Функциональное картирование речевых зон мозга человека: перспективы использования метода магнитоэнцефалографии

Использование пробы Вада для определения межполушарной асимметрии в речевой функции. Рассмотрение сущности использования методики магнитоэнцефалографии при исследовании головного мозга. Осуществление семантического анализа речи в головном мозге.

Рубрика Биология и естествознание
Вид статья
Язык русский
Дата добавления 05.07.2018
Размер файла 204,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Современная зарубежная психология. 1 / 2012

Размещено на http://www.allbest.ru/

Современная зарубежная психология. 1 / 2012

Функциональное картирование речевых зон мозга человека: перспективы использования метода магнитоэнцефалографии

А.В. Буторина научный сотрудник

А.Н. Шестакова кандидат наук

А.Ю. Николаева аспирант

Т. А. Строганова доктор биологических наук

Аннотация

На сегодняшний день в клинической практике и научных исследованиях остро стоит проблема локализации речевых зон человека. Несмотря на то что два важнейших центра речи человека были выявлены достаточно давно (зоны Брока и Вернике, отвечающие за порождение и понимание речи соответственно), их расположение и даже полушарная латерализация могут сильно варьировать, создавая необходимость в надежной методике картирования, применимой к индивидуальным испытыемым, несмотря на анатомические и функциональные различия.

Одним из самых надежных методов определения межполушарной асимметрии в речевой функции является проба Вада. Данный метод используется в клинике, однако является инвазивной процедурой, что делает его не применимым в научных целях. Другая группа методов основывается на регистрации кровотока мозга (функциональная магнитно-резонансная томография, позитронно-эмиссионная томография и т. д.); данные методы безопасны для человека, но их надежность невелика, а скорость не позволяет регистрировать кратковременную мгновенную активацию в мозге. Последнее делает очевидной необходимость использования методов с высоким временным разрешением: электроэнцефалографии и магнито-энцефалографии.

Последние экспериментальные данные говорят о том, что речевые зоны включаются в обработку уже в течение первых 200 мс. Одна из экспериментальных парадигм -- так называемая оддболлпарадигма -- позволяет регистрировать компонент негативности рассогласования (mismatch negativity), имеющий латентность 100--200 мс. Характерные для этого мозгового ответа высокая временная точность, уровень соотношения сигнала к шуму и автоматизм генерации позволяют предложить его в качестве перспективного метода картирования речевых зон.

Ключевые слова: картирование, речевые зоны, магнито-энцефалография, электроэнцефалография, негативность рассогласования.

Annotation

Magneto encephalography (MEG): perspectives of speech areas functional mapping in human subjects

Research Council, Cognition and Brain Studies Unit, Cambridge, UK

One of the main problems in clinical practice and academic research is how to localize speech zones in the human brain. Two speech areas (Broca and Wernicke areas) that are responsible for language production and for understanding of written and spoken language have been known since the past century. Their location and even hemispheric lateralization have a substantial interindividual variability, especially in neurosurgery patients. Wada test is one of the most frequently used invasive methodology for speech hemispheric lateralization in neurosurgery patients. However, besides relatively highrisk of Wada test for patient's health, it has its own limitation, e. g. low reliability of Wadabased evidence of verbal memory brain lateralization. Therefore, there is an urgent need for noninvasive, reliable methods of speech zones mapping.

The current review summarizes the recent experimental evidence from magnitoencephalographic (MEG) research suggesting that speech areas are included in the speech processing within the first 200 ms after the word onset. The electromagnetic response to deviant word, mismatch negativity wave with latency of 100--200 ms, can be recorded from auditory cortex within the oddballparadigm. We provide the arguments that basic features of this brain response, such as its automatic, preattentive nature, high signal to noise ratio, source localization at superior temporal sulcus, make it a promising vehicle for noninvasive MEGbased speech areas mapping in neurosurgery.

Keywords: mapping, speech zones, magneto encephalography, electroencephalography, MMN.

Основная часть

До недавнего времени проблема локализации речевых зон в коре мозга человека казалась практически решенной. Еще в конце XIX в. были выявлены две важнейшие речевые зоны: зона, отвечающая за восприятие обращенной к человеку речи, -- зона Вернике, расположенная в височной коре, и зона, связанная со способностью порождать речевое высказывание, -- зона Брока, находящаяся в нижнелобных отделах. Как правило, у праворуких испытуемых обе зоны расположены в левом полушарии [13]. Однако оказалось, что исключения из этого «правила» встречаются достаточно часто. Согласно данным Бенсона, чье исследование признается одним из наиболее репрезентативных, среди праворуких пациентов левополушарная локализация речи была выявлена примерно у 90 % [3]. В остальных случаях имело место «атипичное» распределение речевой функции по полушариям. У леворуких пациентов это распределение еще более размыто.

Первоначально локализация в коре зон Брока и Вернике была определена на основании данных, полученных в клинике органических поражений мозга [6]; [49]. Впоследствии «золотым клиническим стандартом» локализации этих речевых зон в том или ином полушарии стал инвазивный тест, предложенный в 50х годах прошлого века канадским физиологом Дж. А. Вада [48]. Поочередная кратковременная инактивация полушарий коры мозга с помощью введения в соответствующую каротидную артерию наркотизирующего вещества позволяет определить «доминантное по речи» полушарие у конкретного пациента и таким образом прогнозировать функциональные выпадения и резервы полушарий большого мозга пациента после проведения нейрохирургического вмешательства. Данный метод может применяться только с целью защиты речевых зон от возможных повреждений во время нейрохирургической операции по удалению опухоли, абсцесса или резекции резистентного эпилептического очага. Метод категорически не пригоден для применения в исследовательской практике. Достаточно высокий процент осложнений, возникающих при проведении данного теста (риск кровоизлияния составляет 10--15 %), создает необходимость изобретения новых методов локализации речевых зон в коре мозга человека и для клинических целей. Другая проблема этой методики заключается в ее недостаточной пространственной точности: она позволяет определить латерализацию речевой функции, но не дает никакой возможности локализовать речевые области внутри полушария, затрудняя таким образом предоперационный прогноз хирургического вмешательства.

В последние десятилетия многие исследователи стали использовать современные методы нейровизуализации: функциональную магнитно-резонансную томографию (фМРТ) и позитронно-эмиссионную томографию (ПЭТ), чтобы разрешить проблему неинвазивной локализации когнитивных функций (в том числе речевой) в коре мозга человека. Основной вывод из этих исследований заключался в том, что речевые стимулы, по сравнению с неречевыми, вызывают более массированную активацию в верхней височной извилине в обоих полушариях, а феномен левополушарного доминирования обнаруживается в умеренной степени и только на групповом уровне [8]; [19]; [4]; [50].

Неопределенность локализации в значительной степени связана с выбором методов исследования. Восприятие речи человеком -- чрезвычайно быстрый процесс: смысл слова извлекается из акустических характеристик речевого сигнала в течение долей секунды. Поэтому особенно на ранних стадиях работа отдельных мозговых структур, участвующих в его обработке, совершается почти мгновенно -- за десятые доли секунды [44]. ПЭТ и фМРТ позволяют визуализировать медленные (секундные) изменения активности мозга на основании параметров интенсивности кровотока. Таким образом, эти методы являются недостаточно информативными с точки зрения получения данных о мозговых основах речевых прессов, поскольку не способны уловить кратковременную активацию нейронных популяций. Лишь технологии, обладающие возможностью непосредственной регистрации электрической нейронной активности, такие как электро- и магнито-энцефалография (ЭЭГ, МЭГ), могут обеспечить точную информацию о временной динамике.

Методика МЭГ основана на измерении минимальных (порядка 1013 -- 1015 тесла, T) магнитных полей и их градиентов, генерируемых синхронной активностью больших масс нейронов головного мозга. Это достигается с помощью сверхпроводимых сенсоров, расположенных в вакууме с температурой, близкой к абсолютному нулю (температура ~4 по Кельвину поддерживается с помощью жидкого гелия). Дальнейшая обработка полученных данных включает сложные компьютерные алгоритмы, с помощью которых сначала выборочно усиливается и определяется та небольшая часть записанного сигнала, которая исходит собственно от мозга. Этот сигнал необходимо очистить от мощного общего электромагнитного фонового шума. После того как это сделано, необходимо идентифицировать внутренние источники мозговой активности на основе внешней записи. Эта обратная задача является в данном случае по определению некорректной, поскольку любые внешние показатели могут быть потенциально объяснены с помощью более чем одной конфигурации внутренних источников. В контексте психофизиологического эксперимента ее решение возможно лишь при наложении ограничений, исходящих из природы экспериментальной задачи и знаний о мозговых анатомических структур и их функций.

Таким образом, задача функционального картирования определяется не только адекватным выбором метода измерения функциональной активности мозга, но и, в не меньшей степени, выбором методических подходов и экспериментальных парадигм, которые смогли бы максимально эффективно использовать технологию регистрации и обработки вызванной электромагнитной активности мозга.

При выборе экспериментальной парадигмы необходимо учитывать, что анализ речевой информации сопровождается динамическими изменениями активности нейронных ансамблей, причем в доминантном по речи полушарии эти изменения значительно сильнее, чем в «неречевом» [4]; [11]; [14]; [20]; [26]; [29]; [36]. Для успешного понимания речи мозгу требуется мгновенно расшифровать информацию на самых разных уровнях [30]: он должен успеть определить звуки, классифицировать их как фонемы (т. е. именно как речевые звуки), разбить на морфемы и слова, установить между ними грамматические связи и использовать их для того, чтобы построить целостную структуру фразы и понять ее смысл, в конце концов встроив его в общий ситуативный контекст.

Слуховой речевой сигнал обладает комплексом физических характеристик, таких как частотные характеристики, длительность пауз, амплитуда и скорость изменения частотного состава. Речевые зоны мозга человека должны обработать акустические особенности слухового речевого стимула, чтобы приступить к его фонематическому, а затем и семантическому анализу. Возникает вопрос, в каком временном окне мозг начинает обрабатывать речевой сигнал именно как речь, а не как любой другой сложный слуховой стимул? Только после нахождения ответа на этот вопрос можно будет переходить к проблеме локализации зон мозга, занятых в этом процессе. речь головной мозг магнитоэнцефалография

Экспериментальные данные показывают, что семантический анализ произнесенного слова начинается в мозге примерно через 200--300 мсек после начала его звучания []; [18]; многие исследователи предлагают и намного более ранний интервал: 50--150 мс [43]; [22]. Следовательно, к этому времени мозг либо уже осуществил фонематическую обработку слухоречевого стимула -- задача, осуществляемая нейросетями в зоне Вернике [21], либо фонематические процессы идут параллельно с остальным анализом речи на более высоком уровне. У праворуких людей при тяжелом повреждении зоны Вернике в левом полушарии теряется способность воспринимать речь, а речевые фонемы воспринимаются ими как шум [13]. Таким образом, можно предположить, что речевые зоны включаются в обработку уже в течение первых 200 мс звучания слова, и нам необходимо знать, как и что именно происходит в эту пятую долю секунды.

Теоретическая психолингвистика выделяет четыре уровня обработки речи: (1) фонологическая обработка -- идентификация фонетических/фонологических единиц в звуковом потоке, (2) лексическая -- соотнесение последовательности услышанных фонем с «умственным словарем», (3) семантическая -- определение смысла речевого стимула и (4) синтаксическая -- анализ грамматической информации, содержащейся в высказывании.

До сих пор в литературе существуют противоположные взгляды на вопрос, как упорядочены процессы, происходящие на разных уровнях. Одни исследователи предполагают, что обработка речевых сигналов происходит последовательно, путем передачи информации от одного уровня обработки к другому [12]. Другие отстаивают гипотезу о параллельной обработке речевых сигналов на этих уровнях [16]; [23]; [44].

В пользу второго предположения существует ряд экспериментальных подтверждений [39]; [42]; [43] Данные нейроанатомических и функциональных исследований говорят о том, что передача информации между кортиевым органом и корой больших полушарий по самым быстрым путям занимает не более 10--20 мс [9], дальнейшие 15--20 мс уходят на то, чтобы передать сигнал из основных слуховых зон в нижние отделы лобной доли и в височные области [43]. Следовательно, существуют сильные нейробиологические доводы в пользу того, что как минимум первичное извлечение важной лингвистической информации из речи (если не интеграция ее в более широкий контекст) может осуществляться уже через ~50 мс после начала обработки.

Единственным способом получения прямых экспериментальных доказательств или опровержений этих гипотез является метод МЭГ, обладающий, как уже было указано выше, временным разрешением на уровне миллисекунд и, в комбинации со структурной МРТ, миллиметровым пространственным разрешением.

Подобные исследования проводились с использованием так называемой оддболлпарадигмы (oddball paradigm).

В этой парадигме частые (стандартные) слуховые стимулы подаются вперемешку с редкими (девиантными) стимулами. Разница в ответе слуховой коры мозга на редкие стимулы по сравнению со стандартными получила название негативности рассогласования -- mismatch negativity (MMN) [1]; [2]. Обычно MMN рассматривают как отражение активации нейронных сетей кратковременной слуховой памяти, локализация которых в мозге зависит от обрабатываемой слуховой информации. Неудивительно поэтому, что MMN на слуховые речевые стимулы ведет себя иначе, чем на неречевые [2]; [33]; [41]

Для решения задачи латерализации и локализации речевых зон важна следующая особенность возникновения MMN на речевые стимулы. Именно речевые звуки (фонемы и слова) сопровождаются сильной левосторонней асимметрией MMN, тогда как равные им по сложности и интенсивности неречевые слуховые стимулы вызывают одинаковую активацию слуховой коры в обоих полушарий [15]; [46]. Более того, ответ MMN на речевые фонемы в левом полушарии задержан, по сравнению с ответом на неречевые стимулы, уравненные с фонемами по сложности физических характеристик [10]; [45]. Более того, локализация паттерна MMN на слова с разным смыслом отражает семантические свойства слов, что дополнительно указывает на чувствительность этого ответа к лингвистической информации [35]. В связи с этими данными можно предположить, что локализация MMN на речевые стимулы в мозге испытуемого может способствовать определению его речевых зон, включающихся в работу уже на этапе обработки фонематической информации, содержащейся в прозвучавшем слове [31]. Многократно показано, что выделяемый в вызванной речевыми стимулами магнитной активности мозга компонент MMN локализуется в первую очередь в области верхневисочной извилины левого полушария [28]; [3]; [38]; [42]. Более того, характерные для этого мозгового ответа высокая временная точность, высокий уровень соотношения сигнала к шуму и автоматизм генерации (методика не требует внимания испытуемых к речи) позволяют предложить его в качестве перспективного метода картирования речевых зон как у здоровых испытуемых, так и у пациентов, ожидающих нейрохирургическое операционное вмешательство.

Рис. Пример МЭГответов испытуемого на речевые стимулы. [2] а) представляет собой типичный пример ответов, зарегистрированных на градиометрах (типе сенсоров), представляющих ответы обоих полушарий. На (в) представлены изопотенциальные карты топографии силовых линий магнитного поля с шагом в 8 fT). На (c) части иллюстрации показана идея использования индивидуальной МР томограммы испытуемого для более точной локализации нейронального ответа в височной области; (d) часть представляет собой анализ межполушарной асимметрии по результатам МЭГ картирования для каждого испытуемого. (Адаптировано из Shestakova et al., 2004)

МЭГ метод является также чрезвычайно перспективным для изучения принципов организации лингвистических следов памяти. Бесконечные попытки идентификации уникальной зоны «хранилища слов» в мозге не увенчались успехом, и сегодня в целом принято, что контуры памяти на слова имеют свойство «распределенности» [24]. Возникает вопрос о принципах формирования таких распределенных ансамблей. Существует предположение, что их формирование происходит по принципу ассоциации в процессе взаимного усиления связей между различными (даже удаленными друг от друга) областями коры мозга. Эти связи образуются в то время, когда человек выучивает действия, слова или понятия в сочетании со словами, которые используются для их описания [34]. Референциальные значения являются неотрывной частью семантики слова, и мы считаем, что в мозге они реализуются посредством реализации ассоциативного научения распределенных нейронных популяций по принципу Хебба -- при одновременной активации преи постсинаптических областей синаптическая передача усиливается [25].

Если лексические репрезентации представлены как распределенные в коре нейронные контуры, а действия, которые означают эти слова, соматотопически отражаются в моторных зонах мозга [32], из этого следует конкретное предположение, что слова, обозначающие действия различных частей тела (например, рука или нога), также будут вызывать активацию соответствующих зон моторной коры. Это утверждение подтверждается данными ЭЭГ, МЭГ и фМРТ, что соматотопически специализированные зоны моторной коры активируются в ответ на классы слов, «кодирующих» действие соответствующих частей тела [1]; [35]; [40]. МЭГданные особенно примечательны тем, что они показывают динамику распределенной активности вовлеченных участков коры с высокой временной и пространственной точностью [5].

Таким образом, за последнее десятилетие стало очевидным, что использование МЭГтехнологии для исследования мозговой активности, связанной с обработкой речи у взрослых и детей, открывает возможность получения качественно новых знаний о процессах восприятия и порождения речи, а также о механизмах освоения языка (родного и иностранного). Совмещение данных МЭГ с результатами МРТ сканирования головного мозга позволят практически впервые разработать методы неинвазивного функционального картирования мозга с целью локализации речевых зон и определения степени их латерализации.

В Центре нейрокогнитивных исследований (МЭГцентре) МГППУ в настоящий момент осуществляется проект по разработке методов и экспериментальных парадигм для определения латерализации процессов восприятия речевых сигналов на слух и процессов кратковременной слухоречевой памяти.

Литература

1. Alho K. Cerebral generators of mismatch negativity (MMN) and its magnetic counter part (MMNm) elicited by sound changes // Ear Hear. 1995. Vol. 16. № 1. P. 38--51.

2. Aulanko R., Hari R., Lounasmaa O. V., Naatanen R., Sams M. Phonetic invariance in the human auditory cortex // Neuroreport. 1993. Vol. 4. № 12. P. 1356--1358.

3. Benson D. F. Aphasia and related disorders: a clinical approach. In Principles of behav ioral neurology. Mesulam MM, (editor). Philadelphia: Davis, 1985. Р. 193--238.

4. Binder J. R., Frost J. A., Hammeke T. A., Cox R. W., Rao S. M., Prieto T. Human brain lan guage areas identified by functional magnetic resonance imaging // J Neurosci. 199. Vol. 1. № 1. P. 353--362.

5. Boulenger V., Shtyrov Y., Pulvermuller F. When do you grasp the idea? MEG evidence for instantaneous idiom understanding // Neuroimage. 2012. Vol. 15 № 59 (4). P. 3502--13.

6. Broca P. Remarques sur le siege de la faculte du langage articule, suivies d'une observa tion d'aphemie // Bulletin de la Societe Anatomique. 1861. Vol. 36. P. 330--35.

7. Connolly J. F., Phillips N. A., Forbes K. A. The effects of phonological and semantic fea tures of sentenceending words on visual eventrelated brain potentials // Electroencephalogr Clin Neurophysiol. 1995. Vol. 94. № 4. P. 26--28.

8. Demonet J. F., Chollet F., Ramsay S., Cardebat D., Nespoulous J. L., Wise R., Rascol A., Frackowiak R. The anatomy of phonological and semantic processing in normal sub jects // Brain. 1992. Vol. 115 ( Pt. 6). №. P. 153--168.

9. Eldredge D. H., Miller J. D. Physiology of hearing // Annu Rev Physiol. 191. №. 33. P. 281--310.

10. Eulitz C., Diesch E., Pantev C., Hampson S., Elbert T. Magnetic and electric brain activ ity evoked by the processing of tone and vowel stimuli // The Journal of neuroscience: the official journal of the Society for Neuroscience. 1995. 15. № 4. P. 248--255.

11. Fiez J. A., Raichle M. E., Balota D. A., Tallal P., Petersen S. E. PET activation of poste rior temporal regions during auditory word presentation and verb generation // Cereb Cortex. 1996. 6. № 1. P. 1--10.

12. Friederici A. D. Towards a neural basis of auditory sentence processing // Trends Cogn Sci. 2002. 6. № 2. P. 8--84.

13. Geschwind N. The organization of language and the brain // Science. 190. 10. № 3961. P. 940--944.

14. Giraud A. L., Price C. J. The constraints functional neuroimaging places on classical models of auditory word processing // J Cogn Neurosci. 2001. 13. № 6. P. 54--65.

15. Gootjes L., Raij T., Salmelin R., Hari R. Lefthemisphere dominance for processing of vowels: a wholescalp neuromagnetic study // Neuroreport. 1999. 10. № 14. P. 298-- 2991.

16. Hagoort P. The fractionation of spoken language understanding by measuring electri cal and magnetic brain signals // Philos Trans R Soc Lond B Biol Sci. 2008. 363. № 1493. P. 1055--1069.

17. Hauk O., Shtyrov Y., Pulvermuller F. The time course of action and actionword com prehension in the human brain as revealed by neurophysiology // J Physiol Paris. 2008. 102. № 1--3. P. 50--58.

18. Helenius P., Salmelin R., Richardson U., Leinonen S., Lyytinen H. Abnormal auditory cortical activation in dyslexia 100 msec after speech onset // J Cogn Neurosci. 2002. 14. № 4. P. 603--61.

19. Hickok G., Poeppel D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language // Cognition. 2004. 92. № 1--2. P. 6--99.

20. Howard D., Patterson K., Wise R., Brown W. D., Friston K., Weiller C., Frackowiak R. The cortical localization of the lexicons. Positron emission tomography evidence // Brain. 1992. 115 ( Pt 6). №. P. 169--182.

21. Liebenthal E., Binder J.R., Spitzer S. M., Possing E. T., Medler D. A. Neural substrates of phonemic perception // Cereb Cortex. 2005. 15. № 10. P. 1621--1631.

22. MacGregor L., Pulvermuller F., van Casteren M., Shtyrov Y. Ultrarapid access to words in the brain: Neuromagnetic evidence. // Nature Communications. 2012. [in press].

23. MarslenWilson W. D. Functional parallelism in spoken wordrecognition // Cognition. 198. 25. № 1--2. P. 1--102.

24. Mesulam M. M. Largescale neurocognitive networks and distributed processing for attention, language, and memory // Ann Neurol. 1990. 28. № 5. P. 59--613.

25. Morris R. G. D. O. Hebb: The Organization of Behavior, Wiley: New York; 1949 // Brain Res Bull. 1999. Vol. 50. № 5--6. P. 43.

26. Mummery C. J., Ashburner J., Scott S. K., Wise R. J. Functional neuroimaging of speech perception in six normal and two aphasic subjects // J Acoust Soc Am. 1999. Vol. 106. № 1. P. 449--45.

27. Naatanen R. Attention and Brain Function. Lawrence Erlbaum Associates: Hillsdale, NJ, 1992. P. 494.

28. Naatanen R., Lehtokoski A., Lennes M., Cheour M., Huotilainen M., Iivonen A., Vainio M., Alku P., Ilmoniemi R. J., Luuk A., Allik J., Sinkkonen J., Alho K. Languagespecific phoneme representations revealed by electric and magnetic brain responses // Nature. 199. Vol. 385. № 6615. P. 432--434.

29. Narain C., Scott S. K., Wise R. J., Rosen S., Leff A., Iversen S. D., Matthews P. M. Defining a leftlateralized response specific to intelligible speech using fMRI // Cereb Cortex. 2003. Vol. 13. № 12. P. 1362--1368.

30. Norris D., McQueen J. M., Cutler A. Merging information in speech recognition: feed back is never necessary // Behav Brain Sci. 2000. Vol. 23. № 3. P. 299--325; discussion 325--20.

31. Parviainen T., Helenius P., Salmelin R. Cortical differentiation of speech and nonspeech sounds at 100 ms: implications for dyslexia // Cereb Cortex. 2005. Vol. 15. № . P. 1054-- 1063.

32. Penfield W., Rasmussen T. The cerebral cortex of man. Macmillan: New York, 1950. P. 150.

33. Phillips C., Pellathy T., Marantz A., Yellin E., Wexler K., Poeppel D., McGinnis M., Roberts T. Auditory cortex accesses phonological categories: an MEG mismatch study // J Cogn Neurosci. 2000. Vol. 12. № 6. P. 1038--1055.

34. Pulvermuller F., Fadiga L. Active perception: sensorimotor circuits as a cortical basis for language // Nat Rev Neurosci. 2010. Vol. 11. № 5. P. 351--360.

35. Pulvermuller F., Shtyrov Y., Ilmoniemi R. Brain signatures of meaning access in action word recognition // J Cogn Neurosci. 2005. Vol. 1. № 6. P. 884--892.

36. Scott S. K., Blank C. C., Rosen S., Wise R. J. Identification of a pathway for intelligible speech in the left temporal lobe // Brain. 2000. Vol. 123 Pt 12. №. P. 2400--2406.

37. Shestakova A., Brattico E., Huotilainen M., Galunov V., Soloviev A., Sams M., Ilmo niemi R. J., Naatanen R. Abstract phoneme representations in the left temporal cortex: magnetic mismatch negativity study // Neuroreport. 2002. Vol. 13. № 14. P. 1813--1816. 38. Shestakova A., Brattico E., Soloviev A., Klucharev V., Huotilainen M. Orderly cortical representation of vowel categories presented by multiple exemplars // Brain Res Cogn Brain Res. 2004. Vol. 21. № 3. P. 342--350.

38. Shtyrov Y. Automaticity and attentional control in spoken language processing: neu rophysiological evidence // Mental Lexicon. 2010. Vol. 5. № 2. P. 255--26.

39. Shtyrov Y., Hauk O., Pulvermuller F. Distributed neuronal networks for encoding cat egoryspecific semantic information: the mismatch negativity to action words // Eur J Neurosci. 2004. Vol. 19. № 4. P. 1083--1092.

40. Shtyrov Y., Kujala T., Palva S., Ilmoniemi R. J., Naatanen R. Discrimination of speech and of complex nonspeech sounds of different temporal structure in the left and right cere bral hemispheres // Neuroimage. 2000. Vol. 12. № 6. P. 65--663.

41. Shtyrov Y., Pihko E., Pulvermuller F. Determinants of dominance: is language laterality explained by physical or linguistic features of speech? // Neuroimage. 2005. Vol. 2. № 1. P. 3--4.

42. Shtyrov Y., Pulvermuller F. Early MEG activation dynamics in the left temporal and inferior frontal cortex reflect semantic context integration // J Cogn Neurosci. 200. Vol. 19. № 10. P. 1633--1642.

43. Shtyrov Y., Pulvermuller F. Language in the mismatch negativity design: motivations, benefits and prospects // Journal of Psychophysiology. 200. Vol. 21. № 3--4. P. 16-- 18.

44. Tiitinen H., Virtanen J., Ilmoniemi R.J., Kamppuri J., Ollikainen M., Ruohonen J., Naatanen R. Separation of contamination caused by coil clicks from responses elicited by transcranial magnetic stimulation // Clin Neurophysiol. 1999. Vol. 110. № 5. P. 982-- 985.

45. Vihla M., Salmelin R. Hemispheric balance in processing attended and nonattended vowels and complex tones // Brain Res Cogn Brain Res. 2003. Vol. 16. № 2. P. 16--13. 4. Vouloumanos A., Kiehl K. A., Werker J. F., Liddle P. F. Detection of sounds in the audi tory stream: eventrelated fMRI evidence for differential activation to speech and non speech // J Cogn Neurosci. 2001. Vol. 13. № . P. 994--1005.

46. Wada J. A. Youthful season revisited // Brain Cogn. 199. Vol. 33. № 1. P. --10.

47. Wernicke C. Der aphasische Symptomencomplex. Eine psychologische Studie auf anatomischer Basis. Kohn und Weigert: Breslau, 184. c.

48. Zatorre R. J., Meyer E., Gjedde A., Evans A. C. PET studies of phonetic processing of speech: review, replication, and reanalysis // Cereb Cortex. 1996. Vol. 6. № 1. P. 21--30.

Размещено на Allbest.ru

...

Подобные документы

  • Развитие головного мозга человека. Функции отделов мозга: лобной, теменной, затылочной, височной доли, островка. Общий обзор головного мозга, строение и функции ромбовидного, среднего и промежуточного мозга. Морфологические особенности конечного мозга.

    реферат [33,4 K], добавлен 03.09.2014

  • Строение головного мозга человека, гистология его сосудистой оболочки. Функции желез мозга: эпифиза, таламуса, гипоталамуса, гипофиза. Характеристика ассоциативных зон коры больших полушарий мозга и их участие в процессах мышления, запоминания и обучения.

    презентация [6,8 M], добавлен 03.11.2015

  • Исследование выраженности предпочтения к использованию правой или левой руки у учащихся гуманитарных классов. Обзор функциональной асимметрии больших полушарий головного мозга. Анализ проявления асимметрии мозга в разных областях человеческого организма.

    реферат [204,7 K], добавлен 26.12.2011

  • Строение и функционирование головного мозга человека. Влияние параметров головного мозга на его работу. Причины отклонений деятельности головного мозга. Особенности хранения информации. Существование без головного мозга. Упражнения для остроты ума.

    реферат [664,0 K], добавлен 02.06.2012

  • Общие сведения о человеческом мозге, его связь с телом. Проблемы на пути развития способностей головного мозга. Паранормальные способности человеческого разума, которые наука объяснить не может. Удивительные истории необычных возможностей мозга.

    реферат [575,7 K], добавлен 19.12.2013

  • Асимметрия мозга и специальные способности. Отличия в работе полушарий головного мозга человека. Преобладающее полушарие и профессиональная деятельность. Леворукость, ее влияние на выбор профессии. Значение асимметрии мозга для профессионального отбора.

    реферат [18,9 K], добавлен 19.11.2010

  • Изучение расположения, строения и основных функций головного мозга человека, который координирует и регулирует все жизненные функции организма и контролирует поведение. Отделы головного мозга. Сколько весит головной мозг человека. Заболевания и поражения.

    презентация [3,1 M], добавлен 28.10.2013

  • Исследование расположения и отделов головного мозга человека. Изучение функций промежуточного, среднего и продолговатого мозга. Строение мозжечка. Особенности развития головного мозга у детей первых лет жизни. Органы зрения и слуха у новорожденных детей.

    презентация [1,7 M], добавлен 18.03.2015

  • Общий обзор строения больших полушарий головного мозга человека, его доли и их функциональные особенности. Архитектоника коры больших полушарий. Строение промежуточного мозга, ствола мозга, мозжечка и продолговатого мозга, его ретикулярная формация.

    контрольная работа [5,2 M], добавлен 04.04.2010

  • Состав белого вещества головного мозга. Строение и функции ствола. Анатомические особенности мозжечка. Функции большого мозга. Вертикальная и горизонтальная организация коры. Аналитико-синтетическая деятельность коры полушарий. Лимбическая система мозга.

    реферат [38,9 K], добавлен 10.07.2011

  • Изучение особенностей строения и функций головного мозга высших позвоночных - центрального органа нервной системы, который состоит из ряда структур: коры больших полушарий, базальных ганглиев, таламуса, мозжечка, ствола мозга. Стадии эмбриогенеза мозга.

    реферат [21,9 K], добавлен 07.06.2010

  • Специализация полушарий головного мозга. Связь асимметрии мозга с восприятием эмоциональных сигналов и особенностями мыслительной деятельности. Взаимоотношение полушарий и творческая деятельность. Функциональная структура и стадии поведенческого акта.

    контрольная работа [36,9 K], добавлен 12.01.2015

  • Особенности строения головного мозга человека. Борозды и извилины полушарий и теменной доли конечного мозга. Прецентральная извилина как участок лобной доли коры больших полушарий. Функция постцентральной извилины и анализаторы теменной доли мозга.

    контрольная работа [470,0 K], добавлен 29.12.2010

  • Иерархический принцип управления функциями организма. Характеристика общего строения головного мозга человека. Особенности функций среднего мозга, его структура, роль в регуляции мышечного тонуса, осуществлении установочных и выпрямительных рефлексов.

    контрольная работа [16,8 K], добавлен 13.03.2009

  • История открытия Г-КСФ, их характеристики и классификация. Исследование локализации рецепторов Г-КСФ в головном мозге крысы на базе распределения CD 114 позитивных клеток для последующего применения в изучении расположения рецепторов в мозге человека.

    дипломная работа [2,2 M], добавлен 19.06.2019

  • Строение и структура головного мозга. Мозговой мост и мозжечок. Промежуточный мозг как основа сенсорных, двигательных и вегетативных реакций. Функции головного мозга. Отличительные черты и задачи спинного мозга как части центральной нервной системы.

    реферат [27,1 K], добавлен 05.07.2013

  • Понятие о строении и физиологии коры головного мозга. Ее функциональные зоны и синдромы их поражения. Основные группы полей в коре. Высшие корковые функции как основа деятельности человека. Причины их нарушения. Современные методы их исследования.

    реферат [24,7 K], добавлен 25.11.2014

  • Схема головного мозга человека. Отделы промежуточного мозга и мозжечка; ядра таламуса и гипоталамуса, их функции и симптомы поражения. Афферентные связи коры мозжечка; связи вестибулоцеребеллюма, спиноцеребеллюма и неоцеребеллюма. Мозжечок как компаратор.

    презентация [2,3 M], добавлен 08.01.2014

  • Анатомия серого вещества, расположенного по периферии полушарий большого мозга, его роль в осуществлении высшей нервной деятельности. Борозды и извилины верхнелатеральной поверхности. Цитоархитектонические поля, филогенез и онтогенез коры головного мозга.

    презентация [1,1 M], добавлен 05.12.2013

  • Основа нервной ткани. Строение и типы нейронов. Строение нервной системы, ее функциональное деление. Основные виды рефлексов, рефлекторная дуга. Строение спинного мозга, его функции. Строение головного мозга. Затылочные, височные, лобные и теменные доли.

    презентация [1,2 M], добавлен 30.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.