Электрические явления в жизни

Анализ электрических явлений, возникающих при появлении, существовании, движении и взаимодействии электрических зарядов. Описание электрических рыб и растений. Эффекты действия токов в теле человека. Анализ самых необычных электрических явлений в природе.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 15.02.2018
Размер файла 1005,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Ирбитский филиал государственного бюджетного образовательного учреждения среднего профессионального образования «Свердловский областной медицинский колледж»

Специальность: Сестринское дело

Реферат по физике на тему:

«Электрические явления в жизни»

Выполнила:

Студентка 192 МС группы

Быкова Юлия

Преподаватель: Силкина И.В.

Содержание

Введение

Электрические токи в живых организмах

Наиболее необычные электрические явления в природе

Заключение

Ионики

Введение

Электрические явления - это явления, которые возникают при появлении, существовании, движении и взаимодействии электрических зарядов (электрический ток, телеграфирование, молния при грозе)

Электрические явления связаны с наличием электрических зарядов. Заряды сами по себе не существуют, но существуют заряженные частицы: электроны, протоны (они входят в состав атома), ионы (атомы, потерявшие или присвоившие себе лишние 1 -3 электрона). Поскольку всё в нашем мире состоит из атомов, ионы и другие заряженныё частицы могут образовываться при трении: когда двигаются грозовые тучи, когда ходишь по синтетике или одежда из синтетики трётся о тело. Одежда электризуется, + и - притягиваются, одежда прилипает к телу, а в небе сверкает молния. Если есть среда, необходимая для движения заряженных частиц (металл, вода), то частицы (электроны, ионы) двигаются и возникает электрический ток. Условия для прохождения электричества есть и внутри организма: нервы и почти все ткани, т.к. они содержат воду. Поэтому так больно бьёт током, но без этого электричества никуда: именно оно заставляет биться сердце, думать и задавать вопросы.

Значение электричества в природе, как и в жизни человека достаточно огромно. Ведь именно молнии привели к синтезу аминокислот и, следовательно, к появлению жизни на земле.

Какое-то время считалось, что электричество в природе не существует. Однако после того как Б.Франклин установил, что молнии имеют электрическую природу возникновения, это мнение перестало существовать.

Процессы в нервной системе человека и животных, например, движение и дыхание, происходят благодаря нервному импульсу, который возникает из-за электричества, существующего в тканях живых существ.

Электрические токи в живых организмах

Электрические рыбы

Люди узнали про электрических рыб довольно давно: ещё в Древнем Египте для лечения эпилепсии использовали электрического ската, анатомия электрического угря подсказала Алессандро Вольте идею его знаменитых батарей, а Майкл Фарадей первым рассчитал мощность “батарей” электрического угря: она равна 15 заряженным лейденским банкам с общей рабочей поверхностью элементов - 2250 квадратных метров.\

Несмотря на то что во времена Фарадея техника регистрации токов была несовершенна, его опыты оказались безупречными.Электроды, которые Фарадей прикладывал к голове и хвосту рыб, были подключены к соленоиду со стальной иглой. В момент прохождения по соленоиду импульса тока игла намагничивалась, и по магнитным полюсам на концах иглы ученый определял полярность исследуемых участков тела рыб.

Рыбы используют разряды:чтобы освещать свой путь;для защиты, нападения и оглушения жертвы; - передают сигналы друг другу и обнаруживают заблаговременно препятствия.

Сначала биологи обнаружили странное поведение небольшой пресноводной рыбки - американского сомика. Он чувствовал приближение к нему металлической палочки в воде на расстоянии нескольких миллиметров. Английский ученый Ганс Лиссман заключал в парафиновую или стеклянную оболочку металлические предметы, опускал их в воду и рыбка чувствовала металл. Действительно, оказалось, что рыбы имеют специальные органы, которые воспринимают слабую напряженность электрического поля.

Проверяя чувствительность электрорецепторов у рыб, ученые проводили опыт. Закрывали аквариум с рыбкой темной тканью или бумагой и водили рядом по воздуху небольшим магнитом. Рыбка чувствовала магнитное поле. Потом исследователи просто водили возле аквариума руками. И она реагировала даже на самое слабое, создаваемое человеческой рукой, биоэлектрическое поле.

Рыбы не хуже, а порой и лучше самых чувствительных в мире приборов регистрируют электрическое поле и замечают малейшее изменение его напряженности. Рыбы, как оказалось, не только плавающие “гальванометры”, но и плавающие “электрогенераторы”. Они излучают в воду электрический ток и создают вокруг себя электрическое поле.С помощью электрических сигналов рыбы могут даже особым образом “переговариваться”. Угри, например, при виде пищи начинают генерировать импульсы тока определенной частоты, привлекая тем самым своих собратьев. А если двух рыб поместить в один аквариум, частота их электрических разрядов сразу же увеличивается.

В настоящее время известно, что из 20 тыс. современных видов рыб около 300 способны создавать и использовать биоэлектрические поля. По характеру генерируемых разрядов такие рыбы делятся на сильноэлектрические и слабоэлектрические и воспринимающие

Электрический угорь

Электрический угорь -- рыба из отряда гимнотообразных, единственный вид рода Electrophorus. Населяют реки северо-восточной части Южной Америки и притоки среднего и нижнего течения Амазонки.

Еще первые завоеватели Америки нашли свою смерть в непроходимых лесах и болотах Южной Америки. Но это не останавливало жадных до золота авантюристов. В джунгли отправлялись все новые и новые экспедиции.

Одному из таких отрядов удалось проникнуть в верховье Амазонки. Несколько месяцев плыли люди по реке, прежде чем достигли ее истоков. Дальше плыть стало невозможно, и отряд двинулся в джунгли по суше. Дорогу преграждали непроходимые заросли, страшные топкие болота. Все шло хорошо, пока отряд не достиг цепочки соединенных между собой мелких луж. Индейцы носильщики категорически отказались войти в воду. В глазах их отражался ужас. Европейцы никак не могли понять, в чем дело. Лужи были такие мелкие, что в них не могли прятаться ни крокодилы, ни гигантские анаконды. Гроза южноамериканских рек -- рыбы пираньи также не могли здесь оказаться.

Один из европейцев пошел вперед, чтобы подать пример испуганным носильщикам. Но едва он сделал несколько шагов, как с нечеловеческим криком рухнул навзничь, точно сбитый с ног могучим ударом. Два товарища, бросившиеся ему на помощь, в ту же секунду оказались в грязи, опрокинутые все тем же невидимым противником. Лишь через час их спутники отважились осторожно войти в воду и вынесли на сушу пострадавших товарищей. Все трое остались живы, но продолжать путь отряд уже не мог. У жертв невидимого врага были парализованы ноги. К вечеру ноги понемногу начали двигаться, но только через несколько дней больные окончательно выздоровели. Отряд решил вернуться назад. Так впервые европейцы узнали еще об одной подводной электростанции, которая находится в теле довольно крупной рыбы - пресноводного угря. Теперь эти рыбы получили название электрических угрей. Размеры их 1,5 -- 2 метра, а вес 15 -- 20 килограммов. Живут они в мелких ручьях и болотах. Когда болота пересыхают, угри зарываются в ил, пока не наступит следующий сезон дождей.

Кожа у электрического угря голая, без чешуи, тело сильно удлинённое, округлое в передней части и несколько сжатое с боков в задней части. Окраска взрослых электрических угрей оливково-коричневая, нижняя сторона головы и горла ярко-оранжевая, край анального плавника светлый, глаза изумрудно-зелёные. Питается угорь в основном, мелкой рыбешкой. Электрический угорь -- опаснейшая рыба среди всех электрических рыб. . В тех местах, в которых живет угорь, чаще всего большой недостаток кислорода. Поэтому у электрического угря появилась особенность поведения. Под водой угри находятся около 2 часов, а потом выплывают на поверхность и дышат там в течение 10 минут, тогда как обычным рыбам достаточно всплывать на несколько секунд. Электрический угорь агрессивен. Может напасть без предупреждения, даже если никакой угрозы для него не существует. Если что-то живое попадет в зону действия его силового поля, то угорь не станет прятаться или уплывать прочь. Электрические органы помогают угрю искать добычу: он испускает сравнительно слабые электрические импульсы, напряжение которых не превышает 40 -- 50 вольт; эти низковольтные разряды помогают ему находить мелких морских обитателей, которыми угорь питается. Кроме того, электрические угри способны воспринимать электрические разряды друг друга -- во всяком случае, когда один из них ударом электрического тока парализует жертву, к добыче устремляются и другие угри.

Европейцы знакомы с электрическим угрем с 1729 года. Английский ученый Фарадей первым рассчитал мощность “батарей” электрического угря: она равна 15 заряженным лейденским банкам с общей рабочей поверхностью элементов - 2250 квадратных метров.

Несмотря на то что во времена Фарадея техника регистрации токов была несовершенна, его опыты оказались безупречными.

Электроды, которые Фарадей прикладывал к голове и хвосту рыб, были подключены к соленоиду со стальной иглой. В момент прохождения по соленоиду импульса тока игла намагничивалась, и по магнитным полюсам на концах иглы ученый определял полярность исследуемых участков тела рыб.

Приблизившись к преследуемой жертве, угорь разряжает свой парализующий удар, действие которого до того сильно, что в одно мгновение все рыбы и крабы в районе распространения этого удара опрокидываются навзничь и становятся неподвижными. Тогда он выбирает себе подходящую жертву и проглатывает ее с помощью сильного всасывающего движения, производящего явственный шум.

Обращение с электрическим угрем -- дело довольно опасное. В Лондонском зоопарке угорь однажды сильно ударил электрическим током служителя, который его кормил. Другой угорь начал генерировать электрические разряды, когда его переносили в металлической коробке, и служителю пришлось бросить коробку на землю. Но только при непосредственном контакте удар угря оказывается смертельным; однако пловец, оказавшийся в воде недалеко от места разряда, может утонуть, находясь в состоянии шока. . Мясо электрического угря в Южной Америке едят. Но ловить его опасно. Один из способов ловли рассчитан на то, что угорь, разрядивший свою батарею, надолго становится безопасен. Поэтому рыбаки поступают так: в реку загоняют стадо коров, угри нападают на них и расходуют свой запас электричества. Прогнав коров из реки, рыбаки бьют угрей острогами.

Подсчитано, что 10 тыс. угрей могли бы дать энергию для движения электропоезда в течение нескольких минут. Но после этого поезду пришлось бы стоять несколько суток, пока угри восстановили бы свой запас электрической энергии. Почти 4/5 длины всего тела занято электрическими органами, которые тянутся от заднего конца полости тела до конца хвоста, и на них приходится треть общего веса. Электрический орган, студневидная ткань, разделенная соединительными перегородками, занимает большую часть тела этой удивительной рыбы: до 5/6 ее длины и 3/8 веса. Положительный полюс - у головы, отрицательный - у хвоста. Собственно, электрических органов у угря всего до полумиллиона - это миниатюрные клетки, производящие электричество, соединенные нервами последовательно, благодаря этому разряд трехметрового угря достигает 650 вольт. Электрические клетки-пластинки сложены столбиками, которые соединены между собой параллельно, что увеличивает общую силу тока до двух ампер, а мощность - до киловатта!

Электрический сом

Электрический сом (лат. Malapterurus electricus) -- вид придонных пресноводных рыб из рода Malapterurus семейства Электрические сомы (Malapteruridae), обитающих в тропических и субтропических водоёмах Африки. Электрического сома причисляют к сильно электрическим рыбам.

Это довольно крупная рыба: длина отдельных особей превышает 1 метр. Масса крупной особи может составить 23 кг. Тело вытянутое. Голова несёт три пары усиков. Глаза маленькие, светящиеся в темноте. Окраска довольно пёстрая: тёмно-коричневая спина, буроватые бока и желтоватое брюхо. По телу разбросаны многочисленные тёмные пятна, грудные и брюшные плавники розовые, хвостовой плавник с тёмным основанием и широкой красной или оранжево-красной оторочкой. Спинного плавника у электрического сома нет. Грудные плавники не имеют колючек. Эти рыбы обитают в бассейне Ниле и реках Западной Африки. Электрические сомы представляют большую опасность для человека, чем электрические скаты. Электрические органы сома способны производить электрические разряды, напряжение которых достигает 360 вольт. Если человек дотронется до тела сома, то может мгновенно погибнуть. Существуют рассказы о том, что пойманная рыба, которая пролежала на воздухе несколько минут (заснувшая) может производить электрические разряды, которые способны парализовать взрослого человека.

У сома хвост заряжен положительно относительно головы. Напряжение и сила тока в отдельных импульсах разряда электрического сома длиной свыше 80см могут достигать 250В и 0,5А.

Залпы, производимые сомом при захвате и заглатывании мелкой добычи, относительно коротки -- в среднем они состоят из 71 импульса.

Электрический скат

Электрический скат упоминается во многих легендах, дошедших до нас из глубины веков; толкователи снов считали, что он предвещает близкое несчастье. Греки и римляне знали, что скат владеет источником какой-то странной энергии, и, поскольку электричество тогда не было известно, полагали, что источник ее -- какое-то неведомое вещество. Существовало и еще одно поверье -- будто скат, пойманный на бронзовый крючок, убивает забросившего снасть рыбака, причем смерть наступает от свертывания крови

Электрические скаты , обитающие и в умеренной, и в тропической зонах, способны создать на своих "электродах" напряжение до 50 вольт и выше; этого достаточно, чтобы убивать рыб и ракообразных, которыми питаются скаты. Электрический скат похож на гибкий блин с длинным и толстым хвостом. Охотясь, скат бросается на жертву всем телом и "обнимает" ее своими "крыльями", на концах которых находятся электрические органы. Объятие смыкается, "электроды" разряжаются -- и скат убивает свою жертву разрядом тока.

Самый крупный из электрических скатов -- это Torpedo nоbiliana, обитатель вод Северной Атлантики; в длину он достигает 1,8 метра, весит около 100 килограммов и способен создавать разность потенциалов в 200 вольт -- этого достаточно, чтобы убить любое животное, оказавшееся в воде поблизости. Особая действенность электрического разряда в воде объясняется тем, что вода -- хороший проводник электрического тока.

Скаты излучают разряды залпами, в каждом из которых насчитывается 2--10 и более импульсов. Продолжительность каждого 3--5 мс В отличие от электрического угря скаты не испускают слабых импульсов. В 1960 г. на выставке, организованной английским Научным королев¬ским обществом в честь 300-летия со дня его основания, среди загадок природы, которые человеку предстоит раскрыть, демонстрировался обычный стеклянный аквариум с находящейся в нем рыбой --электрическим скатом . К аквариуму через металлические электроды был подключен вольтметр. Когда рыба была в покое, стрелка вольтметра стояла на нуле. При движении рыбы вольтметр показывал напряжение, идостигавшее при активных движениях 400 В. Надпись гласила: "Природу этого электрического явления, наблюдавшегося задолго до организации английского королевского общества, человек разгадать до сих пор не может".

В момент излучения мощных импульсов как вне, так и внутри тела сильноэлектрических рыб проходят токи высокого напряжения. Почему же эти рыбы не подвергаются действию собственных разрядов? Подобная невосприимчивость объясняется тем, что в их теле находятся особые «электропровода» -- участки, отличающиеся от соседних более высокой электропроводностью. Так, у мраморного электрического ската сопротивление участков кожи, покрывающих электрические органы, в 3--4 раза ниже, чем сопротивление участков кожи, покрывающих другие органы. Электрический ток в основном проходит через эти участки, почти не воздействуя на остальные.

В родной стихии скат не реагирует на разряды благодаря высокой электропроводности морской воды. Если же ската вынуть из воды, каждый разряд будет вызывать непроизвольное сокращение его мускулатуры.

Слабоэлектрические рыбы

Слабоэлектрические рыбы излучают серии почти непрерывных и ритмичных импульсов. Напряжение тока, генерируемого слабоэлектрическими рыбами, измеряется десятыми долями вольта. По характеру разрядов все эти рыбы могут быть подразделены на две группы.

К первой относят рыб, у которых разряды регулярные, монофазные, с относительно большой длительностью импульсов (2--10 мс). Частота следования импульсов варьирует от 60 до 940 в секунду. Среди рыб этой группы наиболее изучен гимнарх.

Его разряды состоят из электрических импульсов, непрерывно следующих друг за другом с частотой приблизительно 300 импульсов в секунду. Импульсы гимнарха можно зарегистрировать и вне воды, если держать рыбу в воздухе, а электроды наложить непосредственно на кожу. Частота излучения электрических импульсов у гимнарха меняется только при изменении температуры воды (раздражение и физиологическое состояние не оказывают влияния). Наиболее четко проявляются разряды при температуре воды 28°.

Наиболее типичный и хорошо исследованный представитель этой группы -- африканский слоник. Его разряды состоят из отдельных двухфазных синусоидальных импульсов, амплитуда и частота следования которых зависят от степени возбуждения рыбы и факторов окружающей среды: температуры, освещенности, солености воды, присутствия различных объектов (рис. 10). Частота следования импульсов колеблется от 5 до 50 в секунду.

Электрические явления в мире растений

Электрические явления растений изучены на сегодняшний день недостаточно. Электрические импульсы растений -- все еще весьма новая область исследований. В ней многое неизвестно, поэтому можно привести лишь одиночные примеры

Способность растений к опылению известно со времен Чарлза Дарвина. Одни цветки привлекают насекомых яркой окраской своих лепестков, другие - своим запахом, третьи имитируют образ привлекательных для спаривания насекомых... И вот новое открытие!

Группа ученых бристольской школы биологических наук (Bristol's School of Biological Sciences) под руководством профессора Дэниела Роберта (Daniel Robert) обнаружила, что у растений есть своя система электрических сигналов, которая помогает им привлекать опылителей.

Известно, что растения окружены слабым электрическим током и несут отрицательный заряд. Шмели же несут на себе положительный заряд до 220 вольт. Из-за трения в воздухе о частицы взвешенной пыли они теряют часть своих электронов, поэтому, при подлете к цветку, возникает лишь небольшая электрическая сила, которая может передавать определенную информацию.

Ученые поместили в стеблях полусотни петуний электроды и обнаружили, что, когда пчела приземляется на цветок, его заряд на несколько минут становится положительным. Исследователи предполагают, что таким образом растение сообщает другим пчелам, что его нектаром уже полакомились. С другой стороны ученые были удивлены тем, что главным привлекающим фактором для насекомых является вовсе не аромат цветка, а его электрическое поле. Это выяснилось в результате следующего эксперимента.

Шмелей запустили на площадку с искусственными цветами. Одни из них имели положительный заряд и были обработаны сахарозой (аналог нектара). Другие цветки были заземлены и имели горький "нектар".Первоначально шмели садились на цветки с электрическим зарядом и сахарозой. Когда искусственные цветки отключили от электричества, шмели стали садиться на "сладкие" и "горькие" цветки в произвольном порядке. К тому же, вероятно, электрическое поле цветка усиливает для насекомого и привлекательность окраски его лепестков. Ученые собираются доказать, что способностью к электрорецепции обладают не только шмели, но также бабочки и мотыльки.

Первые бесспорные доказательства существования электрических процессов в растительных тканях были получены в середине XIX в. Так называемые токи повреждения обнаружились в различных растительных тканях. Срезы листьев, стебля, клубней всегда заряжены отрицательно по отношению к нормальной ткани. Если разрезать яблоко пополам и вынуть середину, то оба электрода, приложенные к кожуре, не выявят разницы потенциалов. Если же один электрод приложить к кожуре, а другой перенести во внутреннюю часть мякоти, гальванометр отметит появление тока повреждения.

Выяснилось, что в момент гибели некоторых растительных тканей их потенциал резко возрастает. Индийский исследователь Бос соединил внешнюю и внутреннюю части зеленой горошины с гальванометром и затем нагрел ее до температуры 60 °С. При этом был зарегистрирован электрический потенциал 0,5 В!

Были открыты электрические ритмы растений. Если поместить кончик корня молодого бобового растения в воду и измерить разность потенциалов между корнем и наружной средой, то эта величина колеблется с периодом 5 - 20 мин, причем амплитуда колебаний уменьшается по мере удаления от кончика корня, а частота сильно зависит от температуры окружающей среды. Способность многих цветов и листьев складываться или раскрываться в зависимости от времени суток также обусловливается электрическими сигналами, представляющими собой потенциал действия. Закрытие листьев можно стимулировать искусственно с помощью электрического раздражения.

Известна реакция многих цветов на механические раздражения -- выделение нектара. Оказалось, что при механическом раздражении некоторых частей цветка возникают электрические импульсы, передающиеся по железистым клеткам в проводящие пучки, и, достигая нектарника, стимулируют его деятельность. Реакция нектарника очень быстрая: выделение нектара начинается сразу же после того, как насекомое садится на цветок.

Движения листьев мимозы тоже управляются с помощью электрической системы сигнализации. Бос установил, что если сочленовую подушечку мимозы раздражать короткими импульсами электрического тока, ее реакция (механическое движение) будет не мгновенной, а с запаздыванием на 0,1 с. Такая скорость реакции сравнима со скоростью реакции многих животных. Время складывания листа составляет около 3 с. После непродолжительного покоя лист начинает подниматься. Возвращение листа в исходное состояние занимает около 16 с. Если последовательные раздражения осуществлять слишком часто, наступает утомление -- как и при раздражении мышцы животного.

Эффекты действия токов в теле человека

Тело человека - хороший проводник электрического тока. Сопротивление тела человека при нормальном кожном покрове составляет 3 - 100 кОм. Безопасным является электрический ток, длительное прохождение которого не причиняет организму вреда и не ощущается человеком.

По технике безопасности величина силы тока не должна превышать 50 мкА.

Человек способен ощущать электрический ток от 1 мА. Опасным ток становится - 0,01А(переменный), 0,05А (постоянный ток).При таком воздействии током человек способен разорвать электрическую цепь. Если сила тока выше данных значений, то для человека ,это становится смертельно опасной Электропроводность кожи, через которую ток проходит главным образом по каналам потовых и отчасти сальных желез, зависит от трещин и состояния ее поверхностного слоя. Тонкая и особенно влажная кожа, а также кожа с поврежденным наружным слоем эпидермиса хорошо проводит ток. Наоборот, сухая огрубевшая кожа - весьма плохой проводник. Электрический ток, проходя через организм человека, возбуждает живые ткани организма. Степень возникающих изменений зависит от силы тока и его вида (переменный или постоянный).

Наиболее необычные электрические явления в природе

рыба электрический явление

1. Вистлеры (свистовые волны)

Вистлеры ещё называют свистящими атмосфериками или электромагнитным хором рассвета за то, что звуки, которые они производят, напоминают пение птиц ранним утром. Это почти неземные звуки, образующиеся в верхних слоях атмосферы при разрядах молний, причём их можно записать даже на простейшем радиооборудовании. Существует даже такое понятие как «охотники за вистлерами», обозначающее радиолюбителей, путешествующих на дальние расстояния в районы с минимальным наличием линий электропередач и других электромагнитных помех для того, чтобы сделать чистые звуковые записи.

2. Молнии Кататумбо

Молнии Кататумбо являются самым длительным грозовым явлением на Земле. Они зафиксированы в устье реки Кататумбо (Венесуэла), а их многочасовое свечение породило немало легенд и мифов среди коренного населения. Пары метана из местных болот в сочетании с ветром со стороны Анд поднимаются в атмосферу и фактически провоцируют непрерывные удары молний. Интенсивный гром с молниями начинается сразу после наступления сумерек и продолжается около 10 часов. Сами молнии красно-оранжевого цвета можно увидеть в ясные ночи из многих стран Карибского бассейна. Это явление настолько уникально, что его собираются включить в список Всемирного наследия ЮНЕСКО.

3. Грязные грозы

«Грязная гроза» - это мощное электрическое грозовое явление, формирующееся в шлейфе вулканического извержения. Что именно порождает эти массивные электрические разряды пока неизвестно, учёные предполагают, что частицы льда и пыли трутся друг о друга и вырабатывают статическое электричество, что и вызывает эти удивительные молнии необычного цвета. В течение 2011 года массовые грязные грозы наблюдались в Чили. Температура и плотность фонтанов пепла без присутствия воды, которая могла бы объяснить формирование молнии, по-прежнему делает это явление неразгаданной природной тайной.

4. Визуальный феномен космических лучей

Космические лучи зарождаются в глубоком космосе, они путешествуют в течение миллионов лет и, в конце концов, попадают на нашу планету. Эти лучи поглощаются нашей атмосферой, потому для нас они невидимы. Зато космонавты видят их даже с закрытыми глазами. Лучи воздействует иначе, чем земной свет. Космонавты миссии «Аполлон 11» описывали их как пятна и полосы, возникающие каждые три минуты. Хотя этот визуальный феномен полностью не изучен учёными, уже известно, что космические лучи движутся на высоких скоростях и проходят через космические корабли и через сетчатку глаз космонавтов.

5. Триболюминесценция

Триболюминесценции - световое явление, излучаемое из кристаллического вещества при его разрушении. На сегодняшний день считается, что через это вещество проходит электрический ток и заставляет молекулы газа, находящиеся внутри кристалла, светиться. Практическое современное использование триболюминесценции включает в себя обнаружение трещин внутри зданий, а также внутри космических аппаратов, плотин и мостов. Когда наши предки обнаружили этот источник, они приписали ему божественное происхождение. Индейские шаманы наполняли церемониальные трещотки кварцевыми кристаллами, которые светились при тряске, что придавало особую атмосферу проводимым ритуалам. Кстати, вы можете пронаблюдать этот свет в домашних условиях. Положите кусочки сахара на ровную поверхность в темном помещении и раздавите их стеклянным стаканом, чтобы увидеть синеватые вспышки света.

6. Сонолюминесценция

Сонолюминесценция, то есть выработка света звуковыми волнами, была обнаружена в 1930-е годы. Ученые впервые столкнулись с загадочными огнями, исследуя морские гидролокаторы. Когда звуковые волны проходили через воду, появлялось синее мерцание и вспышки света. Мелкие пузырьки в воде расширялись и быстро сжимались, возникало высокое давление и температура, хлопок, выработка энергии, а затем излучение света. Иными словами, звук превращался в свет. Кстати, механизм этого явления по сей день не является полностью изученным.

7. Спрайты

Спрайты - это мощные, яркие вспышки обычно красного цвета, возникающие высоко в атмосфере, выше грозовых туч, на высоте от 80 км. В диаметре они могут быть от 50 км и более. Ранее считалось, что спрайты - это разновидность молнии, но впоследствии было установлено, что это скорее определённый тип плазмы. Спрайты напоминают большую красную медузу с длинными синими щупальцами. Их сложно сфотографировать с земли, но есть много снимков, сделанных с самолетов.

8. Шаровая молния

Оказывается, что шаровые молнии как явление стали восприниматься всерьез только в 60-х годах, хотя их появление фиксировалось постоянно в течение многих столетий. Эти странные шары могут различаться по размерам: от горошины до небольшого автобуса. Трещащие, шипящие, яркие шары возникают во время грозы, в некоторых случаях они могут спонтанно и громко взрываться. Одна из самых странных тайн шаровой молнии - это её «разумное» поведение. Она влетает в здания через дверные проемы или окна и путешествует по комнатам, огибая столы, стулья и прочие предметы. Происхождение шаровых молний до сих пор тщательно изучается, но к единому мнению учёные так ещё и не пришли.

9. Огни святого Эльма

Еще во времена Колумба Огни святого Эльма считались сверхъестественным явлением. Моряки часто рассказывали о ярко-синем или фиолетовом свечении вокруг корабля. Свечение напоминало мерцающие на ветру языки пламени вокруг мачт. Внезапное появление Огней святого Эльма считалось добрым предзнаменованием, поскольку странный пучкообразный свет возникал перед окончанием мощных штормов. Наука имеет своё объяснение этому странному свечению. Разница в напряжении между воздушной атмосферой и морем вызывает ионизацию газов, которые начинают светиться. Кстати, Огни святого Эльма были также замечены на церковных шпилях, крыльях самолетов и даже рогах крупного скота.

10. Северное сияние

Полярные (северные) сияния - это изумительные световые явления, возникающие в ночном небе. Аврора Бореалис в северном полушарии и Аврора Австралис в южном полушарии получили свои имена от римской богини рассвета. Они выглядят как волнистая, светящаяся завеса зелёного цвета, хотя были также зафиксированы сияния красного, розового, желтого и изредка синего цветов. Причина земных Аврор заключается в том, что заряжённые частицы, высвобождаемые из атмосферы Солнца, сталкиваются с частицами газа в атмосфере Земли, и в результате мы становимся свидетелями впечатляющего природного светового шоу.Flytothesky.ru

Заключение

Электрические явления проявляются в живых и неживых организмах, Некоторые животные используют ток в качестве оружия, ток помогает органам человека работать.

Однако среди электрических явлений природы еще много неизученного и непонятного. Электрические явления происходят в атмосфере в виде молний и сварного сияния. Непонятные электрические явления зафиксированы у растений.

Источники

Сайт: 13MIN.RU

Портал: Ответы на вопросы, видео, отзывы

Портал «ИНФОУРОК»

Сайт «Flytothesky»

Размещено на Allbest.ru

...

Подобные документы

  • Гипотеза взаимодействия электрических токов и полей внутри организма. Предположения и фактические результаты исследований, направленных на исследование роли электрических взаимодействий и биохимических процессов в регуляции функций живого организма.

    монография [959,8 K], добавлен 30.05.2010

  • Доказательство возможности выработки электричества животными Фарадеем, устройство и принцип действия электрических органов рыб. Роль электричества в жизни инфузории туфельки и бактерий. Применение электричества при изучении механизмов условных рефлексов.

    реферат [51,8 K], добавлен 08.08.2009

  • Изучение строения биологической мембраны, ионоселективного канала, видов электрических явлений в возбудимых тканях. Характеристика устройства синапса и механизма передачи возбуждения. Анализ возрастных особенностей развития центральной нервной системы.

    курсовая работа [61,7 K], добавлен 09.06.2011

  • Явления в жизни растений, связанные с наступлением лета. Роль человека, влияющего на жизнь растений в природных сообществах. Связь растений с окружающей средой. Луговая флора Республики Беларусь. Геоботаническое описание луговой растительности.

    реферат [39,7 K], добавлен 01.07.2015

  • Обзор электрических процессов, возникающих в сердечной мышце при ее деятельности. Изучение теории стресса и общего адаптационного синдрома, моторики и секреции толстого кишечника. Анализ возрастных особенностей развития двигательного аппарата у детей.

    контрольная работа [2,5 M], добавлен 06.06.2012

  • Исследование составляющих нервной системы и мозга человека. Характеристика принципа передачи электрических импульсов между нейронами. Изучение методов построения, действия и основных областей применения биологических и искусственных нейронных сетей.

    реферат [1,6 M], добавлен 17.02.2012

  • Анализ самых опасных на Земле паразитов среди насекомых, червей, грибов, бактерий и микроорганизмов. Характерные особенности их существования и питания, способы проникновения в жертву и размножения. Описание болезней, которые они вызывают у человека.

    презентация [2,6 M], добавлен 28.09.2016

  • Изучение взаимодействия нейронов между собой и нервными клетками. Электрические процессы на постсинаптической мембране. Строение химических синапсов. Особенности формирования и распространения быстрых и медленных электрических потенциалов медиаторов.

    контрольная работа [374,5 K], добавлен 19.08.2015

  • Факторы воздействия на временной ход электрических сигналов. Пассивные электрические свойства нервных и мышечных мембран. Кабельные свойства нервных и мышечных волокон, влияние емкости мембраны на величину и временной ход продольного распространения тока.

    контрольная работа [63,0 K], добавлен 26.10.2009

  • История возникновения и основные понятия биологической статистики. Задачи биостатистики: количественное описание биологических явлений; доказательство неоднородности биологических явлений; сжатие информации. Этапы исследований. Расчет объема выборки.

    лекция [452,2 K], добавлен 12.09.2019

  • Рассмотрение основных функций тканей высших растений. Изучение места обитания, строения, питания и способов размножения водорослей, их роль в природе и в жизни человека. Ознакомление с разнообразием растений тундры и их адаптивными особенностями.

    контрольная работа [22,9 K], добавлен 26.10.2011

  • Цепь процессов по переработке информации посредством центральной нервной системы, формирование рефлексов. Классы электрических сигналов. Распространение изменений потенциала в биполярных клетках и фоторецепторах. Процессы возбуждения и торможения.

    реферат [24,8 K], добавлен 24.10.2009

  • Особенности биоэлектрических явлений в живых тканях, ионно-мембранная теория происхождения. Классификация раздражителей; изменение возбудимости при возбуждении. Типы высшей нервной деятельности человека, правила и стадии выработки условных рефлексов.

    контрольная работа [52,5 K], добавлен 12.02.2012

  • Общий ход развития науки естествознания. Анализ природы, расчленение ее на части, выделение и изучение отдельных вещей и явлений. Воссоздание целостной картины на основе уже познанных частностей. Развитие идеи эволюционного развития явлений природы.

    реферат [26,2 K], добавлен 21.07.2011

  • Животные, обладающие эхолокационным механизмом. Развитие специализированных сонаров. Отличие эхолокации птиц и крыланов. Расположение эпидормального органа у водных амфибий и рыб. Сенсорная система боковой линии. Восприятие электрических сигналов.

    реферат [5,5 M], добавлен 27.09.2009

  • Основные свойства эволюционных процессов и их отличие от динамических и статистических процессов и явлений в природе. Современные подходы к анализу сложных самоорганизующихся систем. Особенности синергетики. Экономика с точки зрения синергетики.

    курсовая работа [23,1 K], добавлен 01.10.2010

  • Изучение принципа электромеханического преобразования энергии. Сущность биологического электропривода. Движение бактерий - одно из самых поразительных явлений природы. Строение бактериального жгутика и базального тела. Особенности работы мышц человека.

    реферат [828,6 K], добавлен 02.06.2013

  • Восприятие силы тяжести растительными клетками и влияние гравитации на формирование органов животного. Суть фотоморфогенеза и магнетизма. Рентгеновы лучи и микроволны, электропроводность и ионная специфичность. Влияние электрических полей на животных.

    реферат [28,7 K], добавлен 30.08.2009

  • Общая характеристика ядовитых растений, их значение, распространение и роль в природе и жизни человека. Первая помощь при отравлении ядовитыми растениями. Биолого-морфологическая характеристика ядовитых растений. Ядовитые растения Нижегородской области.

    курсовая работа [2,5 M], добавлен 03.09.2011

  • Насекомые как самый многочисленный класс животных, важный элемент пищевых пирамид, анализ видов: прямокрылые, равнокрылие. Характеристика насекомых, причиняющих ущерб человеку: комары, осы. Знакомство с насекомыми, повреждающими корневую систему растений.

    реферат [2,5 M], добавлен 22.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.