хромосом согласно денверской номенклатуре.
презентация [1,0 M], добавлен 25.05.2015Физические и химические свойства, цветные реакции белков. Состав и строение, функции белков в клетке. Уровни структуры белков. Гидролиз белков, их транспортная и защитная роль. Белок как строительный материал клетки, его энергетическая ценность.
реферат [271,2 K], добавлен 18.06.2010Роль биоритмов в обеспечении жизнедеятельности человека, их связь со старением. Основные биологические свойства витаминов и микроэлементов и их роль в гармонизации биоритмов. Общие советы по режиму дня для "жаворонков" и "сов". Методика расчета биоритмов.
контрольная работа [254,9 K], добавлен 07.03.2011Хромосомы, их строение, видовая специфичность, кариотип. Роль хромосом в явлениях наследования. Формы хромосом на стадии метафазы. Мейоз как цитологическая основа образования и развития половых клеток. Сцепленное с полом наследование, транскрипция ДНК.
реферат [19,4 K], добавлен 19.03.2010Трансляция клетки как процесс биосинтеза белка, определяемый матричной РНК. Понятие генетического кода, его свойства. Отклонения от универсального генетического кода. Строение рибосом, механизм элонгации и терминации. Белки в эволюции и онтогенезе.
презентация [2,2 M], добавлен 21.02.2014Роль эндокринной системы в регуляции основных процессов жизнедеятельности животных и человека. Свойства, классификация, функции, и биологическая роль гормонов эндокринных желез. Анализ проблемы йоддефицитных заболеваний человека и животных в России.
курсовая работа [39,3 K], добавлен 02.03.2010Основные особенности метаболических процессов. Обмен веществ и энергии. Общая характеристика, классификация, функции, химический состав и свойства белков, их биологическая роль в построении живой материи. Структурные и сложные белки. Способы их осаждения.
презентация [4,2 M], добавлен 24.04.2013Классификация и свойства генов, особенности структурных и регуляторных генов. Структурные единицы наследственности организмов. Особенности генома человека. Наследственный материал, заключенный в клетке человека. Уровни структурной организации хромосом.
презентация [564,6 K], добавлен 28.10.2014История исследования белков. Белки: строение, классификация, обмен. Биосинтез белка. Функции белков в организме. Роль в жизнедеятельности организма. Высокомолекулярные органические соединения. Болезни, связанные с нарушением выработки ферментов.
реферат [29,2 K], добавлен 05.10.2006Химический состав и уровни организации хроматина. Варианты гистонов и их действие на хроматин. Понятие и примеры кариотипов. Эволюция хромосом млекопитающих. Теломерные районы хромосом и схема работы теломеразы. Y-хромосома и карта Х-хромосомы человека.
контрольная работа [1,4 M], добавлен 14.02.2016Организм как биологическая система, его основные структурные единицы. Источники энергии жизнедеятельности, строение белков и их роль в организме. Нуклеиновые кислоты и сущность синтеза белков. Взаимоотношения организма со средой и механизмы теплоотдачи.
реферат [403,3 K], добавлен 20.09.2009Биологическая роль воды. Функции минеральных солей. Простые и сложные липиды. Уровни организации белков. Строительная, энергетическая, запасающая и регуляторная функции липидов. Структурная, каталитическая, двигательная, транспортная функции белков.
презентация [383,4 K], добавлен 21.05.2015Клетка как основная единица живого. Химический состав клетки, ее элементарные частицы и характер протекающих внутри процессов. Роль и значение воды в жизнедеятельности клетки. Этапы энергетического обмена клетки, реакций расщепления (диссимиляции).
реферат [28,2 K], добавлен 11.07.2010