Нуклеиновые кислоты и их биологическая роль
Рибо- и дезоксирибонуклеиновая кислоты: строение, биологическая роль хранителя генома. Образование нуклеотидов, их последовательность в хромосоме. Кодирование полипептида, создание модели филогенеза. Значение ДНК и РНК в передаче генетической информации.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 02.03.2018 |
Размер файла | 1,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.Allbest.ru/
Введение
Структурной единицей всех веществ, как известно, являются молекулы. В соответствии с особенностями молекул выделяют три больших группы органических химических веществ, из которых построены все биологические организмы (микроорганизмы, растения, животные и человек). Наиболее сложное строение имеют белки. Их цепи строятся из аминокислот. В живых организмах каждая клетка «знает», какой белок синтезировать, и когда начать это делать. Каждая имеет особенности строения, из них сформированы ткани и органы. Все дело в том, что существует отдельный важнейший класс природных полимерных веществ -- нуклеиновые кислоты. Эти особые соединения имеют уникальное строение и выполняют особые функции в организме. В их длинных цепочках закодирована вся необходимая информация для биосинтеза белков и других сложных веществ в клетках.
Код строения одного белка называется ген. Ген является участком хромосомы. Каждая хромосома -- это молекула нуклеиновой кислоты - ДНК.
В природе существует два вида нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК является хранителем информации, РНК -- переносит и расшифровывает биологическую информацию
Нуклеиновые кислоты - ДНК и РНК
Биологическая роль нуклеиновых кислот
Название «нуклеиновые кислоты» происходит от латинского слова «нуклеус», т.е. ядро: они впервые были обнаружены в клеточных ядрах. Биологическое значение нуклеиновых кислот очень велико. Они играют центральную роль в хранении и передаче наследственных свойств клетки, поэтому их часто называют веществами наследственности. Известно, что любая клетка возникает в результате деления материнской клетки. При этом дочерние клетки наследуют свойства материнской. Свойства же клетки определяются главным образом ее белками. Нуклеиновые кислоты обеспечивают в клетке синтез белков, точно таких же, как в материнской клетке.
Существуют два вида нуклеиновых кислот дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК).
Биологическая роль ДНК
Цитогенетические исследования в 20-30-х гг. 20 в. свидетельствовали о том, что передача и хранение наследственных признаков связаны с хромосомами, находящимися в ядерном веществе. То, что наследственным веществом является именно ДНК, а не белок, стало ясным в результате исследований, проведенных в 40-х гг. 20 в. на бактериях и бактериофагах.
В 1944 г. Эйвери, Мак-Лауд и Мак-Карти установили природу трансформирующего фактора у бактерий. Им оказалась ДНК. Процесс трансформации состоит, несомненно, из ряда стадий: обратимой сорбции молекул ДНК бактериальной клеткой; внедрения этих молекул внутрь клетки; интеграции молекулы чужой ДНК в хромосому клетки, расщепления образовавшейся сложной структуры и ее перехода в рекомбинанты.
При исследовании бактериальных вирусов под электронным микроскопом или при помощи радиоактивной метки, вводимой в белок или в ДНК бактериофага, было показано, что вирус, фиксируясь на поверхности бактериальной клетки, вводит в нее только молекулу ДНК, оставляя снаружи свою белковую оболочку. Молекула ДНК вируса, попавшая в клетку, несущая в себе всю наследственную информацию (геном) вируса, вызывает образование в клетке новых вирусных частиц, их размножение и гибель клетки от лизиса.
Фото: Duncan Hull
Некоторые, так называемые умеренные, фаги у части бактериальных клеток не вызывают явных признаков заражения, однако их ДНК, попадая в клетку, прочно связывается с геномом самой бактерии, интегрируясь с ДНК бактериальной клетки. Многие поколения таких бактерий несут в себе бактериофаг в скрытом виде, не проявляя признаков нарушения жизнедеятельности. Однако при неблагоприятных условиях и при действии каких-либо повреждающих факторов, например ионизирующей или ультрафиолетовой радиации, вирус в таких бактериях начинает размножаться и вызывает лизис (гибель) бактерий. ДНК вируса настолько прочно связывается с ДНК бактерий, что заражение вирусом, полученным от лизогенных бактерий, сопровождается переносом вместе с ДНК вируса части ДНК бактерий, с которой передаются некоторые наследственные свойства этих бактерий, отсутствующие и у вновь заражаемых бактерий, и у самого вируса. Это явление, сходное с трансформацией, получило название трансдукции.
Последовательность нуклоотидов в цепи ДНК переписывается в комплементарную ей последовательность нуклеотидов в молекуле РНК -- так называемая транскрипция. Процесс этот осуществляется при участии фермента РНК-полимеразы. Генетическая информация, переписанная с ДНК на РНК, в конечном счете, определяет первичную структуру (последовательность аминокислотных остатков в строящейся молекуле белка). При помощи электронной микроскопии удалось увидеть рост цепей РНК на матрице ДНК, то есть работу гена на уровне транскрипции.
В процессе реализации или выражения генов имеет место кодирование генетической информации. Показано, что три последовательно расположенных нуклеотидных остатка (триплет) в цепи ДНК кодируют комплементарный триплет в цепи РНК, который в свою очередь контролирует включение одной, строго определенной аминокислоты в полипептидную цепь синтезирующегося белка. Установлено, что полипептидная цепь синтезируется колинеарно с ДНК, то есть в соответствии с линейным расположением триплетов ДНК. Известно, какие именно триплеты кодируют включение каждой аминокислоты.
Последовательность нуклеотидов ДНК, кодирующая образование определенной полипептидной цепи, представляет собой структурный ген, или цистрон. Изменение даже одной пары нуклеотидов в цистроне (точковая мутация) может привести к изменению структуры белка и потере им биологического активности. Такие точковые мутации могут представлять собой транзиции (замену пары нуклеотндов ГЦ на AT или наоборот), трансверсии (замена AT на ТА или ГЦ на ЦГ, то есть перемещение комплементарных оснований из одной цепи в другую), вставки пары нуклеотидов или их делецию (выпадение). Трансверсии и транзиции приводят обычно к замене одной аминокислоты в строящейся полипептидной цепи, тогда как вставки и делении вызывают изменение порядка считывания и приводят к глубокому нарушению структуры белка. Вставка же или делеция сразу трех пар нуклеотидов, то есть целого триплета, восстанавливает последовательность считывания, что и послужило одним из важнейших доказательств триплетности кода.
У высших организмов количество ДНК на геном достаточно для кодирования миллионов белков. В действительности число генов у человека и высших животных по крайней мере на порядок ниже и находится, по-видимому, между 10 000 и 100 000. Огромное количество избыточной ДНК, таким образом, не несет структурных генов и выполняет иные функции. Оказалось, что часть ДНК вообще не участвует в процессе транскрипции, а преобладающая часть РНК, синтезированной на матрице ДНК у высших организмов, претерпевает распад внутри клеточного ядра, не участвуя в синтезе клеточных белков. В связи с этим Г.П. Георгиевым была высказана гипотеза, согласно которой оперон (последовательность генов, контролирующих синтез ферментов, участвующих в катализе всех этапов одного и того же процесса) у высших организмов содержит большое число регуляторных генов, расположенных в начале считывания. Синтезирующаяся на таком опероне гигантская молекула РНК распадается в процессе ее переноса в цитоплазму, куда поступает только собственно информационная РНК, содержащая структурные гены и кодирующая синтез клеточных белков. Остальная часть этой РНК имеет регуляторные функции и распадается внутри ядра.
Особенностью высших организмов является также дифференцировка клеток и тканей. Гены, содержащиеся в ДНК каждой диплоидной клетки одного и того же организма (геном), качественно и количественно совершенно одинаковы, однако тот факт, что разные ткани и клетки резко различны по своему составу, строению и функциям, объясняется тем, что в них синтезируются неодинаковые белки. Таким образом, помимо регуляции активности действующих генов, при дифференцировке имеет место выключение или блокирование большей части генов, причем обычно активной остается небольшая часть генома, а в некоторых случаях синтезируется лишь один или несколько белков, например синтез гемоглобина в ретикулоцитах. Механизмы диффе-ронцпровкп во многом не ясны, однако показано, что белки, входящие в состав дезокснрибонуклеопротеидов хроматина, оказывают выраженное действие на транскрипцию. Гистоны подавляют этот процесс, а кислые белки могут активировать его. Неактивные участки хроматина цитологически представляются более плотными, а в процессе транскрипции, напротив, хроматин выглядит более рыхлым и нити ДНК, по-видимому, частично отделяются от гистонов. Различными методами показано, что транскрипция ДНК происходит в разрыхленных участках хроматина, в так называемых пуфах, представляющих собой вздутие хромосом в области действующих генов.
Как же устроены нуклеиновые кислоты?
Так же как белки строятся из отдельных аминокислот, так и нуклеиновые кислоты образуются из отдельных значительно более простых «строительных блоков» -- нуклеотидов. Из них и строится множество различных молекул ДНК и РНК растений, животных и человека, имеющих значительные видовые отличия. Хромосомы -- хранители генетической информации, находятся под особой «охраной» -- в ядре клетки. Ядро ограниченно практически непроницаемой мембраной, при разрушении которой клетка гибнет. Если такое случается, то молекула ДНК теряет свои функции, но сохраняет строение. Если клетке пришло время обновляться, то есть делиться, требуются два условия: генетическая информация (которая во всех клетках имеется в ядре) и наличие строительного материала для создания новых молекул нуклеиновых кислот -- «кирпичики - блоки» -- нуклеотиды. Если нет строительного материала, генетическая информация не реализуется, клетка не разделится, ткань не обновится, функция органа снизится, и, как следствие -- пострадает организм.
Откуда же появляются нуклеотиды для осуществления процессов деления?
Обычно мы получаем нуклеиновые кислоты с пищей, так как поедаем органические вещества.
Рис. 1
Нуклеиновые кислоты имеются в любой пище. Клетка с кровью получает эти простые вещества, синтезирует из них нуклеотиды, обеспечивая процесс удвоения ДНК. При недостаточном поступлении с пищей, клетки захватывают из межклеточного пространства фрагменты отживших и разрушенных ДНК из погибших клеток. Синтез нуклеотидов и нуклеиновых кислот -- один из наиболее активных процессов в клетке и уступает по активности только синтезу белка. Воспроизводство нуклеотидов и нуклеиновых кислот требует значительного количества пластических веществ -- азотистых оснований, а также углеводов, фосфатов. Обмен нуклеиновых кислот в клетке первичен и архиважен. Он обеспечивает обновление клеток, полноценность их структуры и функциональную состоятельность. Но пищеварительный процесс разделяет большие молекулы нуклеиновых кислот на моносоединения (пуриновые основания, сахара и фосфорную кислоту). Именно эти простые вещества и оказываются в крови, а затем клетки используют их для построения собственных нуклеиновых кислот. Этот процесс весьма продуктивен в детстве, юности, ранней молодости. Поэтому у молодых людей так активны физиологические процессы, легкое восстановление после болезней и травм, молодым неизвестно чувство усталости. С возрастом все меняется: все чаще ощущается утомление, все трудней дается длительная физическая и умственная активность, появляются хронические болезни. Причина проста: снижение скорости обновления клеток, возрастающий дефицит нуклеиновых кислот. Необходимо отметить, что недостаток нуклеиновых кислот имеет место в любом возрасте при состояниях, требующих интенсивного деления клеток: при тяжелых болезнях, инфекциях, травмах, оперативных вмешательствах. Последствия дефицита нуклеиновых кислот выливаются в патологические состояния:
· нарушается обмен белков, а значит и качество структуры и функций отдельных клеток и тканей;
· нарушается обмен липидов (в том числе холестерина);
· нарушается обмен углеводов, что приводит, прежде всего, к дефициту энергии в каждой клетке;
· страдают функции органов, отличающихся высокой скоростью деления клеток -- слизистых оболочек, печени, лимфоидных органов, кишечника, костного мозга;
· изменяется деятельность клеток головного мозга, весьма чувствительных к дефициту энергии и белков (синдром хронической усталости);
· проявляются заболевания и дегенеративные изменения внутренних органов;
· появляются и усугубляются дисфункции иммунного контроля.
Дезоксирибонуклеиновая кислота (ДНК)
нуклеиновый полипептид геном хромосома
Роль хранителя наследственной информации у всех клеток - животных и растительных - принадлежит ДНК. Схема строения ДНК изображена на рисунке. Молекула ДНК представляет собой две спирально закрученные одна вокруг другой нити. Ширина такой двойной спирали ДНК невелика, около 2 нм. Длина же ее в десятки тысяч раз больше - она достигает сотен тысяч нанометров. Между тем самые крупные белковые молекулы в развернутом виде достигают в длину не более 100-200 нм. Таким образом, вдоль молекулы ДНК могут быть уложены одна за другой тысячи белковых молекул. Молекулярная масса ДНК соответственно исключительно велика - она достигает десятков и даже сотен миллионов.
Рис. 2. Схема строения ДНК (двойная спираль)
Обратимся к структуре ДНК. Каждая нить ДНК представляет собой полимер, мономерами которого являются нуклеотиды. Нуклеотид - это химическое соединение остатков трех веществ: азотистого основания, углевода (моносахарида - дезоксирибозы) и фосфорной кислоты. ДНК всего органического мира образованы соединением четырех видов нуклеотидов. Их структуры приведены на рисунке. Как видно, у всех четырех нуклеозидов углевод и фосфорная кислота одинаковы.
Рис. 3. Четыре нуклеотида, из которых построены все ДНК живой природы
Нуклеотиды отличаются только по азотистым основаниям, в соответствии с которыми их называют: нуклеотид с азотистым основанием аденин (сокращенно А), нуклеотид с гуанином (Г), нуклеотид с тимином (Т) и нуклеотид с цитозином (Ц). По размерам А ранен Г, а Т равен Ц; размеры А и Г несколько больше, чем Т и Ц.
Соединение нуклеотидов в нити ДНК происходит через углевод одного нуклеотида и фосфорную кислоту соседнего. Они соединяются прочной ковалентной связью.
Рис. 4. Соединение нуклеотидов в полинуклеотидную цепь
Итак, каждая нить ДНК представляет собой полинуклеотид. Это длинная цепь, в которой в строго определенном порядке расположены нуклеотиды.
Рис. 5. Участок двойной спирали ДНК
Рассмотрим теперь, как располагаются относительно друг друга нити ДНК, когда образуется двойная спираль, и какие силы сдерживают их рядом. Представление об этом дает рисунок 4, на котором изображен небольшой участок двойной спирали.
Как видно, азотистые основания одной цепи «стыкуются» с азотистыми основаниями другой. Основания подходят друг к другу настолько близко, что между ними возникают водородные связи.
В расположении стыкующихся нуклеотидов имеется важная закономерность, а именно: против А одной цепи всегда оказывается Т на другой цепи, а против Г одной цепи - всегда Ц. Оказывается, что только при таком сочетании нуклеотидов обеспечивается, во-первых, одинаковое но всей длине двойной спирали расстояние между цепями и, во-вторых, образование между противолежащими основаниями максимального числа водородных связей (три водородные связи между Г и Ц и две водородные связи между А и Т). В каждом из этих сочетаний оба нуклеотида как бы дополняют друг друга. Слово «дополнение» на латинском языке «комплемент». Принято поэтому говорить, что Г является комплементарным Ц, а Т комплементарен А. Если на каком-нибудь участке одной цени ДНК один за другим следуют нуклеотиды А, Г, Ц, Т, А, Ц. Ц, то на противолежащем участке другой цепи окажутся комплементарные им Т, Ц, Г, А, Т, Г, Г. Таким образом, если известен порядок следования нуклеотидов в одной цени, то по принципу комплементарности сразу же выясняется порядок нуклеотидов в другой цепи.
Большое число водородных связей обеспечивает прочное соединение нитей ДНК, что придает молекуле устойчивость и в то же время сохраняет ее подвижность: под влиянием фермента дезоксирибонуклеазы она легко раскручивается.
ДНК содержится в ядре клетки, а также в митохондриях и хлоропластах. В ядре ДНК входит в состав хромосом, где она находится в соединении с белками.
Удвоение ДНК
Принцип комплементарности, лежащий а основе структуры ДНК, позволяет понять, как синтезируются новые молекулы ДНК незадолго перед делением клетки. Этот синтез обусловлен замечательной способностью молекулы ДНК к удвоению и определяет передачу наследственных свойств от материнской клетки к дочерним.
Рис. 6. Удвоение ДНК
Как происходит удвоение ДНК, показано на рисунке 78. Двойная спираль ДНК под влиянием фермента начинает с одного конца раскручиваться, и на каждой цепи из находящихся в окружающей среде свободных нуклеотидов собирается новая цепь. Сборка новой цепи идет в точном соответствии с принципом комплементарности. Против каждого А встает Т, против ГЦ и т.д. В результате вместо одной молекулы ДНК возникают две молекулы такого же точно нуклеотидного состава, как и первоначальная. Одна цепь в каждой вновь образовавшейся молекуле ДНК происходит из первоначальной молекулы, а другая синтезируется вновь.
Рибонуклеиновые кислоты (РНК)
Структуры РНК сходны со структурами ДНК. РНК, как и ДНК, полинуклеотиды, но, в отличие от ДНК, молекула РНК одноцепочечная. Как и в ДНК, структура РНК создается чередованием четырех типов нуклеотидов, но состав нуклеотидов РНК несколько отличается от нуклеотидов ДНК, т. е. углевод в РНК не дезоксирибоза, а рибоза, отсюда и название РНК - рибонуклеиновая кислота. Кроме того, в РНК вместо азотистого основания тимина входит другое, близкое по строению основание, называемое урацилом (У).
В клетке имеется несколько видов РНК. Все они участвуют в синтезе белка. Первый вид - транспортные РНК (т-РНК). Это самые маленькие по размерам РНК. Они связывают аминокислоты и транспортируют их к месту синтеза белка. Второй вид - информационные РНК (и-РНК). По размерам они раз в 10 больше т-РНК. Их функция состоит в переносе информации о структуре белка от ДНК к месту синтеза белка. Третий вид - рибосомные РНК (р-РНК). Они имеют наибольшие размеры молекулы и входят в состав рибосом.
Основное значение ДНК
В 1953 году Джеймс Уотсон и Фрэнсис Крик разгадали структуру дезоксирибонуклеиновой кислоты (ДНК), молекулы наследственности (Crick, 1981).
ДНК имеет форму закрученной веревочной лестницы (спирали), перекладины которой представлены парами нуклеиновых оснований. Аденин сочетается с тимином, а цитозин - с гуанином.
Основное значение ДНК - способность нести информацию о белке и способность удваиваться. Последовательность из трех связанных между собой нуклеотидов - код для конкретной аминокислоты. Из последовательности аминокислот получаются белки, которые управляют в организме биохимическими механизмами развития и метаболизмом.
ДНК, молекула-репликатор: после того как молекула ДНК разделяется на две цепи, каждое нуклеиновое основание притягивает комплиментарное себе. Таким образом, аденин притягивает новый тимин, гуанин - новый цитозин и т.д. В конце получаются две новые молекулы ДНК, являющиеся точными копиями исходной.
1. Молекула ДНК частично расплетается, освобождая для транскрипции структурный ген.
2. Цепочка матричной РНК (мРНК) считывается с одной из цепей ДНК и переносит генетическую информацию из ядра в цитоплазму клетки.
3. В цитоплазме цепочка мРНК прикрепляется к рибосоме. Рибосома движется по цепи, транслируя каждый кодон в соответствующую аминокислоту, которая добавляется к собираемому белку молекулами транспортной РНК.
4. Когда рибосома доходит до конца цепочки мРНК, ей встречается кодон, вызывающий отделение собранного белка.
Передача генетической информации «в жизнь» - транскрипция белков.
Второе важное свойство ДНК - способность к репликации (удвоению). Перед делением клетки «лестница» ДНК расплетается и разрывается на две цепочки нуклеотидов. Непарные нуклеотиды начинают притягивать к себе комплиментарную пару. Каждая молекула аденина притягивает к себе тимин, каждая молекула цитозина - гуанин и так далее, пока из двух половинок «лестницы» не получатся две полные спирали ДНК.
Именно эта способность ДНК к репликации делает возможным размножение всех форм жизни - от простейшего микроба до сложного многоклеточного организма.
Сейчас известно, что мутации - это изменения в последовательности пар нуклеотидов, что влияет на результат синтеза белка.
Ген - это особая последовательность нуклеотидов в хромосоме, кодирующая определенный полипептид или белок. В результате естественного отбора конкретные гены подавляются или, наоборот, «поощряются», в зависимости от того, насколько важен вклад кодируемого этим геном белка в успешное размножение организма.
Знание этого позволило изучить эволюцию на молекулярном уровне, отследить историю изменений в конкретных генах и в их организации, а также создать модель филогенеза, основанную на схожести ДНК между таксономическими группами. Все в биологии имеет смысл лишь в свете эволюции.
Размещено на Allbest.ru
...Подобные документы
Роль ДНК при хранении и передаче генетической информации в живых организмах. Основные свойства нуклеиновых кислот. Рентгеноструктурный анализ молекул ДНК. Исследование пространственной структуры белков. Создание трёхмерной модели ДНК Криком-Уотсоном.
презентация [2,0 M], добавлен 14.12.2011Сведения о нуклеиновых кислотах, история их открытия и распространение в природе. Строение нуклеиновых кислот, номенклатура нуклеотидов. Функции нуклеиновых кислот (дезоксирибонуклеиновая - ДНК, рибонуклеиновая - РНК). Первичная и вторичная структура ДНК.
реферат [1,8 M], добавлен 26.11.2014Организм как биологическая система, его основные структурные единицы. Источники энергии жизнедеятельности, строение белков и их роль в организме. Нуклеиновые кислоты и сущность синтеза белков. Взаимоотношения организма со средой и механизмы теплоотдачи.
реферат [403,3 K], добавлен 20.09.2009Генетическая информация, контролирующая каждый миг жизни. Пространственная структура ДНК. Последовательность нуклеотидов. ДНК - уникальнейшие молекулы в природе. Хранение, передача, и воспроизведение наследственной информации.
доклад [41,8 K], добавлен 06.10.2006Общая характеристика аргинина - кислоты, выделенной в 1985 году швейцарским ученым С.Г. Хединым из рога животного. Содержание L-Аргинина в продуктах питания, его применение в спорте и медицине, последствия дефицита. Биологическая роль оксида азота.
презентация [784,8 K], добавлен 24.06.2016Сущность, состав нуклеотидов, их физические характеристики. Механизм редупликации дезоксирибонуклеиновой кислоты (ДНК), транскрипция ее с переносом наследственной информации на РНК и механизм трансляции — синтез белка, направляемый этой информацией.
реферат [461,8 K], добавлен 11.12.2009Нуклеиновые кислоты, их структура, функциональные группы. Осмотическое давление различных клеток и тканей растения. Роль пигментов в жизни растений. Биосинтез углеводов, ферменты углеводного обмена. Роль аденозинтрифосфорной кислоты в обмене веществ.
контрольная работа [843,8 K], добавлен 12.07.2010Кодирование информации в анализаторах. Слуховой анализатор: информация звукового стимула в виде нейронного возбуждения. Обезболивающая (антиноцицептивная) система. Роль генома в пластических изменениях нервной ткани. Физиологическое значение эмоций.
реферат [31,2 K], добавлен 03.09.2010Основные виды нуклеиновых кислот. Строение и особенности их строения. Значение нуклеиновых кислот для всех живых организмов. Синтез белков в клетке. Хранение, перенос и передача по наследству информации о структуре белковых молекул. Строение ДНК.
презентация [628,3 K], добавлен 19.12.2014Нуклеотиды как мономеры нуклеиновых кислот, их функции в клетке и методы исследования. Азотистые основания, не входящие в состав нуклеиновых кислот. Строение и формы дезоксирибонуклеиновых кислот (ДНК). Виды и функции рибонуклеиновых кислот (РНК).
презентация [2,4 M], добавлен 14.04.2014Первичная, вторичная и третичная структуры ДНК. Свойства генетического кода. История открытия нуклеиновых кислот, их биохимические и физико-химические свойства. Матричная, рибосомальная, транспортная РНК. Процесс репликации, транскрипции и трансляции.
реферат [4,1 M], добавлен 19.05.2015Признаки и уровни организации живых организмов. Химическая организация клетки. Неорганические, органические вещества и витамины. Строение и функции липидов, углеводов и белков. Нуклеиновые кислоты и их типы. Молекулы ДНК и РНК, их строение и функции.
реферат [13,5 K], добавлен 06.07.2010Понятие и классификация нейромедиаторов, их разновидности и функции. Синтез и биологическая роль серотонина, ацетилхолина, аминомасляной кислоты. Другие медиаторы ЦНС: глицин, глутамат, характер и специфика их действия на основные системы организма.
реферат [360,0 K], добавлен 03.06.2014История открытия дезоксирибонуклеиновой кислоты - биологического полимера, состоящего из двух спирально закрученных цепочек. Первичная структура и конформации компонентов нуклеиновых кислот. Макромолекулярная структура ДНК, полиморфизм двойной спирали.
презентация [1,1 M], добавлен 07.11.2013Роль наследственности в непрерывности жизни. Непрерывность передачи генетической информации от родителей к потомству - обеспечение единства организмов и среды. Понятие генома, генотипа и фенотипа. Генетические модели и уровни изучения наследственности.
реферат [27,4 K], добавлен 27.01.2010Строение и функции клеточного ядра. Его форма, состав, строение. Дезоксирибонуклеиновая кислота - носитель наследственной информации. Механизм репликации ДНК. Процесс восстановления природной структуры ДНК, поврежденной при ее нормальном биосинтезе.
реферат [6,6 M], добавлен 07.09.2015Биологическое значение нуклеиновых кислот. Строение ДНК, взгляд на нее с химической точки зрения. Обмен веществ и энергии в клетке. Совокупность реакций расщепления, пластический и энергетический обмены (реакции ассимиляции и диссимиляции) в клетке.
реферат [31,6 K], добавлен 07.10.2009Основные понятия онтогенеза. Сравнительная характеристика и соотношение онтогенеза и филогенеза. Законы, сформулированные в дальнейшем другими учеными на основе закона зародышевого сходства К. Бэра. Биологическая сущность биогенетического закона Геккеля.
курсовая работа [238,6 K], добавлен 09.10.2012Описание процесса онтогенеза как индивидуального развития организма. Ген как элементарная единица наследственности, строение хромосом и дезоксирибонуклеиновой кислоты. Раскрытие содержания учения В. Вернадского о биосфере. Характеристика типов личности.
контрольная работа [34,6 K], добавлен 10.08.2015Строение, состав и физиологическая роль отдельных органелл клетки. Классификация белков по степени сложности. Состояние воды в живых тканях, ее функции. Полисахариды морских водорослей: состав, строение. Биологическая роль и классификация липидов.
контрольная работа [1014,7 K], добавлен 04.08.2015