Кардиомиоциты - мышечные клетки сердца

Общая характеристика кардиомиоцитов, их виды: типичные (рабочие), проводящие (атипичные), промежуточные (переходные) и другие. Ионные механизмы потенциала действия в рабочих кардиомиоцитах и в клетках синусового узла. Расслоение кардиомиоцитов при ишемии.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 24.05.2018
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Украины

Национальный технический университет

«Харьковский политехнический институт»

Кафедра биотехнологии, биофизики и аналитической химии

Реферат

По курсу: «Биология клетки»

На тему: «Кардиомиоциты - мышечные клетки сердца»

Выполнил студент группы О-57б

Бобиштян Василий Иванович

Проверил: ст.пр. Масалитина Н.Ю

Харьков, 2017

Содержание

Введение

Раздел 1. Общая характеристика кардиомиоцитов

Раздел 2. Виды кардиомиоцитов

2.1 Типичные (рабочие, сократительные) кардиомиоциты

2.1.1 Функциональные аппараты кардиомиоцитов

2.2 Проводящие (атипичные) кардиомиоциты

2.2.1 Пейсмекерные клетки

2.3 Промежуточные (переходные) проводящие кардиомиоциты

2.3.1 Клетки-волокна пучка Гиса и волокон Пуркинье

2.4 Секреторные кардиомиоциты

Раздел 3. Потенциал действия рабочего кардиомиоцита

Раздел 4. Кардиомиоциты при различных заболеваниях сердечно-сосудистой системы

4.1 Ишемическая болезнь сердца

4.2 Инфаркт миокарда

Список источников

Приложение

Введение

В современной биологии клетки одной из актуальных темой исследований является морфология, физиология и функции кардиомиоцитов. Кардиомиоциты -- структурные единицы сердечной мышцы, поэтому понимание их жизнедеятельности необходимо для изучения и терапии множества заболеваний сердечно-сосудистой системмы. Среди основных -- инфаркт миокарда и ишемическая болезнь сердца. Также огромную роль в изучении заболеваний сердечной мышцы играет понимание энергообменных процессов в тканях -- передаче потенциалов и импульсов, их интенсивности и силы. Последнее напрямую зависит от функционального состояния кардиомиоцитов разных видов, их способности к сокращению и регенерации. Изучение строения отдельно взятой клетки необходимо для гистологических исследований, которые в свою очередь являются теоретической подоплекой для разнообразных хирургических вмешательств. Знание биохимических процессов в кардиомиоцитах позволяет теоретически подкрепить и стимулировать разработку различных лекарственных препаратов для лечения заболеваний сердечно-сосудистой системмы.

Каждая клетка сердца в независисмости от вида и функций объеденена в единую систему тканей которые в свою очередь образуют орган -- сердце. Именно это определяет необходимость изучения отдельно взятой клетки в спектре анатомической науки.

Физиологические процессы и все их полное разнообразие также опирается на понимание одного отдельно взятого элемента сердца. Трофические, обменные и в частности энергообменные процессы играют огромную роль в работе сердца, что и обеспечивает необходимость изучения этой темы для физиологии.

Также, как уже было сказано огромную роль изучение кардиомиоцитов играет в кардиологии. Такие темы как апоптоз кардиомиоцитов при инфаркте миокарда или нарушение проводимости КМЦ давно ипривлекают к себе внимание медицинского сообщества и дают теоретическое подкрепление для разработки новых методик лечения.

Как итог -- основная цель работы -- собрать основные теоретические сведения о кардиомиоцитах, их строении, морфологии и функциональном разноообразии. Актуальность работы обеспечивает использование современных источников.

Раздел 1. Общая характеристика кардиомиоцитов

Кардиомиоциты -- мышечные клетки сердца, выделяют рабочие (сократительные или типичные), проводящие и секреторные

Основные органелы сходны с органеллами присущими миоцитам скелетной мышечной ткани:

· Ядро как правило светлое, характеризующееся наличием большого количества эухроматина. В миокарде взрослых млекопитающих преобладают двухядерные кардиомиоциты, кроме человека, у которого количество двухядерных миоцитов не превышает 10--13%.

· Аппарат Гольджи зачастую представлен 3-4 цистернами и скоплением мелких пузырьков и везикул, обычно располагается возле полюсов ядра.

· Гранулярный эндоплазматический ретикулум развит слабо-- иногда встречаются одиночные каналы.

· Митохондрии, из числа органелл общего характера достигающие наибольшего развития и занимающие значительный объём кардиомиоцитов желудочков сердца. Характерной особенностью именно митохондрий кардиомиоцитов является наличие специфический структур-- межмитохондриальных контактов. Характерной морфологической особенностью является выстраивание митохондрий вдоль миофибрилл(рис. 1)

· Лизосомы, которые преимущественно находятся в околоядерной зоне.

До сих пор остаётся открытым вопрос, встречаются ли центриоли в клетках кардиомиоцитов.

К специализированным органеллам относят:

· Миофибриллы (по структуре саркомеров схожи с миофибриллами скелетных мышц, однако отличаются по строению некоторых белков, например отличаются по биохимическому составу лёгких цепей миозина)

Рисунок 1. Под номером 3 указано скопление митохондрий которые впоследствии выстраиваются в митохондриальную цепь между миофибриллами

Раздел 2. Виды кардиомиоцитов

2.1 Типичные (рабочие, сократительные) кардиомиоциты

Типичные (рабочие, сократительные) кардиомиоциты - клетки цилиндрической формы, длиной до 100-150 мкм и диаметром 10-20 мкм. Кардиомиоциты образуют основную часть миокарда, они соединены друг с другом в цепочки основаниями цилиндров. Эти зоны соединенения крдиомиоцитов называют вставочными дисками, в которых выделяют десмосомальные контакты и нексусы (щелевидные контакты). Десмосомы обеспечивают механическое сцепление, которое препятствует расхождению кардиомиоцитов. Щелевидные контакты способствуют передаче сокращения от одного кардиомиоцита к другому.

Каждый кардиомиоцит содержат одно или два ядра, саркоплазму и плазмолемму, окружённую базальной мембраной. Различают функциональные аппараты, такие же, как в мышечном волокне: мембранный, фибриллярный (сократительный), трофический, а также энергетический.

2.1.1 Функциональные аппараты кардиомиоцитов

Мембранный аппарат: каждая клетка покрыта оболочкой, состоящей из комплекса плазмолеммы и базальной мембраны. Оболочка образует впячивания (Т-трубочки). К каждой Т-трубочке примыкает одна цистерна (в отличие от мышечного волокна - там 2 цистерны) саркоплазматического ретикулума (видоизменённая аЭПС), образуя диаду: одна L-трубочка (цистерна аЭПС) и одна Т-трубочка (впячивание плазмолеммы). В цистернах аЭПС ионы Са2+ накапливаются не так активно, как в мышечных волокнах.

Фибриллярный (сократительный) аппарат. Большую часть цитоплазмы кардиомиоцита занимают органеллы специального назначения - миофибриллы, ориентированые продольно и расположенные по периферии клетки. Сократительный аппарат рабочих кардиомиоцитов сходен со скелетными мышечными волокнами. При расслаблении, ионы кальция выделяются в саркоплазму с низкой скоростью, что обеспечивает автоматизм и частые сокращения кардиомиоцитов. Т-трубочки широкие и образуют диады (одна Т-трубочка и одна цистерна сети), которые сходятся в области Z-линии. кардиомиоцит проводящий клетка ишемия

Кардиомиоциты, связываясь с помощью вставочных дисков, образуют сократительные комплексы, которые способствуют синхронизации сокращения, между кардиомиоцитами соседних сократительных комплексов образуются боковые анастомозы.

Трофический аппарат включает ядро, саркоплазму и цитоплазматические органеллы: грЭПС и комплекс Гольджи (основная функция это синтез белков - структурных компонентов миофибрилл), лизосомы (фагоцитоз структурных компонентов клетки). Кардиомиоциты, как и волокна скелетной мышечной ткани, характеризуются наличием в их саркоплазме железосодержащего кислород-связывающего пигмента миоглобина, придающего им красный цвет и сходного по строению и функции с гемоглобином эритроцитов.

Энергетический аппарат представлен митохондриями и включениями, расщепление которых обеспечивает получение энергии. Митохондрии многочисленны, лежат рядами между фибриллами, у полюсов ядра и под сарколеммой. Энергия, необходимая кардиомиоцитам, получается путём расщепления: 1) основного энергетического субстрата этих клеток - жирных кислот, которые депонируются в виде триглицеридов в липидных каплях; 2) гликогена, находящегося в гранулах, расположенных между фибриллами.

2.2 Проводящие (атипичные) кардиомиоциты

Проводящие (атипичные) кардиомиоциты обладают способностью к генерации и быстрому проведению электрических импульсов. Они образуют узлы и пучки проводящей системы сердца и разделяются на несколько подтипов: пейсмекеры (в синоатриальном узле), переходные (в атрио-вентрикулярном узле) и клетки пучка Гиса и волокон Пуркинье. Проводящие кардиомиоциты характеризуются слабым развитием сократительного аппарата, светлой цитоплазмой и крупными ядрами. В клетках нет Т-трубочек и поперечной исчерченности, поскольку миофибриллы расположены неупорядоченно.

Функция атипичных кардиомиоцитов - генерация импульсов и передача на рабочие кардиомиоциты, обеспечивая автоматизм сокращения миокарда.

2.2.1 Пейсмекерные клетки

Р-клетки (пейсмекерные клетки) Специализированые кардиомиоциты в виде тонких волокон, окружённых рыхлой соединительной тканью. По сравнению с рабочими кардиомиоцитами они имеют меньшие размеры. В саркоплазме содержится сравнительно мало гликогена и небольшое количество миофибрилл, лежащих в основном по периферии клеток. Эти клетки имеют богатую васкуляризацию и двигательную вегетативную иннервацию. Так, в синусно-предсердном узле доля соединительнотканных элементов (включая кровеносные капилляры) в 1,5-3 раза, а нервных элементов (нейроны и двигательные нервные окончания) в 2,5-5 раз выше, чем в рабочем миокарде правого предсердия. Главное свойство -- спонтанная деполяризация плазматической мембраны. При достижении критического значения возникает потенциал действия, распространяющийся через электрические синапсы по волокнам проводящей системы сердца и достигающий рабочих кардиомиоцитов.Волна деполяризации передается чрез нексусы типичным (рабочим) кардиомиоцитам предсердия, которые сокращаются. Кроме того, возбуждение передается на промежуточные атипичные кардиомиоциты предсердно -- желудочкового узла. Генерация импульсов Р-клетками происходит с частотой 60-80 в 1 мин.

2.3 Промежуточные (переходные) проводящие кардиомиоциты

Промежуточные (переходные) кардиомиоциты предсердно-желудочкового узла передают возбуждение на рабочие кардиомиоциты, а также на третий вид атипичных кардиомиоцитов -- клетки-волокна Пуркинье. Переходные кардиомиоциты также способны самостоятельно генерировать электрические импульсы, однако их частота ниже, чем частота импульсов, генерируемых пейсмекерными клетками, и оставляет 30-40 в мин;

2.3.1 Клетки-волокна пучка Гиса и волокон Пуркинье

Клетки-волокна -- третий тип атипичных кардиомиоцитов, из которых построены пучок Гиса и волокна Пуркинье. Основная функция клеток-волокон -- передача возбуждения от промежуточных атипичных кардиомиоцитов рабочим кардиомиоцитам желудочка. Кроме того, эти клетки способны самостоятельно генерировать электрические импульсы с частотой 20 и менее в 1 минуту;

Пучок Гиса: кардиомиоциты этого пучка проводят возбуждение от водителей ритма(Р-клетки) к волокнам Пуркинье, содержат относительно длинные миофибриллы, имеющие спиральный ход; мелкие митохондрии и небольшое количество гликогена. Проводящие кардиомиоциты пучка Гиса входят также в состав синусно-предсердного и предсердно-желудочкового узлов.

Волокна Пуркинье. Проводящие кардиомиоциты волокон Пуркинье -- самые крупные клетки миокарда. Очень явно проступают на гистологических срезазах из-за белого цвета и волоконной структуры(рис.2)В них содержатся редкая неупорядоченная сеть миофибрилл, многочисленные мелкие митохондрии, большое количество гликогена. Кардиомиоциты волокон Пуркинье не имеют Т-трубочек и не образуют вставочных дисков. Они связаны при помощи десмосом и щелевых контактов. Последние занимают значительную площадь контактирующих клеток, что обеспечивает высокую скорость проведения импульса по волокнам Пуркинье.

2.4 Секреторные кардиомиоциты

Секреторные кардиомиоциты находятся в предсердиях, преимущественно в правом; характеризуются отростчатой формой и слабым развитием сократительного аппарата. В цитоплзме, вблизи полюсов ядра - секреторные гранулы, содержащие натриуретический фактор, или атриопептин (гормон, регулирующий артериальное давление). Гормон вызывает потерю натрия и воды с мочой, расширение сосудов, снижение давления, угнетение секреции альдостерона, кортизола, вазопрессина.

Раздел 3. Потенциал действия рабочего кардиомиоцита

В состоянии покоя внутренняя поверхность мембран кардиомиоцитов заряжена отрицательно. Потенциал покоя определяется в основном трансмембранным градиентом концентрации ионов К+ и у большинства кардиомиоцитов (кроме синусового узла и АВ-узла ) составляет от минус 80 до минус 90 мВ. При возбуждении в кардиомиоциты входят катионы, и возникает их временная деполяризация - потенциал действия.

Ионные механизмы потенциала действия в рабочих кардиомиоцитах и в клетках синусового узла и АВ-узла разные, поэтому и форма потенциала действия также различается (рис.3).

Рисунок 3. Потенциал действия различных кардиомиоцитов

У потенциала действия кардиомиоцитов системы Гиса-Пуркинье и рабочего миокарда желудочков выделяют пять фаз (рис.4). Фаза быстрой деполяризации (фаза 0) обусловлена входом ионов Na+ по так называемым быстрым натриевым каналам . Затем, после кратковременной фазы ранней быстрой реполяризации (фаза 1), наступает фаза медленной деполяризации, или плато (фаза 2). Она обусловлена одновременным входом ионов Са2+ по медленным кальциевым каналам и выходом ионов К+. Фаза поздней быстрой реполяризации (фаза 3) обусловлена преобладающим выходом ионов К+. Наконец, фаза 4 - это потенциал покоя .

Брадиаритмии могут быть обусловлены либо снижением частоты возникновения потенциалов действия, либо нарушением их проведения.

Способность некоторых клеток сердца к самопроизвольному образованию потенциалов действия называется автоматизмом . Этой способностью обладают клетки синусового узла , проводящей системы предсердий , АВ-узла и системы Гиса-Пуркинье . Автоматизм обусловлен тем, что после окончания потенциала действия (то есть в фазу 4) вместо потенциала покоя наблюдается так называемая спонтанная (медленная) диастолическая деполяризация. Ее причина - вход ионов Na+ и Са2+. Когда в результате спонтанной диастолической деполяризации мембранный потенциал достигает порога, возникает потенциал действия.

Проводимость , то есть скорость и надежность проведения возбуждения, зависит, в частности, от характеристик самого потенциала действия: чем ниже его крутизна и амплитуда (в фазу 0), тем ниже скорость и надежность проведения.

При многих заболеваниях и под действием ряда лекарственных средств скорость деполяризации в фазу 0 уменьшается. Кроме того, проводимость зависит и от пассивных свойств мембран кардиомиоцитов (внутриклеточного и межклеточного сопротивления). Так, скорость проведения возбуждения в продольном направлении (то есть вдоль волокон миокарда) выше, чем в поперечном (анизотропное проведение).

Во время потенциала действия возбудимость кардиомиоцитов резко снижена - вплоть до полной невозбудимости. Это свойство называется рефрактерностью . В период абсолютной рефрактерности никакой раздражитель не способен возбудить клетку. В период относительной рефрактерности возбуждение возникает, но только в ответ на надпороговые раздражители; скорость проведения возбуждения снижена. Период относительной рефрактерности продолжается вплоть до полного восстановления возбудимости. Выделяют также эффективный рефрактерный период, при котором возбуждение может возникнуть, но не проводится за пределы клетки.

В кардиомиоцитах системы Гиса-Пуркинье и желудочков возбудимость восстанавливается одновременно с окончанием потенциала действия. Напротив, в АВ-узле возбудимость восстанавливается со значительной задержкой

Рисунок 4. Потенциал действия системмы Гиса- Пуркинье

Раздел 4. Кардиомиоциты при различных заболеваниях сердечно-сосудистой системы

4.1 Ишемическая болезнь сердца

Основным фактором нарушения в работе крдиомиоцитов при ишемической болезнь является нарушение в процессе энергообразования. Процесс энергообразования может быть нарушен разными способами. В данной работе рассмотрен только эффект ишемии. Его основу составляют несколько компонентов, каждый из которых нарушает образование энергии: гипоксия, прекращение доступа субстратов к клеткам и удаления из них продуктов обмена, ацидоз (закисление среды). При внезапной ишемии миокарда прекращается синтез АТФ в митохондриях и в клетках происходит быстрое снижение уровня Кф, а затем и АТФ. Недостаточное энергоснабжение по-разному сказывается на функции клеточных органелл. Наиболее глубоко нарушается функция сократительного аппарата - основного потребителя энергии. Недостаток АТФ в миофибриллах проявляется двояким образом - уменьшается количество связей-мостиков между актиновыми и миозиновыми нитями и зависимая от них сила сокращения, а также возникают неразмыкающиеся связи между некоторыми молекулами миозина и актина, в результате дальнейшее перемещение нитей в данном саркомере становится невозможным - возникает контрактура. Она длится до тех пор, пока не будет рефосфорилирована молекула АДФ. Следствием контрактуры является нарушение растяжимости миокарда, затрудняющее наполнение сердца и снижающее его насосную функцию.

Инфаркт миокарда сопровождается ишемией участка сердца (регионарной ишемией), а многочасовые операции на сердце - полной (тотальной) ишемией. Что приводит к расслоению и отдалению кардиомиоцитов и нарушению их функционального состояния(рис.5) Сохранение структуры кардиомиоцитов во время тяжелого ишемического периода зависит от срока ишемии и скорости энергорасхода. Поэтому при многочасовых операциях на сердце обязательным условием сохранения жизнеспособности миокарда является использование различных способов защиты кардиомиоцитов.

4.2 Инфаркт миокарда

Инфаркт миокарда можно рассматривать как крайний случай ишемической болезни, когда клетки погибают вследствие аноксии(рис.6) После наступления полной аноксии клетки сердца остаются жизнеспособными в течение 20 мин. Уже через 30-60 секунд ишемии возникают соответствующие изменения электрокардиограммы (ЭКГ). Если в течение двадцати минут после окклюзии венечной артерии производят эффективную реваскуляризацию (неотложное восстановление проходимости венечной артерии консервативной терапией или оперативным вмешательством), то большинство клеток в зоне ишемии восстанавливают свою структуру и функцию.

Запасы кислорода в миокарде полностью утилизируются в течение восьми секунд после наступления ишемии. Прекращение аэробного обмена в кардиомиоцитах приводит к компенсаторному усилению в них анаэробного биологического окисления. Интенсификация анаэробного биологического окисления ведет к истощению резервов гликогена клеток сердца. Гликолиз сопровождается улавливанием свободной энергии, количество которой может удовлетворить потребности кардиомиоцитов лишь на 65-70%. При анаэробном биологическом окислении в клетках сердца растет концентрация молочной кислоты и протонов. Клетки сердца особенно чувствительны к отрицательным влияниям высокой концентрации свободных ионов водорода в цитозоле и межклеточных пространствах.

Ацидоз повышает подверженность клеток сердца повреждающему действию лизосомальных энзимов. Одновременно ацидоз угнетает функционирование проводящей системы сердца и снижает сократимость миокарда, являясь звеном патогенеза острой сердечной недостаточности вследствие ОИМ.

Связанная с ишемией критическая гипоксия клеток сердца нарушает ионный состав клетки, вызывая выход из кардиомиоцитов калия, магния и кальция. Нарушения ионного состава предрасполагают к возникновению эктопических водителей ритма и сердечных аритмий. Лишенные кислорода и нутриентов клетки сердца теряют способность захватывать эндогенные катехоламины, циркулирующие с кровью. Гипоксичные клетки сердца начинают высвобождать катехоламины, концентрация которых в плазме крови начинает расти в первые часы после ОИМ. В результате возникает системный дисбаланс между симпатическими и парасимпатическими эффектами на периферии. На уровне сердца это может вызвать расстройства сердечного ритма, обостряющие сердечную недостаточность вследствие ОИМ. Одновременно гиперкатехоламинемия усиливает гликогенолиз и липолиз.

Вследствие усиления гликогенолиза и липолиза в плазме крови растет концентрация глюкозы и неэстерифицированных жирных кислот. Избыточная концентрация жирных кислот в циркулирующей крови, их аномально высокое содержание в интерстиции может оказывать повреждающий детергентный эффект на клеточные мембраны. Гиперкатехоламинемия обуславливает снижение секреции инсулина, что еще в большей степени усиливает гликогенолиз и липолиз. Гипергликемия персистирует в течение 72 часов после возникновения острого инфаркта миокарда.

В патогенезе постишемического цитолиза клеток сердца свои определяющие роли играют:

1. Угнетение аэробного биологического окисления как причина недостатка свободной энергии в клетке (гипоэргоза).

2. Прекращение активного транспорта натрия и калия через наружную клеточную мембрану.

3. Поступление в клетку натрия вместе со свободной водой как причина клеточного отека.

4. Отсоединение рибосом от эндоплазматического ретикулума.

5. Прекращение синтеза клеточных протеинов.

6. Отек митохондрий вследствие накопления в них кальция. Вакуолизация.

8. Деструкция лизосом с высвобождением гидролаз.

9. Лизис клеточных мембран.

10. Свободнорадикальное окисление наиболее в функциональном отношении активных фосфолипидов клеточных мембран. И. Воспалительная альтерация и, в частности повреждающие клетки действия провоспалительных цитокинов (фактора некроза опухолей-В, интерлейкин-1).

Клетки сердца в зоне ишемии не находятся в состоянии аноксии. Они страдают от критической циркуляторной гипоксии. Резко сниженное количество кислорода поступает в ишемизированные кардиомиоциты. Кислород в зону ишемии поступает по коллатералям в системе венечных артерий. Часть клеток в условиях циркуляторной гипоксии впадает в состояние гибернации. Гибернация -- это состояние клетки сердца, которое характеризует использование свободной энергии лишь для поддержания жизнеспособности. В состоянии гибернации клетки рабочего миокарда перестают сокращаться. После возобновления тока крови по обтурированной венечной артерии (реваскуляризации) гибернация подвергается обратному развитию. Станнинг от гибернации отличает устойчивое угнетение функций дифференцированных клеток сердца, несмотря на эффективную реваскуляризацию. Постишемический цитолиз, станнинг и гибернация обуславливают падение насосных функций сердца вследствие острого инфаркта миокарда. Цель ранней реваскуляризации при ОИМ - это не только предотвращение цитолиза, но и обратное развитие гибернации. Чем раньше производят реваскуляризацию, тем меньше вероятность станнинга.

В течение нескольких часов после тромботической обтурации венечной артерии изменения миокарда не являются необратимыми, несмотря на то, что уже через 30-60 секунд после тромботической обтурации венечной артерии на электрокардиограмме появляются признаки ишемии. Ишемизированные клетки в перинекротической зоне могут стать на путь цитолиза, но могут и подвергнуться значительным структурным изменениям, оставшись жизнеспособными (ремоделирование). Медиаторами ремоделирования являются ангиотензин II и эндогенные катехоламины. Чем меньше выраженность ремоделирования, тем благоприятнее прогноз. Чем в меньшей степени ремоделирование отрицательно сказывается на насосных функциях сердца, тем длительнее живут больные после ОИМ. Ремоделирование характеризуется гипертрофией кардиомиоцитов, образованием аномальных сократительных белков, а также отложением коллагена между клетками сердца. В настоящее время для предотвращения ремоделирования в остром периоде инфаркта применяют ингибиторы ангиотензинпревращающего фермента и В1-адренолитики

Рисунок 5. Расслоение кардиомиоцитов при ишемии

Рисунок 6. Под номером 1 указаны некротирующие кардиомиоциты

Список источников

1. https://www.khanacademy.org/science/biology

2. Cardiomyocytes structure, function and associated pathologies(The international journal of Biochemistry and Cell Biology volume 37, Issue 9 September 2005

3. http://helpiks.org/4-4707.html

4. https://www.fundamental-research.ru/ru/article/view?id=37757

Приложение

Размещено на Allbest.ru

...

Подобные документы

  • Модели исследования, методы обнаружения, морфологические признаки и фармакологическая коррекция апоптоза кардиомиоцитов млекопитающих. Перспективы применения антиапоптотических веществ в клинической практике при лечении сердечно-сосудистых заболеваний.

    курсовая работа [2,2 M], добавлен 03.10.2014

  • Количественное описание механизмов, участвующих в генерации потенциала действия. Натриевые и калиевые токи, соотношение натрия и калия на фазе роста потенциала клетки. Положительная и отрицательная обратная связь во время изменений проводимости.

    контрольная работа [27,7 K], добавлен 26.10.2009

  • Анатомия проводящей системы сердца. Гистология и микрофотография синусового узла. Область атриовентрикулярного соединения. Пучок Гиса. Волокна Пуркинье. Функциональное значение. Функции синоатриальной (синусно-предсердной) и атриовентрикулярной части.

    презентация [1,6 M], добавлен 03.04.2016

  • Компартментация в организации эукариотической клетки. Линейные размеры эукариотической клетки. Ядерно-цитоплазматическое соотношение. Различные формы хондриома. Митохондриальная система кардиомиоцитов. Признаки митохондриальных болезней у человека.

    презентация [2,5 M], добавлен 21.02.2014

  • Структурные особенности мышечных тканей. Изучение механизма мышечного сокращения и аппарата передачи возбуждения. Гистогенез и регенерация мышечной ткани. Принципы работы сократительных, проводящих и секреторных кардиомиоцитов сердечной мышечной ткани.

    шпаргалка [22,3 K], добавлен 14.11.2010

  • Ионные токи, протекающие через мембрану клетки. Мембранный потенциал для модели идеальной клетки. Формула потенциала покоя и постоянного поля. Равновесие ионов хлора. Электрическая модель мембраны. Участие ионных каналов в формировании потенциала покоя.

    реферат [224,2 K], добавлен 24.10.2009

  • Свойство мембранной клетки проводить ионные токи и накапливать заряд на своей внешней или внутренней поверхности, емкость мембраны. Нарастание и спад потенциала, время, необходимое для достижения его устойчивого состояния, сенситизация и S интернейроны.

    реферат [157,7 K], добавлен 26.10.2009

  • Автоматия сердца - способность органа, ткани, клетки возбуждаться под влиянием импульсов, возникающих без внешних раздражителей. Отличие атипических клеток сердца от сократительных. Проводящая система сердца. Особенности автоматии сердца у детей.

    презентация [3,9 M], добавлен 02.10.2016

  • Клеточные механизмы интеграции и поведения. Путь развития нейрона от рождения отдельной клетки до образования отростков и формирования связей. Интеграция информации отдельными нейронами в ЦНС. Наблюдения за экзоцитозом и эндоцитозом в живых клетках.

    реферат [174,4 K], добавлен 26.10.2009

  • Исследование механизма возникновения и основных фаз потенциала действия. Законы раздражения и возбуждения. Распространение потенциала действия по нервному волокну. Характеристика роли локальных потенциалов. Передача сигналов между нервными клетками.

    контрольная работа [212,9 K], добавлен 22.03.2014

  • Признаки и общая характеристика процесса старения, его влияние на нейроэндокринные механизмы регуляции клетки. Возрастная периодизация функционирования организма человека. Сравнительная характеристика преждевременного и физиологического старения.

    презентация [7,6 M], добавлен 28.09.2014

  • Вкусовые луковицы или почки. Состав вкусовой луковицы: вкусовые клетки и поддерживающие, или покровные, клетки. Вкусовые раздражения. Вкусовые рецепторные клетки и их расположение. Система восприятия вкуса. Проводящие пути центральной нервной системы.

    реферат [16,5 K], добавлен 31.10.2008

  • Смерть клетки как постоянное проявление жизнедеятельности организма. Виды клеточной гибели и механизмы их протекания. Нарушения физиологической гибели клетки и их последствия. Современные направления научно-исследовательской работы в данном вопросе.

    доклад [779,9 K], добавлен 19.04.2013

  • Структурная и функциональная единица жизнедеятельности одноклеточного и многоклеточного организмов. Многообразие клеток и тканей. Основные части в строении клетки. Клеточный цикл жизни клетки. Эпителиальные, соединительные, мышечные и нервные ткани.

    реферат [20,4 K], добавлен 18.10.2013

  • Виды повреждения клетки. Стадии хронического повреждения клетки. Виды гибели клетки. Некроз и апоптоз. Патогенез повреждения клеточных мембран. Высокоспециализированные клетки с высоким уровнем внутриклеточной регенерации. Состояния соединительной ткани.

    презентация [12,3 M], добавлен 03.11.2013

  • Сердце как орган, работающий в системе постоянного автоматизма. Особенности проводящей системы сердца, узлы и проводящие пути (пучки) в ее составе. Электрическая ось сердца. Синусно-предсердный синоатриальный и атриовентрикулярный узлы, волокна Пуркинье.

    реферат [3,3 M], добавлен 30.01.2014

  • Значение для человека микроэлементов. Основные макроэлементы, содержащиеся в клетках. Бромистый калий как сильное болеутоляющее средство для нервной системы. Кислород как основной химический элемент в организме человека. Роль цинка в жизни клетки.

    презентация [5,6 M], добавлен 28.11.2012

  • Цитология как раздел биологии, наука о клетках, структурных единицах всех живых организмов, предмет и методы ее изучения, история становления и развития. Этапы исследований клетки как элементарной единицы живого организма. Роль клетки в эволюции живого.

    контрольная работа [378,6 K], добавлен 13.08.2010

  • Понятие и основные методы генной инженерии. Методика выделения ДНК на примере ДНК плазмид. Принципы действия системы рестрикции-модификации. Перенос и обнаружение клонируемых генов в клетках. Конструирование и введение в клетки рекомбинантных молекул ДНК.

    реферат [22,1 K], добавлен 23.01.2010

  • Изучение программы Виргилио Лью и Роберта Букчина о неидеальном осмотическом поведении гемоглобина. Построение математической модели динамики изменения объема и потенциала клетки (липосомы) в зависимости от концентраций вне- и внутриклеточных ионов.

    курсовая работа [586,8 K], добавлен 15.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.