Исследование эффективности комплексного применения оксигумата торфа и бактериальной культуры Pseudomonas sp. для создания биопрепарата системного действия
Исследование эффективности комплексного воздействия оксигумата торфа и бактериальной культуры Pseudomonas sp. на гриб Bipolaris sorokiniana. Характеристика влияния наиболее эффективных концентраций оксигумата на жизнеспособность бактерий Pseudomonas sp.
Рубрика | Биология и естествознание |
Вид | статья |
Язык | русский |
Дата добавления | 24.11.2018 |
Размер файла | 275,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
УДК 632.939
ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ КОМПЛЕКСНОГО ПРИМЕНЕНИЯ ОКСИГУМАТА ТОРФА И БАКТЕРИАЛЬНОЙ КУЛЬТУРЫ PSEUDOMONAS SP. ДЛЯ СОЗДАНИЯ БИОПРЕПАРАТА СИСТЕМНОГО ДЕЙСТВИЯ
Биотехнология
Н.Н. Терещенко, А.Б. Бубина, Л.Н. Сысоева, Т.И. Бурмистрова, Н.М. Трунова
Аннотация
Исследование эффективности совместного применения оксигумата торфа и бактериальной культуры Pseudomonas sp. шт. В-6798 показало наличие выраженного синергического эффекта по отношению к показателям вегетативного роста пшеницы и огурца, а также фунгистатического воздействия на Bipolaris sorokiniana и снижение уровня зараженности семян пшеницы возбудителями корневых гнилей.
Ключевые слова: торфяные препараты, оксигумат, Pseudomonas sp. В-6798, Bipolaris sorokiniana, бактериальный препарат, ростостимулирующая и фунгистатическая активность.
Одна из наиболее актуальных задач современной аграрной науки - поиск эффективных и экологически безопасных средств защиты растений от болезней. По данным мировой статистики, ежегодно около 40% урожая теряется по причине высокой заболеваемости сельскохозяйственных растений, причем половина болезней вызвана возбудителями корневых гнилей [1]. Среди применяемых в настоящее время фунгицидов наибольший интерес представляют системные препараты на основе химических и биологических средств защиты растений, в частности продукты физико-химической переработки торфа и биопрепараты, созданные на основе моно- или поликультур бактерий рода Pseudomonas, обладающих ярко выраженным ростостимулирующим эффектом и супрессивным действием по отношению к широкому спектру патогенных грибов [2-4]. Согласно данным ВНИИ сельскохозяйственной микробиологии (г. Пушкин), биопрепараты способствуют существенному повышению продуктивности практически всех культур: зерновых, технических и овощных. При этом прибавка урожая зерновых составляет в среднем 15-20%, а овощных - не менее 20-30%. Кроме того, применение микробных препаратов положительно влияет и на качество продукции, повышая содержание протеина у зерновых культур, крахмала у картофеля, сахаров и витаминов у овощных [5].
Бактерицидные свойства верхового торфа в настоящее время широко известны: установлено, что различные варианты гуматов, оксигуматов и гидрогуматов, полученные путем физико-химической обработки торфа, обладают хорошо выраженными ростостимулирующими свойствами и устойчивым фунгистатическим эффектом [6-7]. Основными действующими веществами, определяющими уровень биологической активности таких препаратов, являются, по-видимому, сложные гуминовые комплексы. Установлено, что модифицированные гуминовые кислоты торфяных препаратов, как правило, значительно более активны, чем гуминовые кислоты исходного торфа [8-9] . Для защиты растений, на наш взгляд, наиболее перспективным является совместное использование торфяных и бактериальных препаратов, обеспечивающее комплексное, системное воздействие на растение, оказывающее одновременно выраженный ростостимулирующий и фунгистатический эффект.
В соответствии с этим основной целью наших исследований стала проверка эффективности совместного применения оксигумата торфа и бактериальной культуры рода Pseudomonas по отношению к семенам пшеницы и рассаде огурцов в сравнении с раздельной обработкой. Для достижения поставленной цели предстояло решить следующие задачи:
1) исследовать эффективность комплексного ростостимулирующего влияния оксигумата торфа и бактериальной культуры Pseudomonas sp. на семена зерновых и овощных культур;
2) исследовать эффективность комплексного воздействия оксигумата торфа и бактериальной культуры Pseudomonas sp. на гриб Bipolaris sorokiniana;
3) изучить эффективность воздействия совместной обработки семян пшеницы оксигуматом и бактериальной культурой Pseudomonas sp. на уровень зараженности семян пшеницы грибными инфекциями;
4) изучить влияние наиболее эффективных концентраций оксигумата на жизнеспособность бактерий Pseudomonas sp. для определения возможности создания комплексного биопрепарата системного действия.
Объекты и методы исследований
торф оксигумат бактерия гриб
В экспериментах использовались оксигумат верхового пушицевого торфа и бактериальная культура Pseudomonas sp. штамм В-6798. Торфяной препарат (оксигумат) был разработан и предоставлен для эксперимента лабораторией физико-химических исследований торфа Сибирского НИИ сельского хозяйства и торфа СО Россельхозакадемии. Бактерии Pseudomonas sp. В-6798 были выделены в чистую культуру из активного ила очистных сооружений ТНХК и предоставлены лабораторией биокинетики и биотехнологии НИИ ББ ТГУ [10]. Фунгистатическую активность препаратов исследовали на чистой культуре гриба Bipolaris sorokiniana, выделенного с пораженных семян пшеницы. Ростостимулирующие свойства препаратов изучали на семенах пшеницы сорта Тулунская-12 и огурца сорта Кустовой.
Для определения ростостимулирующего эффекта от комплексного применения торфяного и бактериального препаратов был поставлен биотест на семенах пшеницы и вегетационный опыт с культурой огурца. В биотесте с пшеницей обработанные 0,05%-ным раствором перманганата калия и промытые дистиллированной водой семена пшеницы в течение 5 мин замачивали в следующих растворах:
– жидкая культура бактерий Pseudomonas sp. с титром 106 клеток/мл;
– 0,05%-ный раствор оксигумата по содержанию гуминовых кислот
(ОГ(0,05%));
– 0,075%-ный раствор оксигумата (ОГ(0,075%);
– 0,05%-ный раствор оксигумата + бактерии Pseudomonas sp. штамм В-6798 (106 клеток/мл);
– 0,075%-ный раствор оксигумата + бактерии Pseudomonas sp. штамм В-6798 (106 клеток/мл).
В качестве контроля использовали семена, замоченные в дистиллированной воде. По истечении времени воздействия исследуемых растворов семена пшеницы помещали во влажные камеры, по 25 шт. в каждую. Ростостимулирующее воздействие препаратов определялось по прибавке сухого веса корней и зеленой массы пшеницы на 7-е сут биотеста по отношению к аналогичным показателям в контроле.
В вегетационном опыте с культурой огурца семена перед высевом в грунт предварительно обрабатывали 0,05%-ным раствором перманганата калия, а затем в течение 5 мин замачивали в следующих растворах оксигумата и бактериальной суспензии с разным титром клеток:
– жидкая культура бактерий Pseudomonas sp. (108 клеток/мл);
– жидкая культура бактерий Pseudomonas sp. (106 клеток/мл);
– 0,075 %-ный раствор оксигумата;
– 0,075 %-ный раствор оксигумата + жидкая культура бактерий Pseudomonas sp. (106 клеток/мл).
В качестве контроля использовали замачивание семян в дистиллированной воде.
В соответствии со второй задачей исследования - определением эффективности комплексного фунгистатического воздействия оксигумата торфа и бактериальной культуры Pseudomonas sp. - был поставлен биотест с чистой культурой гриба Bipolaris sorokiniana. Тест проводили в чашках Петри на комплексной питательной среде КГА : МПА = 1 : 1 (картофельно-глюкозный агар : мясопептонный агар) [11]. В питательную среду после раздельной стерилизации добавляли расчетное количество оксигумата, обеспечивающего его 0,05-ную и 0,075%-ную по ГК концентрацию в среде. Застывшую питательную среду из серии рабочих разведений засевали бактериальной культурой Pseudomonas sp. В-6798. На 3-и сутки после появления колоний бактерий в центр чашки Петри помещали агаровый блок гриба Bipolaris sorokiniana. Для биотеста использовали чашки с плотностью бактериальной культуры, соответствующей 20-30 колониям на чашке. О степени фунгистатического влияния препаратов судили по подавлению скорости роста гриба по сравнению с контролем - показателями роста гриба на чистой питательной среде без добавления оксигумата и бактерий Pseudomonas sp.
В соответствии с третьей задачей для изучения влияния совместной обработки семян пшеницы оксигуматом и бактериальной культурой на уровень зараженности семян грибными инфекциями был поставлен биотест, согласно которому семена пшеницы на 5 мин замачивали последовательно в различных концентрациях оксигумата (ОГ (0,01%)), ОГ (0,1%)) и в суспензии бактерий Pseudomonas sp. с титром 106 клеток/мл. Далее семена проращивали во влажной камере при температуре +20…+22°С в течение 7 сут. Семена с признаками грибного поражения микроскопировали для идентификации агента поражения.
Для оценки возможности создания комплексного промышленного биопрепарата, совмещающего полезные свойства оксигумата и бактерий Pseudomonas sp., был проведен микробиологический тест, в котором исследовали динамику численности бактерий, культивируемых в течение 2 сут на жидкой питательной среде МПБ (мясопептонный бульон) с добавлением оксигумата. В питательную среду предварительно добавляли расчетное количество торфяного препарата, обеспечивающее 0,075%-ную концентрацию гуминовых кислот. Численность бактерий анализировали методом предельных разведений и высевов на МПА через определенные промежутки времени культивирования.
Результаты исследований
Результаты биотеста на семенах пшеницы показали, что раздельная обработка семян бактериальным препаратом в большей степени повлияла на увеличение зеленой массы пшеницы и обеспечила 8%-ную прибавку по отношению к контролю. Воздействие торфяного препарата оказалось не столь однозначным. Так, например, применение оксигумата в 0,05%-ной концентрации более заметное влияние оказало на зеленую массу, тогда как обработка 0,075%-ным оксигуматом, напротив, в большей степени простимулировала рост корней проростков (табл. 1).
Наиболее эффективной оказалась совместная обработка семян пшеницы торфяным и бактериальным препаратами: максимальные прибавки зеленой массы и корней проростков были получены именно в вариантах с совместной обработкой: оксигумат (0,075%) + бактерии Pseudomonas sp.; оксигумат (0,05%) + бактерии Pseudomonas sp.
Совместная обработка семян пшеницы оксигуматом и бактериальной культурой обеспечила усиление взаимного влияния обоих препаратов, т.е. эффект синергизма, при котором влияние от комплексного применения препаратов оказалось значительно выше таковых каждого препарата в отдельности (табл. 1).
Результаты биотеста с пшеницей позволяют сделать вывод о целесообразности и перспективности совместного применения оксигумата из пушицевого торфа и препарата на основе культуры бактерий Pseudomonas sp. B-6798 для предпосевной обработки пшеницы.
Результаты вегетационного опыта с рассадой огурца также показали высокую эффективность совместной обработки семян торфяным и бактериальным препаратами. Фенологические наблюдения за состоянием рассады показали, что устойчивый и максимальный по опыту положительный эффект от совместной обработки препаратами стал проявляться начиная с 22-х сут опыта на стадии 3-го настоящего листа. На протяжении всего последующего периода наблюдений наиболее заметный эффект совместной обработки семян всегда проявлялся на самом молодом листе (табл. 2).
Приведенные в табл. 3 показатели роста растений огурца свидетельствуют о том, что раздельная обработка семян как оксигуматом, так и бактериальными суспензиями оказала положительное влияние не только на параметры вегетативного роста растений (вес зеленой массы и длина стеблей), но и на формирование завязей. Примечательно, что и оксигумат, и бактериальные суспензии в случае их раздельного применения сколько-либо заметного положительного воздействия на развитие корней (как на длину, так и на массу) не оказали.
Таблица 3 Влияние совместной и раздельной обработки семян огурца оксигуматом и бактериальной культурой Pseudomonas sp. B-6798 на рост и развитие рассады огурца, %
Вариант опыта |
Прибавка кол-ва завязей |
Прибавка кол-ва листьев |
Прибавка длины стеблей |
Прибавка длины корней |
Прибавка зеленой массы |
Прибавка массы корней |
|
Pseudomonas sp. (106 клеток/мл) |
26,1±1,5 |
1,6±0,01 |
0 |
0 |
8±1,2 |
0 |
|
Pseudomonas sp. (108 клеток/мл) |
0 |
0 |
0 |
0 |
0 |
0 |
|
ОГ (0,075%) |
12,5±0,6 |
0 |
10,5±2,7 |
0 |
6,6±0,8 |
0 |
|
ОГ (0,075%) +Pseudomonas sp. (106 клеток/мл) |
63,6±2,3 |
49,2±1,3 |
119,0±3,5 |
15,02±1,6 |
154,0±2,7 |
72,0±3,6 |
Как и в опытах с пшеницей, наиболее заметное положительное влияние на рассаду огурца оказала совместная обработка семян оксигуматом и бактериальной суспензией Pseudomonas sp. с титром 106 клеток/мл, обеспечив максимальные прибавки всех определяемых показателей. Зеленая масса и вес корней увеличились соответственно на 154 и 72%, количество завязей и листьев - на 63,6 и 49,2%, а длина стебля и корней - на 119 и 15% по отношению к контролю (см. табл. 3). Поскольку суммарный эффект совместной обработки семян огурца торфяным и бактериальным препаратами был выше суммы эффектов их раздельного применения, можно сделать вывод о проявлении синергического эффекта в результате комплексного применения обоих препаратов, что полностью соответствует данным, ранее полученным для пшеницы.
Согласно результатам теста с чистой культурой фитопатогенного гриба Bipolaris sorokiniana бактериальная культура Pseudomonas sp. обеспечила 67%-ное подавление радиального роста гриба по отношению к контролю (табл. 4). Оксигумат, примененный в концентрации 0,075% по ГК, обеспечил также довольно сильное (69%-ное) подавление скорости роста гриба, тогда как оксигумат в 0,05%-ной концентрации оказал значительно менее выраженное влияние на рост гриба Bipolaris sorokiniana. В данном варианте скорость роста гриба была всего на 11% ниже, чем в контроле. При этом максимальное подавление этого показателя было отмечено в варианте с совместным применением 0,075%-го торфяного препарата и культуры Pseudomonas sp., которое превысило контрольные показатели на 76%, что свидетельствует о целесообразности совместного применения оксигумата и бактериальной культуры Pseudomonas sp. B-6798 для подавления корневых гнилей, в частности гельминтоспориоза.
Таблица 4 Эффективность комплексного влияния оксигумата и бактериальной культуры Pseudomonas sp. B-6798 (106 клеток/мл) на скорость роста гриба Bipolaris sorokiniana
Вариант |
Скорость роста гриба, мм/ч |
Подавление скорости роста гриба, % |
|
Контроль |
0,0329±0,015 |
- |
|
Pseudomonas sp. |
0,0107±0,017 |
67,5 |
|
ОГ (0,075%) |
0,0100±0,023 |
69,5 |
|
ОГ (0,075%) + Pseudomonas sp. |
0,0076±0,027 |
76,9 |
|
ОГ (0,05%) |
0,0291±0,011 |
11,5 |
|
ОГ (0,05%) + Pseudomonas sp. |
0,0159±0,018 |
51,7 |
Результаты биотеста по изучению влияния совместной обработки семян пшеницы торфяным и бактериальным препаратами на уровень зараженности семян грибными инфекциями представлены в табл. 5. Использованные в биотесте семена в целом отличались невысоким уровнем зараженности, который не превышал 8,5%. Возможно, по этой причине обработка семян чистым бактериальным препаратом не оказала выраженного положительного влияния на уровень зараженности по сравнению с контролем. Обработка семян в чистом 0,1%-ном оксигумате обеспечила 40%-ное снижение степени их инфицирования (см. табл. 5).
Таблица 5 Эффективность совместного применения оксигумата и бактериальной культуры Pseudomonas sp. B-6798 (106 клеток/мл) для снижения зараженности семян пшеницы, %
Вариант |
Зараженность семян |
Фунгистатический эффект |
|
Контроль |
8,5 |
- |
|
Pseudomonas sp. |
6,5 |
+23,0 |
|
ОГ (0,1%) |
5,1 |
+40,0 |
|
ОГ (0,1%) + Pseudomonas sp. |
0 |
+100 |
|
ОГ (0,01%) |
16,5 |
-94,1 |
|
ОГ (0,01%) + Pseudomonas sp. |
8,3 |
+2,3 |
Наилучшие результаты были получены в варианте совместной обработки семян 0,1%-ным оксигуматом и бактериальным препаратом (фунгистатический эффект 100%).
Обращает на себя внимание тот факт, что в результате обработки семян пшеницы 0,01%-ным оксигуматом уровень зараженности увеличился почти в 2 раза. Возможно, это связано с тем, что при разбавлении оксигумата концентрация веществ, обладающих фунгицидными свойствами, опускается ниже пороговых значений чувствительности гриба, но при этом гриб может использовать некоторые составляющие оксигумата в качестве дополнительного источника питания или физиологически активных веществ, стимулирующих его рост. Обработка семян культурой бактерий Pseudomonas sp. совместно с 0,01%-ным оксигуматом не оказала заметного влияния на зараженность семян. Возможность создания комплексного промышленного биопрепарата, совмещающего полезные свойства оксигумата и Pseudomonas sp., оценивали по данным микробиологического теста, в рамках которого исследовали динамику численности бактерий, культивируемых в течение 24 ч на жидкой питательной среде М9 с добавлением оксигумата. Поскольку, согласно полученным ранее экспериментальным данным, наиболее эффективная концентрация оксигумата соответствовала 0,075% по ГК, в питательную среду добавляли расчетное количество торфяного препарата, обеспечивающее 0,075%-ную концентрацию гуминовых кислот. В качестве контроля использовали культивирование бактерий Pseudomonas sp. на среде М9 без оксигумата. Результаты микробиологического теста, представленные на рис. 1, свидетельствуют о том, что оксигумат в исследованной концентрации обладает выраженным супрессивным воздействием по отношению к бактериям Pseudomonas sp.
б
Рис. 1. Динамика численности бактерий Pseudomonas sp. B-6798 в жидкой питательной среде М9 с добавлением 0,075%-ного оксигумата (А) по сравнению с контролем (Б)
Рост бактерий на среде, содержащей оксигумат (0,075%), замедлен по сравнению с ростом в его отсутствие. Спустя сутки численность псевдомонад в опытной среде почти в 4 раза ниже, чем в контроле. Следовательно, для создания жидкого комплексного препарата простого добавления оксигумата в питательную среду недостаточно. Необходимо более подробно изучить и оценить эффективность различных режимов культивирования бактерий Pseudomonas sp. В-6798 в присутствии оксигумата. Несмотря на это, не вызывает сомнений эффективность совместной предпосевной обработки семян оксигуматом и бактериальным препаратом. При опрыскивании вегетирующих растений смешивание препаратов необходимо проводить непосредственно перед обработкой.
Литература
1. Пересыпкин В.Ф. Болезни зерновых культур. М.: Колос, 1979. 278 с.
2. Ермолаева Н.И., Иванова Н.И. и др. Биопрепараты на основе ризосферных псевдомонад // Защита растений. 1992. № 8. С. 24-25.
3. Ашмарина Л.Ф., Дашкевич В.С., Дашкевич Н.Ю. и др. Испытывается новый биопрепарат // Защита растений. 2001. № 3. С. 41.
4. Palleroni N.I. Introduction to the Family Pseudomonaceae // The Prokaryotes. Berlin; Heidrlberg: Springer - Verlag, 1981. Vol. 1. P. 655-665.
5. Боронин А.М. Ризосферные бактерии рода Pseudomonas, способствующие росту и развитию растений. 1998. № 20. С. 25-31.
6. Кухаренко Т.А. Гуминовые кислоты различных твердых горючих ископаемых и возможность их использования в качестве сырья для производства гуминовых удобрений // Гуминовые удобрения: Теория и практика их применения. Харьков: Изд-во ХГУ, 1957. С. 19-29.
7. Наумова Г.В., Сайцина Т.И. Гуминовые препараты торфа и их эффективность при сельскохозяйственном использовании // Химия твердого топлива. 1991. № 1. С. 95-100.
8. Христева Л.А. О природе действия физиологически активных форм гуминовых кислот и других стимуляторов роста растений // Гуминовые удобрения: Теория и практика их применения. Киев: 1968. Ч. 3. С. 15-28.
9. Христева Л.А., Реутов В.А. Гуминовые удобрения: Теория и практика их применения. Днепропетровск: Колос, 1973. Ч. 4. 308 с.
10. Патент РФ 21022474. Штамм метилотрофных бактерий Pseudomonas sp. ВКПМ В-6798, способный использовать формальдегид в качестве единственного источника углерода и энергии в бедной минеральной среде / Е.В. Евдокимов, М.В. Миронов, А.В. Евдокимов, И.Э. Маниенко, Е.В. Корниевская. 8 с.
11. Сэги Й. Методы почвенной микробиологии. М.: Колос, 1983. 295 с.
Размещено на Allbest.ru
...Подобные документы
Исследование и характеристика особенностей синегнойной палочки (Pseudomonas aeruginosa) – условно-патогенного микроорганизма. Определение токсиннейтрализующей активности моноклональных антител. Рассмотрение и анализ пигментов пиоцианина и флюоресцеина.
дипломная работа [1,8 M], добавлен 01.02.2018Споры – форма бактерий с грамположительным типом строения клеточной стенки. Роль спорообразования бактерий и грибов для практики. Строение и особенности химического состава бактериальной споры. Микробиологическое обоснование пастеризации и стерилизации.
контрольная работа [223,5 K], добавлен 02.10.2011Скрининг почвенных грибов и бактерий, проявляющих антагонистическую активность в отношении фитопатогенных грибов р. Fusarium и р. Bipolaris. Сравнительный анализ антибиотической активности изолятов в отношении грибов р. Bipolaris и штаммов р. Fusarium.
дипломная работа [3,6 M], добавлен 21.02.2013История открытия микроорганизмов. Клеточная стенка — структурный элемент бактериальной клетки, ее строение у грамотрицательных и грамположительных бактерий. Состав гомогенного слоя клеточной стенки. Функция пептидогликана; периплазматическое пространство.
реферат [1,8 M], добавлен 15.05.2012Систематика - распределение микроорганизмов в соответствии с их происхождением и биологическим сходством. Морфология бактерий, особенности строения бактериальной клетки. Морфологическая характеристика грибов, актиномицетов (лучистых грибов) и простейших.
реферат [27,2 K], добавлен 21.01.2010Изучение предмета, основных задач и истории развития медицинской микробиологии. Систематика и классификация микроорганизмов. Основы морфологии бактерий. Исследование особенностей строения бактериальной клетки. Значение микроорганизмов в жизни человека.
лекция [1,3 M], добавлен 12.10.2013Группа микроскопических одноклеточных организмов-прокариотов. Микроскопические методы исследования микроорганизмов. Формы, строение и химический состав бактериальной клетки. Функции поверхностных структур. Дыхание, питание, рост и размножение бактерий.
презентация [3,8 M], добавлен 24.01.2017Формы и размеры бактериальных организмов и их краткая характеристика. Строение бактериальной клетки, движение бактерий. Спорообразование и его биологическая роль, размножение бактерий. Передача признаков с помощью процессов трансдукции и трансформации.
лекция [25,5 K], добавлен 25.03.2013Места обитания бактерий. Строение бактерий. Размеры, форма бактерий. Строение бактериальной клетки. Процессы жизнедеятельности бактерии: питание, размножение, спорообразование. Значение бактерий в природе и жизни человека.
реферат [29,9 K], добавлен 05.10.2006Задачи физиологии микроорганизмов. Анализ химического состава бактериальной клетки. Особенности и механизмы питания аутотрофных и гетеротрофных бактерий, их ферменты, процесс дыхания и размножения. Наследственность и генетические рекомбинации у бактерий.
реферат [21,1 K], добавлен 29.09.2009Классификация бактерий, их рост и способы размножения, морфологические и культуральные признаки. Строение бактериальной клетки. Клеточная стенка прокариот. Химизм спиртового брожения. Технология получения этилового спирта, пива, вина и пекарских дрожжей.
реферат [690,6 K], добавлен 04.07.2015Химический состав бактериальной клетки: вода, белки, жиры, углеводы и минералы. Основные типы питания. Механизмы обмена веществ, ферменты. Дыхание: аэробы и анаэробы; редокс-потенциал. Рост и размножение, репликация ДНК. Некультивируемые формы бактерий.
презентация [2,4 M], добавлен 03.04.2012Характеристика строения бактериальной клетки. Механизмы поступления питательных веществ к клетку. Описание биохимической структуры микроорганизмов. Генетический материал бактерий, изображение их ядерной структуры. Симбиотические отношения микроорганизмов.
курсовая работа [391,9 K], добавлен 24.05.2015Проведение исследования в области генетики и изменчивости микроорганизмов. Характеристика S- и R-форм колоний. Фенотипическая изменчивость (модификация). Возникновение бактериальной мутации. Генетические рекомбинации и трансформация. Структура плазмидов.
реферат [20,3 K], добавлен 07.06.2015Наследственность и генетические рекомбинации у бактерий. Химический состав, размножение и особенности питания бактериальной клетки. Ферменты микроорганизмов. Мутация, молекулярные изменения в хромосоме. Деление стафилококка путем врастания перегородок.
презентация [2,4 M], добавлен 23.02.2014Компоненты бактериальной клетки, их функции. Энергетический обмен микробов. Способы получения энергии – брожение, дыхание. Типы дыхания бактерий. Влияние на микробную клетку ядовитых веществ. Стафилококковая интоксикация, возбудитель и его токсин.
контрольная работа [27,3 K], добавлен 08.08.2009Видоизменения мицелия в процессе приспособления к различным наземным условиям обитания. Размножение, питание и классификация грибов, их значение в биосфере и народном хозяйстве. Строение клетки гриба и бактериальной клетки, жизнедеятельность грибов.
реферат [198,1 K], добавлен 05.06.2010Особенности строения клеток бактерий, постоянные и непостоянные компоненты бактериальной клетки и принципы их окраски по Граму. Пропионово-кислое брожение и способы питания микроорганизмов. Санитарная оценка масла по микробиологическим показателям.
контрольная работа [26,8 K], добавлен 21.10.2010Систематика микроорганизмов по фенотипическим, генотипическим и филогенетическим признакам. Отличия прокариот и эукариот, анатомия бактериальной клетки. Морфология микроорганизмов: кокки, палочки, извитые и нитевидные формы. Генетическая система бактерий.
презентация [6,4 M], добавлен 13.09.2015Общие бактериальные болезни насекомых, энтомопатогенные бактерии. Негативное влияние бактерий на здоровье человека. Характеристика и механизм действия бактерий Bacillus thuringiensis. Бактериальные препараты: применение и методы повышения эффективности.
курсовая работа [48,4 K], добавлен 02.12.2010